--- Part Two --- Through a little deduction, you should now be able to determine the remaining digits. Consider again the first example above: acedgfb cdfbe gcdfa fbcad dab cefabd cdfgeb eafb cagedb ab | cdfeb fcadb cdfeb cdbaf After some careful analysis, the mapping between signal wires and segments only make sense in the following configuration: dddd e a e a ffff g b g b cccc So, the unique signal patterns would correspond to the following digits: - acedgfb: 8 - cdfbe: 5 - gcdfa: 2 - fbcad: 3 - dab: 7 - cefabd: 9 - cdfgeb: 6 - eafb: 4 - cagedb: 0 - ab: 1 Then, the four digits of the output value can be decoded: - cdfeb: 5 - fcadb: 3 - cdfeb: 5 - cdbaf: 3 Therefore, the output value for this entry is 5353. Following this same process for each entry in the second, larger example above, the output value of each entry can be determined: - fdgacbe cefdb cefbgd gcbe: 8394 - fcgedb cgb dgebacf gc: 9781 - cg cg fdcagb cbg: 1197 - efabcd cedba gadfec cb: 9361 - gecf egdcabf bgf bfgea: 4873 - gebdcfa ecba ca fadegcb: 8418 - cefg dcbef fcge gbcadfe: 4548 - ed bcgafe cdgba cbgef: 1625 - gbdfcae bgc cg cgb: 8717 - fgae cfgab fg bagce: 4315 Adding all of the output values in this larger example produces 61229. For each entry, determine all of the wire/segment connections and decode the four-digit output values. What do you get if you add up all of the output values?