cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

usage.rst (22659B)


      1.. SPDX-License-Identifier: GPL-2.0
      2
      3Writing Tests
      4=============
      5
      6Test Cases
      7----------
      8
      9The fundamental unit in KUnit is the test case. A test case is a function with
     10the signature ``void (*)(struct kunit *test)``. It calls the function under test
     11and then sets *expectations* for what should happen. For example:
     12
     13.. code-block:: c
     14
     15	void example_test_success(struct kunit *test)
     16	{
     17	}
     18
     19	void example_test_failure(struct kunit *test)
     20	{
     21		KUNIT_FAIL(test, "This test never passes.");
     22	}
     23
     24In the above example, ``example_test_success`` always passes because it does
     25nothing; no expectations are set, and therefore all expectations pass. On the
     26other hand ``example_test_failure`` always fails because it calls ``KUNIT_FAIL``,
     27which is a special expectation that logs a message and causes the test case to
     28fail.
     29
     30Expectations
     31~~~~~~~~~~~~
     32An *expectation* specifies that we expect a piece of code to do something in a
     33test. An expectation is called like a function. A test is made by setting
     34expectations about the behavior of a piece of code under test. When one or more
     35expectations fail, the test case fails and information about the failure is
     36logged. For example:
     37
     38.. code-block:: c
     39
     40	void add_test_basic(struct kunit *test)
     41	{
     42		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
     43		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
     44	}
     45
     46In the above example, ``add_test_basic`` makes a number of assertions about the
     47behavior of a function called ``add``. The first parameter is always of type
     48``struct kunit *``, which contains information about the current test context.
     49The second parameter, in this case, is what the value is expected to be. The
     50last value is what the value actually is. If ``add`` passes all of these
     51expectations, the test case, ``add_test_basic`` will pass; if any one of these
     52expectations fails, the test case will fail.
     53
     54A test case *fails* when any expectation is violated; however, the test will
     55continue to run, and try other expectations until the test case ends or is
     56otherwise terminated. This is as opposed to *assertions* which are discussed
     57later.
     58
     59To learn about more KUnit expectations, see Documentation/dev-tools/kunit/api/test.rst.
     60
     61.. note::
     62   A single test case should be short, easy to understand, and focused on a
     63   single behavior.
     64
     65For example, if we want to rigorously test the ``add`` function above, create
     66additional tests cases which would test each property that an ``add`` function
     67should have as shown below:
     68
     69.. code-block:: c
     70
     71	void add_test_basic(struct kunit *test)
     72	{
     73		KUNIT_EXPECT_EQ(test, 1, add(1, 0));
     74		KUNIT_EXPECT_EQ(test, 2, add(1, 1));
     75	}
     76
     77	void add_test_negative(struct kunit *test)
     78	{
     79		KUNIT_EXPECT_EQ(test, 0, add(-1, 1));
     80	}
     81
     82	void add_test_max(struct kunit *test)
     83	{
     84		KUNIT_EXPECT_EQ(test, INT_MAX, add(0, INT_MAX));
     85		KUNIT_EXPECT_EQ(test, -1, add(INT_MAX, INT_MIN));
     86	}
     87
     88	void add_test_overflow(struct kunit *test)
     89	{
     90		KUNIT_EXPECT_EQ(test, INT_MIN, add(INT_MAX, 1));
     91	}
     92
     93Assertions
     94~~~~~~~~~~
     95
     96An assertion is like an expectation, except that the assertion immediately
     97terminates the test case if the condition is not satisfied. For example:
     98
     99.. code-block:: c
    100
    101	static void test_sort(struct kunit *test)
    102	{
    103		int *a, i, r = 1;
    104		a = kunit_kmalloc_array(test, TEST_LEN, sizeof(*a), GFP_KERNEL);
    105		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, a);
    106		for (i = 0; i < TEST_LEN; i++) {
    107			r = (r * 725861) % 6599;
    108			a[i] = r;
    109		}
    110		sort(a, TEST_LEN, sizeof(*a), cmpint, NULL);
    111		for (i = 0; i < TEST_LEN-1; i++)
    112			KUNIT_EXPECT_LE(test, a[i], a[i + 1]);
    113	}
    114
    115In this example, the method under test should return pointer to a value. If the
    116pointer returns null or an errno, we want to stop the test since the following
    117expectation could crash the test case. `ASSERT_NOT_ERR_OR_NULL(...)` allows us
    118to bail out of the test case if the appropriate conditions are not satisfied to
    119complete the test.
    120
    121Test Suites
    122~~~~~~~~~~~
    123
    124We need many test cases covering all the unit's behaviors. It is common to have
    125many similar tests. In order to reduce duplication in these closely related
    126tests, most unit testing frameworks (including KUnit) provide the concept of a
    127*test suite*. A test suite is a collection of test cases for a unit of code
    128with optional setup and teardown functions that run before/after the whole
    129suite and/or every test case. For example:
    130
    131.. code-block:: c
    132
    133	static struct kunit_case example_test_cases[] = {
    134		KUNIT_CASE(example_test_foo),
    135		KUNIT_CASE(example_test_bar),
    136		KUNIT_CASE(example_test_baz),
    137		{}
    138	};
    139
    140	static struct kunit_suite example_test_suite = {
    141		.name = "example",
    142		.init = example_test_init,
    143		.exit = example_test_exit,
    144		.suite_init = example_suite_init,
    145		.suite_exit = example_suite_exit,
    146		.test_cases = example_test_cases,
    147	};
    148	kunit_test_suite(example_test_suite);
    149
    150In the above example, the test suite ``example_test_suite`` would first run
    151``example_suite_init``, then run the test cases ``example_test_foo``,
    152``example_test_bar``, and ``example_test_baz``. Each would have
    153``example_test_init`` called immediately before it and ``example_test_exit``
    154called immediately after it. Finally, ``example_suite_exit`` would be called
    155after everything else. ``kunit_test_suite(example_test_suite)`` registers the
    156test suite with the KUnit test framework.
    157
    158.. note::
    159   A test case will only run if it is associated with a test suite.
    160
    161``kunit_test_suite(...)`` is a macro which tells the linker to put the
    162specified test suite in a special linker section so that it can be run by KUnit
    163either after ``late_init``, or when the test module is loaded (if the test was
    164built as a module).
    165
    166For more information, see Documentation/dev-tools/kunit/api/test.rst.
    167
    168Writing Tests For Other Architectures
    169-------------------------------------
    170
    171It is better to write tests that run on UML to tests that only run under a
    172particular architecture. It is better to write tests that run under QEMU or
    173another easy to obtain (and monetarily free) software environment to a specific
    174piece of hardware.
    175
    176Nevertheless, there are still valid reasons to write a test that is architecture
    177or hardware specific. For example, we might want to test code that really
    178belongs in ``arch/some-arch/*``. Even so, try to write the test so that it does
    179not depend on physical hardware. Some of our test cases may not need hardware,
    180only few tests actually require the hardware to test it. When hardware is not
    181available, instead of disabling tests, we can skip them.
    182
    183Now that we have narrowed down exactly what bits are hardware specific, the
    184actual procedure for writing and running the tests is same as writing normal
    185KUnit tests.
    186
    187.. important::
    188   We may have to reset hardware state. If this is not possible, we may only
    189   be able to run one test case per invocation.
    190
    191.. TODO(brendanhiggins@google.com): Add an actual example of an architecture-
    192   dependent KUnit test.
    193
    194Common Patterns
    195===============
    196
    197Isolating Behavior
    198------------------
    199
    200Unit testing limits the amount of code under test to a single unit. It controls
    201what code gets run when the unit under test calls a function. Where a function
    202is exposed as part of an API such that the definition of that function can be
    203changed without affecting the rest of the code base. In the kernel, this comes
    204from two constructs: classes, which are structs that contain function pointers
    205provided by the implementer, and architecture-specific functions, which have
    206definitions selected at compile time.
    207
    208Classes
    209~~~~~~~
    210
    211Classes are not a construct that is built into the C programming language;
    212however, it is an easily derived concept. Accordingly, in most cases, every
    213project that does not use a standardized object oriented library (like GNOME's
    214GObject) has their own slightly different way of doing object oriented
    215programming; the Linux kernel is no exception.
    216
    217The central concept in kernel object oriented programming is the class. In the
    218kernel, a *class* is a struct that contains function pointers. This creates a
    219contract between *implementers* and *users* since it forces them to use the
    220same function signature without having to call the function directly. To be a
    221class, the function pointers must specify that a pointer to the class, known as
    222a *class handle*, be one of the parameters. Thus the member functions (also
    223known as *methods*) have access to member variables (also known as *fields*)
    224allowing the same implementation to have multiple *instances*.
    225
    226A class can be *overridden* by *child classes* by embedding the *parent class*
    227in the child class. Then when the child class *method* is called, the child
    228implementation knows that the pointer passed to it is of a parent contained
    229within the child. Thus, the child can compute the pointer to itself because the
    230pointer to the parent is always a fixed offset from the pointer to the child.
    231This offset is the offset of the parent contained in the child struct. For
    232example:
    233
    234.. code-block:: c
    235
    236	struct shape {
    237		int (*area)(struct shape *this);
    238	};
    239
    240	struct rectangle {
    241		struct shape parent;
    242		int length;
    243		int width;
    244	};
    245
    246	int rectangle_area(struct shape *this)
    247	{
    248		struct rectangle *self = container_of(this, struct rectangle, parent);
    249
    250		return self->length * self->width;
    251	};
    252
    253	void rectangle_new(struct rectangle *self, int length, int width)
    254	{
    255		self->parent.area = rectangle_area;
    256		self->length = length;
    257		self->width = width;
    258	}
    259
    260In this example, computing the pointer to the child from the pointer to the
    261parent is done by ``container_of``.
    262
    263Faking Classes
    264~~~~~~~~~~~~~~
    265
    266In order to unit test a piece of code that calls a method in a class, the
    267behavior of the method must be controllable, otherwise the test ceases to be a
    268unit test and becomes an integration test.
    269
    270A fake class implements a piece of code that is different than what runs in a
    271production instance, but behaves identical from the standpoint of the callers.
    272This is done to replace a dependency that is hard to deal with, or is slow. For
    273example, implementing a fake EEPROM that stores the "contents" in an
    274internal buffer. Assume we have a class that represents an EEPROM:
    275
    276.. code-block:: c
    277
    278	struct eeprom {
    279		ssize_t (*read)(struct eeprom *this, size_t offset, char *buffer, size_t count);
    280		ssize_t (*write)(struct eeprom *this, size_t offset, const char *buffer, size_t count);
    281	};
    282
    283And we want to test code that buffers writes to the EEPROM:
    284
    285.. code-block:: c
    286
    287	struct eeprom_buffer {
    288		ssize_t (*write)(struct eeprom_buffer *this, const char *buffer, size_t count);
    289		int flush(struct eeprom_buffer *this);
    290		size_t flush_count; /* Flushes when buffer exceeds flush_count. */
    291	};
    292
    293	struct eeprom_buffer *new_eeprom_buffer(struct eeprom *eeprom);
    294	void destroy_eeprom_buffer(struct eeprom *eeprom);
    295
    296We can test this code by *faking out* the underlying EEPROM:
    297
    298.. code-block:: c
    299
    300	struct fake_eeprom {
    301		struct eeprom parent;
    302		char contents[FAKE_EEPROM_CONTENTS_SIZE];
    303	};
    304
    305	ssize_t fake_eeprom_read(struct eeprom *parent, size_t offset, char *buffer, size_t count)
    306	{
    307		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
    308
    309		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
    310		memcpy(buffer, this->contents + offset, count);
    311
    312		return count;
    313	}
    314
    315	ssize_t fake_eeprom_write(struct eeprom *parent, size_t offset, const char *buffer, size_t count)
    316	{
    317		struct fake_eeprom *this = container_of(parent, struct fake_eeprom, parent);
    318
    319		count = min(count, FAKE_EEPROM_CONTENTS_SIZE - offset);
    320		memcpy(this->contents + offset, buffer, count);
    321
    322		return count;
    323	}
    324
    325	void fake_eeprom_init(struct fake_eeprom *this)
    326	{
    327		this->parent.read = fake_eeprom_read;
    328		this->parent.write = fake_eeprom_write;
    329		memset(this->contents, 0, FAKE_EEPROM_CONTENTS_SIZE);
    330	}
    331
    332We can now use it to test ``struct eeprom_buffer``:
    333
    334.. code-block:: c
    335
    336	struct eeprom_buffer_test {
    337		struct fake_eeprom *fake_eeprom;
    338		struct eeprom_buffer *eeprom_buffer;
    339	};
    340
    341	static void eeprom_buffer_test_does_not_write_until_flush(struct kunit *test)
    342	{
    343		struct eeprom_buffer_test *ctx = test->priv;
    344		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
    345		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
    346		char buffer[] = {0xff};
    347
    348		eeprom_buffer->flush_count = SIZE_MAX;
    349
    350		eeprom_buffer->write(eeprom_buffer, buffer, 1);
    351		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
    352
    353		eeprom_buffer->write(eeprom_buffer, buffer, 1);
    354		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0);
    355
    356		eeprom_buffer->flush(eeprom_buffer);
    357		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
    358		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
    359	}
    360
    361	static void eeprom_buffer_test_flushes_after_flush_count_met(struct kunit *test)
    362	{
    363		struct eeprom_buffer_test *ctx = test->priv;
    364		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
    365		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
    366		char buffer[] = {0xff};
    367
    368		eeprom_buffer->flush_count = 2;
    369
    370		eeprom_buffer->write(eeprom_buffer, buffer, 1);
    371		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
    372
    373		eeprom_buffer->write(eeprom_buffer, buffer, 1);
    374		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
    375		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
    376	}
    377
    378	static void eeprom_buffer_test_flushes_increments_of_flush_count(struct kunit *test)
    379	{
    380		struct eeprom_buffer_test *ctx = test->priv;
    381		struct eeprom_buffer *eeprom_buffer = ctx->eeprom_buffer;
    382		struct fake_eeprom *fake_eeprom = ctx->fake_eeprom;
    383		char buffer[] = {0xff, 0xff};
    384
    385		eeprom_buffer->flush_count = 2;
    386
    387		eeprom_buffer->write(eeprom_buffer, buffer, 1);
    388		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0);
    389
    390		eeprom_buffer->write(eeprom_buffer, buffer, 2);
    391		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[0], 0xff);
    392		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[1], 0xff);
    393		/* Should have only flushed the first two bytes. */
    394		KUNIT_EXPECT_EQ(test, fake_eeprom->contents[2], 0);
    395	}
    396
    397	static int eeprom_buffer_test_init(struct kunit *test)
    398	{
    399		struct eeprom_buffer_test *ctx;
    400
    401		ctx = kunit_kzalloc(test, sizeof(*ctx), GFP_KERNEL);
    402		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx);
    403
    404		ctx->fake_eeprom = kunit_kzalloc(test, sizeof(*ctx->fake_eeprom), GFP_KERNEL);
    405		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->fake_eeprom);
    406		fake_eeprom_init(ctx->fake_eeprom);
    407
    408		ctx->eeprom_buffer = new_eeprom_buffer(&ctx->fake_eeprom->parent);
    409		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, ctx->eeprom_buffer);
    410
    411		test->priv = ctx;
    412
    413		return 0;
    414	}
    415
    416	static void eeprom_buffer_test_exit(struct kunit *test)
    417	{
    418		struct eeprom_buffer_test *ctx = test->priv;
    419
    420		destroy_eeprom_buffer(ctx->eeprom_buffer);
    421	}
    422
    423Testing Against Multiple Inputs
    424-------------------------------
    425
    426Testing just a few inputs is not enough to ensure that the code works correctly,
    427for example: testing a hash function.
    428
    429We can write a helper macro or function. The function is called for each input.
    430For example, to test ``sha1sum(1)``, we can write:
    431
    432.. code-block:: c
    433
    434	#define TEST_SHA1(in, want) \
    435		sha1sum(in, out); \
    436		KUNIT_EXPECT_STREQ_MSG(test, out, want, "sha1sum(%s)", in);
    437
    438	char out[40];
    439	TEST_SHA1("hello world",  "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed");
    440	TEST_SHA1("hello world!", "430ce34d020724ed75a196dfc2ad67c77772d169");
    441
    442Note the use of the ``_MSG`` version of ``KUNIT_EXPECT_STREQ`` to print a more
    443detailed error and make the assertions clearer within the helper macros.
    444
    445The ``_MSG`` variants are useful when the same expectation is called multiple
    446times (in a loop or helper function) and thus the line number is not enough to
    447identify what failed, as shown below.
    448
    449In complicated cases, we recommend using a *table-driven test* compared to the
    450helper macro variation, for example:
    451
    452.. code-block:: c
    453
    454	int i;
    455	char out[40];
    456
    457	struct sha1_test_case {
    458		const char *str;
    459		const char *sha1;
    460	};
    461
    462	struct sha1_test_case cases[] = {
    463		{
    464			.str = "hello world",
    465			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
    466		},
    467		{
    468			.str = "hello world!",
    469			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
    470		},
    471	};
    472	for (i = 0; i < ARRAY_SIZE(cases); ++i) {
    473		sha1sum(cases[i].str, out);
    474		KUNIT_EXPECT_STREQ_MSG(test, out, cases[i].sha1,
    475		                      "sha1sum(%s)", cases[i].str);
    476	}
    477
    478
    479There is more boilerplate code involved, but it can:
    480
    481* be more readable when there are multiple inputs/outputs (due to field names).
    482
    483  * For example, see ``fs/ext4/inode-test.c``.
    484
    485* reduce duplication if test cases are shared across multiple tests.
    486
    487  * For example: if we want to test ``sha256sum``, we could add a ``sha256``
    488    field and reuse ``cases``.
    489
    490* be converted to a "parameterized test".
    491
    492Parameterized Testing
    493~~~~~~~~~~~~~~~~~~~~~
    494
    495The table-driven testing pattern is common enough that KUnit has special
    496support for it.
    497
    498By reusing the same ``cases`` array from above, we can write the test as a
    499"parameterized test" with the following.
    500
    501.. code-block:: c
    502
    503	// This is copy-pasted from above.
    504	struct sha1_test_case {
    505		const char *str;
    506		const char *sha1;
    507	};
    508	struct sha1_test_case cases[] = {
    509		{
    510			.str = "hello world",
    511			.sha1 = "2aae6c35c94fcfb415dbe95f408b9ce91ee846ed",
    512		},
    513		{
    514			.str = "hello world!",
    515			.sha1 = "430ce34d020724ed75a196dfc2ad67c77772d169",
    516		},
    517	};
    518
    519	// Need a helper function to generate a name for each test case.
    520	static void case_to_desc(const struct sha1_test_case *t, char *desc)
    521	{
    522		strcpy(desc, t->str);
    523	}
    524	// Creates `sha1_gen_params()` to iterate over `cases`.
    525	KUNIT_ARRAY_PARAM(sha1, cases, case_to_desc);
    526
    527	// Looks no different from a normal test.
    528	static void sha1_test(struct kunit *test)
    529	{
    530		// This function can just contain the body of the for-loop.
    531		// The former `cases[i]` is accessible under test->param_value.
    532		char out[40];
    533		struct sha1_test_case *test_param = (struct sha1_test_case *)(test->param_value);
    534
    535		sha1sum(test_param->str, out);
    536		KUNIT_EXPECT_STREQ_MSG(test, out, test_param->sha1,
    537				      "sha1sum(%s)", test_param->str);
    538	}
    539
    540	// Instead of KUNIT_CASE, we use KUNIT_CASE_PARAM and pass in the
    541	// function declared by KUNIT_ARRAY_PARAM.
    542	static struct kunit_case sha1_test_cases[] = {
    543		KUNIT_CASE_PARAM(sha1_test, sha1_gen_params),
    544		{}
    545	};
    546
    547.. _kunit-on-non-uml:
    548
    549Exiting Early on Failed Expectations
    550------------------------------------
    551
    552We can use ``KUNIT_EXPECT_EQ`` to mark the test as failed and continue
    553execution.  In some cases, it is unsafe to continue. We can use the
    554``KUNIT_ASSERT`` variant to exit on failure.
    555
    556.. code-block:: c
    557
    558	void example_test_user_alloc_function(struct kunit *test)
    559	{
    560		void *object = alloc_some_object_for_me();
    561
    562		/* Make sure we got a valid pointer back. */
    563		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, object);
    564		do_something_with_object(object);
    565	}
    566
    567Allocating Memory
    568-----------------
    569
    570Where you might use ``kzalloc``, you can instead use ``kunit_kzalloc`` as KUnit
    571will then ensure that the memory is freed once the test completes.
    572
    573This is useful because it lets us use the ``KUNIT_ASSERT_EQ`` macros to exit
    574early from a test without having to worry about remembering to call ``kfree``.
    575For example:
    576
    577.. code-block:: c
    578
    579	void example_test_allocation(struct kunit *test)
    580	{
    581		char *buffer = kunit_kzalloc(test, 16, GFP_KERNEL);
    582		/* Ensure allocation succeeded. */
    583		KUNIT_ASSERT_NOT_ERR_OR_NULL(test, buffer);
    584
    585		KUNIT_ASSERT_STREQ(test, buffer, "");
    586	}
    587
    588
    589Testing Static Functions
    590------------------------
    591
    592If we do not want to expose functions or variables for testing, one option is to
    593conditionally ``#include`` the test file at the end of your .c file. For
    594example:
    595
    596.. code-block:: c
    597
    598	/* In my_file.c */
    599
    600	static int do_interesting_thing();
    601
    602	#ifdef CONFIG_MY_KUNIT_TEST
    603	#include "my_kunit_test.c"
    604	#endif
    605
    606Injecting Test-Only Code
    607------------------------
    608
    609Similar to as shown above, we can add test-specific logic. For example:
    610
    611.. code-block:: c
    612
    613	/* In my_file.h */
    614
    615	#ifdef CONFIG_MY_KUNIT_TEST
    616	/* Defined in my_kunit_test.c */
    617	void test_only_hook(void);
    618	#else
    619	void test_only_hook(void) { }
    620	#endif
    621
    622This test-only code can be made more useful by accessing the current ``kunit_test``
    623as shown in next section: *Accessing The Current Test*.
    624
    625Accessing The Current Test
    626--------------------------
    627
    628In some cases, we need to call test-only code from outside the test file.
    629For example, see example in section *Injecting Test-Only Code* or if
    630we are providing a fake implementation of an ops struct. Using
    631``kunit_test`` field in ``task_struct``, we can access it via
    632``current->kunit_test``.
    633
    634The example below includes how to implement "mocking":
    635
    636.. code-block:: c
    637
    638	#include <linux/sched.h> /* for current */
    639
    640	struct test_data {
    641		int foo_result;
    642		int want_foo_called_with;
    643	};
    644
    645	static int fake_foo(int arg)
    646	{
    647		struct kunit *test = current->kunit_test;
    648		struct test_data *test_data = test->priv;
    649
    650		KUNIT_EXPECT_EQ(test, test_data->want_foo_called_with, arg);
    651		return test_data->foo_result;
    652	}
    653
    654	static void example_simple_test(struct kunit *test)
    655	{
    656		/* Assume priv (private, a member used to pass test data from
    657		 * the init function) is allocated in the suite's .init */
    658		struct test_data *test_data = test->priv;
    659
    660		test_data->foo_result = 42;
    661		test_data->want_foo_called_with = 1;
    662
    663		/* In a real test, we'd probably pass a pointer to fake_foo somewhere
    664		 * like an ops struct, etc. instead of calling it directly. */
    665		KUNIT_EXPECT_EQ(test, fake_foo(1), 42);
    666	}
    667
    668In this example, we are using the ``priv`` member of ``struct kunit`` as a way
    669of passing data to the test from the init function. In general ``priv`` is
    670pointer that can be used for any user data. This is preferred over static
    671variables, as it avoids concurrency issues.
    672
    673Had we wanted something more flexible, we could have used a named ``kunit_resource``.
    674Each test can have multiple resources which have string names providing the same
    675flexibility as a ``priv`` member, but also, for example, allowing helper
    676functions to create resources without conflicting with each other. It is also
    677possible to define a clean up function for each resource, making it easy to
    678avoid resource leaks. For more information, see Documentation/dev-tools/kunit/api/test.rst.
    679
    680Failing The Current Test
    681------------------------
    682
    683If we want to fail the current test, we can use ``kunit_fail_current_test(fmt, args...)``
    684which is defined in ``<kunit/test-bug.h>`` and does not require pulling in ``<kunit/test.h>``.
    685For example, we have an option to enable some extra debug checks on some data
    686structures as shown below:
    687
    688.. code-block:: c
    689
    690	#include <kunit/test-bug.h>
    691
    692	#ifdef CONFIG_EXTRA_DEBUG_CHECKS
    693	static void validate_my_data(struct data *data)
    694	{
    695		if (is_valid(data))
    696			return;
    697
    698		kunit_fail_current_test("data %p is invalid", data);
    699
    700		/* Normal, non-KUnit, error reporting code here. */
    701	}
    702	#else
    703	static void my_debug_function(void) { }
    704	#endif
    705