cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

scsi_mid_low_api.rst (54161B)


      1.. SPDX-License-Identifier: GPL-2.0
      2
      3=============================================
      4SCSI mid_level - lower_level driver interface
      5=============================================
      6
      7Introduction
      8============
      9This document outlines the interface between the Linux SCSI mid level and
     10SCSI lower level drivers. Lower level drivers (LLDs) are variously called
     11host bus adapter (HBA) drivers and host drivers (HD). A "host" in this
     12context is a bridge between a computer IO bus (e.g. PCI or ISA) and a
     13single SCSI initiator port on a SCSI transport. An "initiator" port
     14(SCSI terminology, see SAM-3 at http://www.t10.org) sends SCSI commands
     15to "target" SCSI ports (e.g. disks). There can be many LLDs in a running
     16system, but only one per hardware type. Most LLDs can control one or more
     17SCSI HBAs. Some HBAs contain multiple hosts.
     18
     19In some cases the SCSI transport is an external bus that already has
     20its own subsystem in Linux (e.g. USB and ieee1394). In such cases the
     21SCSI subsystem LLD is a software bridge to the other driver subsystem.
     22Examples are the usb-storage driver (found in the drivers/usb/storage
     23directory) and the ieee1394/sbp2 driver (found in the drivers/ieee1394
     24directory).
     25
     26For example, the aic7xxx LLD controls Adaptec SCSI parallel interface
     27(SPI) controllers based on that company's 7xxx chip series. The aic7xxx
     28LLD can be built into the kernel or loaded as a module. There can only be
     29one aic7xxx LLD running in a Linux system but it may be controlling many
     30HBAs. These HBAs might be either on PCI daughter-boards or built into
     31the motherboard (or both). Some aic7xxx based HBAs are dual controllers
     32and thus represent two hosts. Like most modern HBAs, each aic7xxx host
     33has its own PCI device address. [The one-to-one correspondence between
     34a SCSI host and a PCI device is common but not required (e.g. with
     35ISA adapters).]
     36
     37The SCSI mid level isolates an LLD from other layers such as the SCSI
     38upper layer drivers and the block layer.
     39
     40This version of the document roughly matches linux kernel version 2.6.8 .
     41
     42Documentation
     43=============
     44There is a SCSI documentation directory within the kernel source tree,
     45typically Documentation/scsi . Most documents are in plain
     46(i.e. ASCII) text. This file is named scsi_mid_low_api.txt and can be
     47found in that directory. A more recent copy of this document may be found
     48at http://web.archive.org/web/20070107183357rn_1/sg.torque.net/scsi/.
     49Many LLDs are documented there (e.g. aic7xxx.txt). The SCSI mid-level is
     50briefly described in scsi.txt which contains a url to a document
     51describing the SCSI subsystem in the lk 2.4 series. Two upper level
     52drivers have documents in that directory: st.txt (SCSI tape driver) and
     53scsi-generic.txt (for the sg driver).
     54
     55Some documentation (or urls) for LLDs may be found in the C source code
     56or in the same directory as the C source code. For example to find a url
     57about the USB mass storage driver see the
     58/usr/src/linux/drivers/usb/storage directory.
     59
     60Driver structure
     61================
     62Traditionally an LLD for the SCSI subsystem has been at least two files in
     63the drivers/scsi directory. For example, a driver called "xyz" has a header
     64file "xyz.h" and a source file "xyz.c". [Actually there is no good reason
     65why this couldn't all be in one file; the header file is superfluous.] Some
     66drivers that have been ported to several operating systems have more than
     67two files. For example the aic7xxx driver has separate files for generic
     68and OS-specific code (e.g. FreeBSD and Linux). Such drivers tend to have
     69their own directory under the drivers/scsi directory.
     70
     71When a new LLD is being added to Linux, the following files (found in the
     72drivers/scsi directory) will need some attention: Makefile and Kconfig .
     73It is probably best to study how existing LLDs are organized.
     74
     75As the 2.5 series development kernels evolve into the 2.6 series
     76production series, changes are being introduced into this interface. An
     77example of this is driver initialization code where there are now 2 models
     78available. The older one, similar to what was found in the lk 2.4 series,
     79is based on hosts that are detected at HBA driver load time. This will be
     80referred to the "passive" initialization model. The newer model allows HBAs
     81to be hot plugged (and unplugged) during the lifetime of the LLD and will
     82be referred to as the "hotplug" initialization model. The newer model is
     83preferred as it can handle both traditional SCSI equipment that is
     84permanently connected as well as modern "SCSI" devices (e.g. USB or
     85IEEE 1394 connected digital cameras) that are hotplugged. Both
     86initialization models are discussed in the following sections.
     87
     88An LLD interfaces to the SCSI subsystem several ways:
     89
     90  a) directly invoking functions supplied by the mid level
     91  b) passing a set of function pointers to a registration function
     92     supplied by the mid level. The mid level will then invoke these
     93     functions at some point in the future. The LLD will supply
     94     implementations of these functions.
     95  c) direct access to instances of well known data structures maintained
     96     by the mid level
     97
     98Those functions in group a) are listed in a section entitled "Mid level
     99supplied functions" below.
    100
    101Those functions in group b) are listed in a section entitled "Interface
    102functions" below. Their function pointers are placed in the members of
    103"struct scsi_host_template", an instance of which is passed to
    104scsi_host_alloc() [#]_.  Those interface functions that the LLD does not
    105wish to supply should have NULL placed in the corresponding member of
    106struct scsi_host_template.  Defining an instance of struct
    107scsi_host_template at file scope will cause NULL to be  placed in function
    108pointer members not explicitly initialized.
    109
    110Those usages in group c) should be handled with care, especially in a
    111"hotplug" environment. LLDs should be aware of the lifetime of instances
    112that are shared with the mid level and other layers.
    113
    114All functions defined within an LLD and all data defined at file scope
    115should be static. For example the slave_alloc() function in an LLD
    116called "xxx" could be defined as
    117``static int xxx_slave_alloc(struct scsi_device * sdev) { /* code */ }``
    118
    119.. [#] the scsi_host_alloc() function is a replacement for the rather vaguely
    120       named scsi_register() function in most situations.
    121
    122
    123Hotplug initialization model
    124============================
    125In this model an LLD controls when SCSI hosts are introduced and removed
    126from the SCSI subsystem. Hosts can be introduced as early as driver
    127initialization and removed as late as driver shutdown. Typically a driver
    128will respond to a sysfs probe() callback that indicates an HBA has been
    129detected. After confirming that the new device is one that the LLD wants
    130to control, the LLD will initialize the HBA and then register a new host
    131with the SCSI mid level.
    132
    133During LLD initialization the driver should register itself with the
    134appropriate IO bus on which it expects to find HBA(s) (e.g. the PCI bus).
    135This can probably be done via sysfs. Any driver parameters (especially
    136those that are writable after the driver is loaded) could also be
    137registered with sysfs at this point. The SCSI mid level first becomes
    138aware of an LLD when that LLD registers its first HBA.
    139
    140At some later time, the LLD becomes aware of an HBA and what follows
    141is a typical sequence of calls between the LLD and the mid level.
    142This example shows the mid level scanning the newly introduced HBA for 3
    143scsi devices of which only the first 2 respond::
    144
    145	HBA PROBE: assume 2 SCSI devices found in scan
    146    LLD                   mid level                    LLD
    147    ===-------------------=========--------------------===------
    148    scsi_host_alloc()  -->
    149    scsi_add_host()  ---->
    150    scsi_scan_host()  -------+
    151			    |
    152			slave_alloc()
    153			slave_configure() -->  scsi_change_queue_depth()
    154			    |
    155			slave_alloc()
    156			slave_configure()
    157			    |
    158			slave_alloc()   ***
    159			slave_destroy() ***
    160
    161
    162    *** For scsi devices that the mid level tries to scan but do not
    163	respond, a slave_alloc(), slave_destroy() pair is called.
    164
    165If the LLD wants to adjust the default queue settings, it can invoke
    166scsi_change_queue_depth() in its slave_configure() routine.
    167
    168When an HBA is being removed it could be as part of an orderly shutdown
    169associated with the LLD module being unloaded (e.g. with the "rmmod"
    170command) or in response to a "hot unplug" indicated by sysfs()'s
    171remove() callback being invoked. In either case, the sequence is the
    172same::
    173
    174	    HBA REMOVE: assume 2 SCSI devices attached
    175    LLD                      mid level                 LLD
    176    ===----------------------=========-----------------===------
    177    scsi_remove_host() ---------+
    178				|
    179			slave_destroy()
    180			slave_destroy()
    181    scsi_host_put()
    182
    183It may be useful for a LLD to keep track of struct Scsi_Host instances
    184(a pointer is returned by scsi_host_alloc()). Such instances are "owned"
    185by the mid-level.  struct Scsi_Host instances are freed from
    186scsi_host_put() when the reference count hits zero.
    187
    188Hot unplugging an HBA that controls a disk which is processing SCSI
    189commands on a mounted file system is an interesting situation. Reference
    190counting logic is being introduced into the mid level to cope with many
    191of the issues involved. See the section on reference counting below.
    192
    193
    194The hotplug concept may be extended to SCSI devices. Currently, when an
    195HBA is added, the scsi_scan_host() function causes a scan for SCSI devices
    196attached to the HBA's SCSI transport. On newer SCSI transports the HBA
    197may become aware of a new SCSI device _after_ the scan has completed.
    198An LLD can use this sequence to make the mid level aware of a SCSI device::
    199
    200		    SCSI DEVICE hotplug
    201    LLD                   mid level                    LLD
    202    ===-------------------=========--------------------===------
    203    scsi_add_device()  ------+
    204			    |
    205			slave_alloc()
    206			slave_configure()   [--> scsi_change_queue_depth()]
    207
    208In a similar fashion, an LLD may become aware that a SCSI device has been
    209removed (unplugged) or the connection to it has been interrupted. Some
    210existing SCSI transports (e.g. SPI) may not become aware that a SCSI
    211device has been removed until a subsequent SCSI command fails which will
    212probably cause that device to be set offline by the mid level. An LLD that
    213detects the removal of a SCSI device can instigate its removal from
    214upper layers with this sequence::
    215
    216		    SCSI DEVICE hot unplug
    217    LLD                      mid level                 LLD
    218    ===----------------------=========-----------------===------
    219    scsi_remove_device() -------+
    220				|
    221			slave_destroy()
    222
    223It may be useful for an LLD to keep track of struct scsi_device instances
    224(a pointer is passed as the parameter to slave_alloc() and
    225slave_configure() callbacks). Such instances are "owned" by the mid-level.
    226struct scsi_device instances are freed after slave_destroy().
    227
    228
    229Reference Counting
    230==================
    231The Scsi_Host structure has had reference counting infrastructure added.
    232This effectively spreads the ownership of struct Scsi_Host instances
    233across the various SCSI layers which use them. Previously such instances
    234were exclusively owned by the mid level. LLDs would not usually need to
    235directly manipulate these reference counts but there may be some cases
    236where they do.
    237
    238There are 3 reference counting functions of interest associated with
    239struct Scsi_Host:
    240
    241  - scsi_host_alloc():
    242	returns a pointer to new instance of struct
    243        Scsi_Host which has its reference count ^^ set to 1
    244
    245  - scsi_host_get():
    246	adds 1 to the reference count of the given instance
    247
    248  - scsi_host_put():
    249	decrements 1 from the reference count of the given
    250        instance. If the reference count reaches 0 then the given instance
    251        is freed
    252
    253The scsi_device structure has had reference counting infrastructure added.
    254This effectively spreads the ownership of struct scsi_device instances
    255across the various SCSI layers which use them. Previously such instances
    256were exclusively owned by the mid level. See the access functions declared
    257towards the end of include/scsi/scsi_device.h . If an LLD wants to keep
    258a copy of a pointer to a scsi_device instance it should use scsi_device_get()
    259to bump its reference count. When it is finished with the pointer it can
    260use scsi_device_put() to decrement its reference count (and potentially
    261delete it).
    262
    263.. Note::
    264
    265   struct Scsi_Host actually has 2 reference counts which are manipulated
    266   in parallel by these functions.
    267
    268
    269Conventions
    270===========
    271First, Linus Torvalds's thoughts on C coding style can be found in the
    272Documentation/process/coding-style.rst file.
    273
    274Also, most C99 enhancements are encouraged to the extent they are supported
    275by the relevant gcc compilers. So C99 style structure and array
    276initializers are encouraged where appropriate. Don't go too far,
    277VLAs are not properly supported yet.  An exception to this is the use of
    278``//`` style comments; ``/*...*/`` comments are still preferred in Linux.
    279
    280Well written, tested and documented code, need not be re-formatted to
    281comply with the above conventions. For example, the aic7xxx driver
    282comes to Linux from FreeBSD and Adaptec's own labs. No doubt FreeBSD
    283and Adaptec have their own coding conventions.
    284
    285
    286Mid level supplied functions
    287============================
    288These functions are supplied by the SCSI mid level for use by LLDs.
    289The names (i.e. entry points) of these functions are exported
    290so an LLD that is a module can access them. The kernel will
    291arrange for the SCSI mid level to be loaded and initialized before any LLD
    292is initialized. The functions below are listed alphabetically and their
    293names all start with ``scsi_``.
    294
    295Summary:
    296
    297  - scsi_add_device - creates new scsi device (lu) instance
    298  - scsi_add_host - perform sysfs registration and set up transport class
    299  - scsi_change_queue_depth - change the queue depth on a SCSI device
    300  - scsi_bios_ptable - return copy of block device's partition table
    301  - scsi_block_requests - prevent further commands being queued to given host
    302  - scsi_host_alloc - return a new scsi_host instance whose refcount==1
    303  - scsi_host_get - increments Scsi_Host instance's refcount
    304  - scsi_host_put - decrements Scsi_Host instance's refcount (free if 0)
    305  - scsi_register - create and register a scsi host adapter instance.
    306  - scsi_remove_device - detach and remove a SCSI device
    307  - scsi_remove_host - detach and remove all SCSI devices owned by host
    308  - scsi_report_bus_reset - report scsi _bus_ reset observed
    309  - scsi_scan_host - scan SCSI bus
    310  - scsi_track_queue_full - track successive QUEUE_FULL events
    311  - scsi_unblock_requests - allow further commands to be queued to given host
    312  - scsi_unregister - [calls scsi_host_put()]
    313
    314
    315Details::
    316
    317    /**
    318    * scsi_add_device - creates new scsi device (lu) instance
    319    * @shost:   pointer to scsi host instance
    320    * @channel: channel number (rarely other than 0)
    321    * @id:      target id number
    322    * @lun:     logical unit number
    323    *
    324    *      Returns pointer to new struct scsi_device instance or
    325    *      ERR_PTR(-ENODEV) (or some other bent pointer) if something is
    326    *      wrong (e.g. no lu responds at given address)
    327    *
    328    *      Might block: yes
    329    *
    330    *      Notes: This call is usually performed internally during a scsi
    331    *      bus scan when an HBA is added (i.e. scsi_scan_host()). So it
    332    *      should only be called if the HBA becomes aware of a new scsi
    333    *      device (lu) after scsi_scan_host() has completed. If successful
    334    *      this call can lead to slave_alloc() and slave_configure() callbacks
    335    *      into the LLD.
    336    *
    337    *      Defined in: drivers/scsi/scsi_scan.c
    338    **/
    339    struct scsi_device * scsi_add_device(struct Scsi_Host *shost,
    340					unsigned int channel,
    341					unsigned int id, unsigned int lun)
    342
    343
    344    /**
    345    * scsi_add_host - perform sysfs registration and set up transport class
    346    * @shost:   pointer to scsi host instance
    347    * @dev:     pointer to struct device of type scsi class
    348    *
    349    *      Returns 0 on success, negative errno of failure (e.g. -ENOMEM)
    350    *
    351    *      Might block: no
    352    *
    353    *      Notes: Only required in "hotplug initialization model" after a
    354    *      successful call to scsi_host_alloc().  This function does not
    355    *	scan the bus; this can be done by calling scsi_scan_host() or
    356    *	in some other transport-specific way.  The LLD must set up
    357    *	the transport template before calling this function and may only
    358    *	access the transport class data after this function has been called.
    359    *
    360    *      Defined in: drivers/scsi/hosts.c
    361    **/
    362    int scsi_add_host(struct Scsi_Host *shost, struct device * dev)
    363
    364
    365    /**
    366    * scsi_change_queue_depth - allow LLD to change queue depth on a SCSI device
    367    * @sdev:       pointer to SCSI device to change queue depth on
    368    * @tags        Number of tags allowed if tagged queuing enabled,
    369    *              or number of commands the LLD can queue up
    370    *              in non-tagged mode (as per cmd_per_lun).
    371    *
    372    *      Returns nothing
    373    *
    374    *      Might block: no
    375    *
    376    *      Notes: Can be invoked any time on a SCSI device controlled by this
    377    *      LLD. [Specifically during and after slave_configure() and prior to
    378    *      slave_destroy().] Can safely be invoked from interrupt code.
    379    *
    380    *      Defined in: drivers/scsi/scsi.c [see source code for more notes]
    381    *
    382    **/
    383    int scsi_change_queue_depth(struct scsi_device *sdev, int tags)
    384
    385
    386    /**
    387    * scsi_bios_ptable - return copy of block device's partition table
    388    * @dev:        pointer to block device
    389    *
    390    *      Returns pointer to partition table, or NULL for failure
    391    *
    392    *      Might block: yes
    393    *
    394    *      Notes: Caller owns memory returned (free with kfree() )
    395    *
    396    *      Defined in: drivers/scsi/scsicam.c
    397    **/
    398    unsigned char *scsi_bios_ptable(struct block_device *dev)
    399
    400
    401    /**
    402    * scsi_block_requests - prevent further commands being queued to given host
    403    *
    404    * @shost: pointer to host to block commands on
    405    *
    406    *      Returns nothing
    407    *
    408    *      Might block: no
    409    *
    410    *      Notes: There is no timer nor any other means by which the requests
    411    *      get unblocked other than the LLD calling scsi_unblock_requests().
    412    *
    413    *      Defined in: drivers/scsi/scsi_lib.c
    414    **/
    415    void scsi_block_requests(struct Scsi_Host * shost)
    416
    417
    418    /**
    419    * scsi_host_alloc - create a scsi host adapter instance and perform basic
    420    *                   initialization.
    421    * @sht:        pointer to scsi host template
    422    * @privsize:   extra bytes to allocate in hostdata array (which is the
    423    *              last member of the returned Scsi_Host instance)
    424    *
    425    *      Returns pointer to new Scsi_Host instance or NULL on failure
    426    *
    427    *      Might block: yes
    428    *
    429    *      Notes: When this call returns to the LLD, the SCSI bus scan on
    430    *      this host has _not_ yet been done.
    431    *      The hostdata array (by default zero length) is a per host scratch
    432    *      area for the LLD's exclusive use.
    433    *      Both associated refcounting objects have their refcount set to 1.
    434    *      Full registration (in sysfs) and a bus scan are performed later when
    435    *      scsi_add_host() and scsi_scan_host() are called.
    436    *
    437    *      Defined in: drivers/scsi/hosts.c .
    438    **/
    439    struct Scsi_Host * scsi_host_alloc(struct scsi_host_template * sht,
    440				    int privsize)
    441
    442
    443    /**
    444    * scsi_host_get - increment Scsi_Host instance refcount
    445    * @shost:   pointer to struct Scsi_Host instance
    446    *
    447    *      Returns nothing
    448    *
    449    *      Might block: currently may block but may be changed to not block
    450    *
    451    *      Notes: Actually increments the counts in two sub-objects
    452    *
    453    *      Defined in: drivers/scsi/hosts.c
    454    **/
    455    void scsi_host_get(struct Scsi_Host *shost)
    456
    457
    458    /**
    459    * scsi_host_put - decrement Scsi_Host instance refcount, free if 0
    460    * @shost:   pointer to struct Scsi_Host instance
    461    *
    462    *      Returns nothing
    463    *
    464    *      Might block: currently may block but may be changed to not block
    465    *
    466    *      Notes: Actually decrements the counts in two sub-objects. If the
    467    *      latter refcount reaches 0, the Scsi_Host instance is freed.
    468    *      The LLD need not worry exactly when the Scsi_Host instance is
    469    *      freed, it just shouldn't access the instance after it has balanced
    470    *      out its refcount usage.
    471    *
    472    *      Defined in: drivers/scsi/hosts.c
    473    **/
    474    void scsi_host_put(struct Scsi_Host *shost)
    475
    476
    477    /**
    478    * scsi_register - create and register a scsi host adapter instance.
    479    * @sht:        pointer to scsi host template
    480    * @privsize:   extra bytes to allocate in hostdata array (which is the
    481    *              last member of the returned Scsi_Host instance)
    482    *
    483    *      Returns pointer to new Scsi_Host instance or NULL on failure
    484    *
    485    *      Might block: yes
    486    *
    487    *      Notes: When this call returns to the LLD, the SCSI bus scan on
    488    *      this host has _not_ yet been done.
    489    *      The hostdata array (by default zero length) is a per host scratch
    490    *      area for the LLD.
    491    *
    492    *      Defined in: drivers/scsi/hosts.c .
    493    **/
    494    struct Scsi_Host * scsi_register(struct scsi_host_template * sht,
    495				    int privsize)
    496
    497
    498    /**
    499    * scsi_remove_device - detach and remove a SCSI device
    500    * @sdev:      a pointer to a scsi device instance
    501    *
    502    *      Returns value: 0 on success, -EINVAL if device not attached
    503    *
    504    *      Might block: yes
    505    *
    506    *      Notes: If an LLD becomes aware that a scsi device (lu) has
    507    *      been removed but its host is still present then it can request
    508    *      the removal of that scsi device. If successful this call will
    509    *      lead to the slave_destroy() callback being invoked. sdev is an
    510    *      invalid pointer after this call.
    511    *
    512    *      Defined in: drivers/scsi/scsi_sysfs.c .
    513    **/
    514    int scsi_remove_device(struct scsi_device *sdev)
    515
    516
    517    /**
    518    * scsi_remove_host - detach and remove all SCSI devices owned by host
    519    * @shost:      a pointer to a scsi host instance
    520    *
    521    *      Returns value: 0 on success, 1 on failure (e.g. LLD busy ??)
    522    *
    523    *      Might block: yes
    524    *
    525    *      Notes: Should only be invoked if the "hotplug initialization
    526    *      model" is being used. It should be called _prior_ to
    527    *      scsi_unregister().
    528    *
    529    *      Defined in: drivers/scsi/hosts.c .
    530    **/
    531    int scsi_remove_host(struct Scsi_Host *shost)
    532
    533
    534    /**
    535    * scsi_report_bus_reset - report scsi _bus_ reset observed
    536    * @shost: a pointer to a scsi host involved
    537    * @channel: channel (within) host on which scsi bus reset occurred
    538    *
    539    *      Returns nothing
    540    *
    541    *      Might block: no
    542    *
    543    *      Notes: This only needs to be called if the reset is one which
    544    *      originates from an unknown location.  Resets originated by the
    545    *      mid level itself don't need to call this, but there should be
    546    *      no harm.  The main purpose of this is to make sure that a
    547    *      CHECK_CONDITION is properly treated.
    548    *
    549    *      Defined in: drivers/scsi/scsi_error.c .
    550    **/
    551    void scsi_report_bus_reset(struct Scsi_Host * shost, int channel)
    552
    553
    554    /**
    555    * scsi_scan_host - scan SCSI bus
    556    * @shost: a pointer to a scsi host instance
    557    *
    558    *	Might block: yes
    559    *
    560    *	Notes: Should be called after scsi_add_host()
    561    *
    562    *	Defined in: drivers/scsi/scsi_scan.c
    563    **/
    564    void scsi_scan_host(struct Scsi_Host *shost)
    565
    566
    567    /**
    568    * scsi_track_queue_full - track successive QUEUE_FULL events on given
    569    *                      device to determine if and when there is a need
    570    *                      to adjust the queue depth on the device.
    571    * @sdev:  pointer to SCSI device instance
    572    * @depth: Current number of outstanding SCSI commands on this device,
    573    *         not counting the one returned as QUEUE_FULL.
    574    *
    575    *      Returns 0  - no change needed
    576    *              >0 - adjust queue depth to this new depth
    577    *              -1 - drop back to untagged operation using host->cmd_per_lun
    578    *                   as the untagged command depth
    579    *
    580    *      Might block: no
    581    *
    582    *      Notes: LLDs may call this at any time and we will do "The Right
    583    *              Thing"; interrupt context safe.
    584    *
    585    *      Defined in: drivers/scsi/scsi.c .
    586    **/
    587    int scsi_track_queue_full(struct scsi_device *sdev, int depth)
    588
    589
    590    /**
    591    * scsi_unblock_requests - allow further commands to be queued to given host
    592    *
    593    * @shost: pointer to host to unblock commands on
    594    *
    595    *      Returns nothing
    596    *
    597    *      Might block: no
    598    *
    599    *      Defined in: drivers/scsi/scsi_lib.c .
    600    **/
    601    void scsi_unblock_requests(struct Scsi_Host * shost)
    602
    603
    604    /**
    605    * scsi_unregister - unregister and free memory used by host instance
    606    * @shp:        pointer to scsi host instance to unregister.
    607    *
    608    *      Returns nothing
    609    *
    610    *      Might block: no
    611    *
    612    *      Notes: Should not be invoked if the "hotplug initialization
    613    *      model" is being used. Called internally by exit_this_scsi_driver()
    614    *      in the "passive initialization model". Hence a LLD has no need to
    615    *      call this function directly.
    616    *
    617    *      Defined in: drivers/scsi/hosts.c .
    618    **/
    619    void scsi_unregister(struct Scsi_Host * shp)
    620
    621
    622
    623
    624Interface Functions
    625===================
    626Interface functions are supplied (defined) by LLDs and their function
    627pointers are placed in an instance of struct scsi_host_template which
    628is passed to scsi_host_alloc() [or scsi_register() / init_this_scsi_driver()].
    629Some are mandatory. Interface functions should be declared static. The
    630accepted convention is that driver "xyz" will declare its slave_configure()
    631function as::
    632
    633    static int xyz_slave_configure(struct scsi_device * sdev);
    634
    635and so forth for all interface functions listed below.
    636
    637A pointer to this function should be placed in the 'slave_configure' member
    638of a "struct scsi_host_template" instance. A pointer to such an instance
    639should be passed to the mid level's scsi_host_alloc() [or scsi_register() /
    640init_this_scsi_driver()].
    641
    642The interface functions are also described in the include/scsi/scsi_host.h
    643file immediately above their definition point in "struct scsi_host_template".
    644In some cases more detail is given in scsi_host.h than below.
    645
    646The interface functions are listed below in alphabetical order.
    647
    648Summary:
    649
    650  - bios_param - fetch head, sector, cylinder info for a disk
    651  - eh_timed_out - notify the host that a command timer expired
    652  - eh_abort_handler - abort given command
    653  - eh_bus_reset_handler - issue SCSI bus reset
    654  - eh_device_reset_handler - issue SCSI device reset
    655  - eh_host_reset_handler - reset host (host bus adapter)
    656  - info - supply information about given host
    657  - ioctl - driver can respond to ioctls
    658  - proc_info - supports /proc/scsi/{driver_name}/{host_no}
    659  - queuecommand - queue scsi command, invoke 'done' on completion
    660  - slave_alloc - prior to any commands being sent to a new device
    661  - slave_configure - driver fine tuning for given device after attach
    662  - slave_destroy - given device is about to be shut down
    663
    664
    665Details::
    666
    667    /**
    668    *      bios_param - fetch head, sector, cylinder info for a disk
    669    *      @sdev: pointer to scsi device context (defined in
    670    *             include/scsi/scsi_device.h)
    671    *      @bdev: pointer to block device context (defined in fs.h)
    672    *      @capacity:  device size (in 512 byte sectors)
    673    *      @params: three element array to place output:
    674    *              params[0] number of heads (max 255)
    675    *              params[1] number of sectors (max 63)
    676    *              params[2] number of cylinders
    677    *
    678    *      Return value is ignored
    679    *
    680    *      Locks: none
    681    *
    682    *      Calling context: process (sd)
    683    *
    684    *      Notes: an arbitrary geometry (based on READ CAPACITY) is used
    685    *      if this function is not provided. The params array is
    686    *      pre-initialized with made up values just in case this function
    687    *      doesn't output anything.
    688    *
    689    *      Optionally defined in: LLD
    690    **/
    691	int bios_param(struct scsi_device * sdev, struct block_device *bdev,
    692		    sector_t capacity, int params[3])
    693
    694
    695    /**
    696    *      eh_timed_out - The timer for the command has just fired
    697    *      @scp: identifies command timing out
    698    *
    699    *      Returns:
    700    *
    701    *      EH_HANDLED:             I fixed the error, please complete the command
    702    *      EH_RESET_TIMER:         I need more time, reset the timer and
    703    *                              begin counting again
    704    *      EH_NOT_HANDLED          Begin normal error recovery
    705    *
    706    *
    707    *      Locks: None held
    708    *
    709    *      Calling context: interrupt
    710    *
    711    *      Notes: This is to give the LLD an opportunity to do local recovery.
    712    *      This recovery is limited to determining if the outstanding command
    713    *      will ever complete.  You may not abort and restart the command from
    714    *      this callback.
    715    *
    716    *      Optionally defined in: LLD
    717    **/
    718	int eh_timed_out(struct scsi_cmnd * scp)
    719
    720
    721    /**
    722    *      eh_abort_handler - abort command associated with scp
    723    *      @scp: identifies command to be aborted
    724    *
    725    *      Returns SUCCESS if command aborted else FAILED
    726    *
    727    *      Locks: None held
    728    *
    729    *      Calling context: kernel thread
    730    *
    731    *      Notes: If 'no_async_abort' is defined this callback
    732    *  	will be invoked from scsi_eh thread. No other commands
    733    *	will then be queued on current host during eh.
    734    *	Otherwise it will be called whenever scsi_times_out()
    735    *      is called due to a command timeout.
    736    *
    737    *      Optionally defined in: LLD
    738    **/
    739	int eh_abort_handler(struct scsi_cmnd * scp)
    740
    741
    742    /**
    743    *      eh_bus_reset_handler - issue SCSI bus reset
    744    *      @scp: SCSI bus that contains this device should be reset
    745    *
    746    *      Returns SUCCESS if command aborted else FAILED
    747    *
    748    *      Locks: None held
    749    *
    750    *      Calling context: kernel thread
    751    *
    752    *      Notes: Invoked from scsi_eh thread. No other commands will be
    753    *      queued on current host during eh.
    754    *
    755    *      Optionally defined in: LLD
    756    **/
    757	int eh_bus_reset_handler(struct scsi_cmnd * scp)
    758
    759
    760    /**
    761    *      eh_device_reset_handler - issue SCSI device reset
    762    *      @scp: identifies SCSI device to be reset
    763    *
    764    *      Returns SUCCESS if command aborted else FAILED
    765    *
    766    *      Locks: None held
    767    *
    768    *      Calling context: kernel thread
    769    *
    770    *      Notes: Invoked from scsi_eh thread. No other commands will be
    771    *      queued on current host during eh.
    772    *
    773    *      Optionally defined in: LLD
    774    **/
    775	int eh_device_reset_handler(struct scsi_cmnd * scp)
    776
    777
    778    /**
    779    *      eh_host_reset_handler - reset host (host bus adapter)
    780    *      @scp: SCSI host that contains this device should be reset
    781    *
    782    *      Returns SUCCESS if command aborted else FAILED
    783    *
    784    *      Locks: None held
    785    *
    786    *      Calling context: kernel thread
    787    *
    788    *      Notes: Invoked from scsi_eh thread. No other commands will be
    789    *      queued on current host during eh.
    790    *      With the default eh_strategy in place, if none of the _abort_,
    791    *      _device_reset_, _bus_reset_ or this eh handler function are
    792    *      defined (or they all return FAILED) then the device in question
    793    *      will be set offline whenever eh is invoked.
    794    *
    795    *      Optionally defined in: LLD
    796    **/
    797	int eh_host_reset_handler(struct scsi_cmnd * scp)
    798
    799
    800    /**
    801    *      info - supply information about given host: driver name plus data
    802    *             to distinguish given host
    803    *      @shp: host to supply information about
    804    *
    805    *      Return ASCII null terminated string. [This driver is assumed to
    806    *      manage the memory pointed to and maintain it, typically for the
    807    *      lifetime of this host.]
    808    *
    809    *      Locks: none
    810    *
    811    *      Calling context: process
    812    *
    813    *      Notes: Often supplies PCI or ISA information such as IO addresses
    814    *      and interrupt numbers. If not supplied struct Scsi_Host::name used
    815    *      instead. It is assumed the returned information fits on one line
    816    *      (i.e. does not included embedded newlines).
    817    *      The SCSI_IOCTL_PROBE_HOST ioctl yields the string returned by this
    818    *      function (or struct Scsi_Host::name if this function is not
    819    *      available).
    820    *      In a similar manner, init_this_scsi_driver() outputs to the console
    821    *      each host's "info" (or name) for the driver it is registering.
    822    *      Also if proc_info() is not supplied, the output of this function
    823    *      is used instead.
    824    *
    825    *      Optionally defined in: LLD
    826    **/
    827	const char * info(struct Scsi_Host * shp)
    828
    829
    830    /**
    831    *      ioctl - driver can respond to ioctls
    832    *      @sdp: device that ioctl was issued for
    833    *      @cmd: ioctl number
    834    *      @arg: pointer to read or write data from. Since it points to
    835    *            user space, should use appropriate kernel functions
    836    *            (e.g. copy_from_user() ). In the Unix style this argument
    837    *            can also be viewed as an unsigned long.
    838    *
    839    *      Returns negative "errno" value when there is a problem. 0 or a
    840    *      positive value indicates success and is returned to the user space.
    841    *
    842    *      Locks: none
    843    *
    844    *      Calling context: process
    845    *
    846    *      Notes: The SCSI subsystem uses a "trickle down" ioctl model.
    847    *      The user issues an ioctl() against an upper level driver
    848    *      (e.g. /dev/sdc) and if the upper level driver doesn't recognize
    849    *      the 'cmd' then it is passed to the SCSI mid level. If the SCSI
    850    *      mid level does not recognize it, then the LLD that controls
    851    *      the device receives the ioctl. According to recent Unix standards
    852    *      unsupported ioctl() 'cmd' numbers should return -ENOTTY.
    853    *
    854    *      Optionally defined in: LLD
    855    **/
    856	int ioctl(struct scsi_device *sdp, int cmd, void *arg)
    857
    858
    859    /**
    860    *      proc_info - supports /proc/scsi/{driver_name}/{host_no}
    861    *      @buffer: anchor point to output to (0==writeto1_read0) or fetch from
    862    *               (1==writeto1_read0).
    863    *      @start: where "interesting" data is written to. Ignored when
    864    *              1==writeto1_read0.
    865    *      @offset: offset within buffer 0==writeto1_read0 is actually
    866    *               interested in. Ignored when 1==writeto1_read0 .
    867    *      @length: maximum (or actual) extent of buffer
    868    *      @host_no: host number of interest (struct Scsi_Host::host_no)
    869    *      @writeto1_read0: 1 -> data coming from user space towards driver
    870    *                            (e.g. "echo some_string > /proc/scsi/xyz/2")
    871    *                       0 -> user what data from this driver
    872    *                            (e.g. "cat /proc/scsi/xyz/2")
    873    *
    874    *      Returns length when 1==writeto1_read0. Otherwise number of chars
    875    *      output to buffer past offset.
    876    *
    877    *      Locks: none held
    878    *
    879    *      Calling context: process
    880    *
    881    *      Notes: Driven from scsi_proc.c which interfaces to proc_fs. proc_fs
    882    *      support can now be configured out of the scsi subsystem.
    883    *
    884    *      Optionally defined in: LLD
    885    **/
    886	int proc_info(char * buffer, char ** start, off_t offset,
    887		    int length, int host_no, int writeto1_read0)
    888
    889
    890    /**
    891    *      queuecommand - queue scsi command, invoke scp->scsi_done on completion
    892    *      @shost: pointer to the scsi host object
    893    *      @scp: pointer to scsi command object
    894    *
    895    *      Returns 0 on success.
    896    *
    897    *      If there's a failure, return either:
    898    *
    899    *      SCSI_MLQUEUE_DEVICE_BUSY if the device queue is full, or
    900    *      SCSI_MLQUEUE_HOST_BUSY if the entire host queue is full
    901    *
    902    *      On both of these returns, the mid-layer will requeue the I/O
    903    *
    904    *      - if the return is SCSI_MLQUEUE_DEVICE_BUSY, only that particular
    905    *      device will be paused, and it will be unpaused when a command to
    906    *      the device returns (or after a brief delay if there are no more
    907    *      outstanding commands to it).  Commands to other devices continue
    908    *      to be processed normally.
    909    *
    910    *      - if the return is SCSI_MLQUEUE_HOST_BUSY, all I/O to the host
    911    *      is paused and will be unpaused when any command returns from
    912    *      the host (or after a brief delay if there are no outstanding
    913    *      commands to the host).
    914    *
    915    *      For compatibility with earlier versions of queuecommand, any
    916    *      other return value is treated the same as
    917    *      SCSI_MLQUEUE_HOST_BUSY.
    918    *
    919    *      Other types of errors that are detected immediately may be
    920    *      flagged by setting scp->result to an appropriate value,
    921    *      invoking the scp->scsi_done callback, and then returning 0
    922    *      from this function. If the command is not performed
    923    *      immediately (and the LLD is starting (or will start) the given
    924    *      command) then this function should place 0 in scp->result and
    925    *      return 0.
    926    *
    927    *      Command ownership.  If the driver returns zero, it owns the
    928    *      command and must take responsibility for ensuring the
    929    *      scp->scsi_done callback is executed.  Note: the driver may
    930    *      call scp->scsi_done before returning zero, but after it has
    931    *      called scp->scsi_done, it may not return any value other than
    932    *      zero.  If the driver makes a non-zero return, it must not
    933    *      execute the command's scsi_done callback at any time.
    934    *
    935    *      Locks: up to and including 2.6.36, struct Scsi_Host::host_lock
    936    *             held on entry (with "irqsave") and is expected to be
    937    *             held on return. From 2.6.37 onwards, queuecommand is
    938    *             called without any locks held.
    939    *
    940    *      Calling context: in interrupt (soft irq) or process context
    941    *
    942    *      Notes: This function should be relatively fast. Normally it
    943    *      will not wait for IO to complete. Hence the scp->scsi_done
    944    *      callback is invoked (often directly from an interrupt service
    945    *      routine) some time after this function has returned. In some
    946    *      cases (e.g. pseudo adapter drivers that manufacture the
    947    *      response to a SCSI INQUIRY) the scp->scsi_done callback may be
    948    *      invoked before this function returns.  If the scp->scsi_done
    949    *      callback is not invoked within a certain period the SCSI mid
    950    *      level will commence error processing.  If a status of CHECK
    951    *      CONDITION is placed in "result" when the scp->scsi_done
    952    *      callback is invoked, then the LLD driver should perform
    953    *      autosense and fill in the struct scsi_cmnd::sense_buffer
    954    *      array. The scsi_cmnd::sense_buffer array is zeroed prior to
    955    *      the mid level queuing a command to an LLD.
    956    *
    957    *      Defined in: LLD
    958    **/
    959	int queuecommand(struct Scsi_Host *shost, struct scsi_cmnd * scp)
    960
    961
    962    /**
    963    *      slave_alloc -   prior to any commands being sent to a new device
    964    *                      (i.e. just prior to scan) this call is made
    965    *      @sdp: pointer to new device (about to be scanned)
    966    *
    967    *      Returns 0 if ok. Any other return is assumed to be an error and
    968    *      the device is ignored.
    969    *
    970    *      Locks: none
    971    *
    972    *      Calling context: process
    973    *
    974    *      Notes: Allows the driver to allocate any resources for a device
    975    *      prior to its initial scan. The corresponding scsi device may not
    976    *      exist but the mid level is just about to scan for it (i.e. send
    977    *      and INQUIRY command plus ...). If a device is found then
    978    *      slave_configure() will be called while if a device is not found
    979    *      slave_destroy() is called.
    980    *      For more details see the include/scsi/scsi_host.h file.
    981    *
    982    *      Optionally defined in: LLD
    983    **/
    984	int slave_alloc(struct scsi_device *sdp)
    985
    986
    987    /**
    988    *      slave_configure - driver fine tuning for given device just after it
    989    *                     has been first scanned (i.e. it responded to an
    990    *                     INQUIRY)
    991    *      @sdp: device that has just been attached
    992    *
    993    *      Returns 0 if ok. Any other return is assumed to be an error and
    994    *      the device is taken offline. [offline devices will _not_ have
    995    *      slave_destroy() called on them so clean up resources.]
    996    *
    997    *      Locks: none
    998    *
    999    *      Calling context: process
   1000    *
   1001    *      Notes: Allows the driver to inspect the response to the initial
   1002    *      INQUIRY done by the scanning code and take appropriate action.
   1003    *      For more details see the include/scsi/scsi_host.h file.
   1004    *
   1005    *      Optionally defined in: LLD
   1006    **/
   1007	int slave_configure(struct scsi_device *sdp)
   1008
   1009
   1010    /**
   1011    *      slave_destroy - given device is about to be shut down. All
   1012    *                      activity has ceased on this device.
   1013    *      @sdp: device that is about to be shut down
   1014    *
   1015    *      Returns nothing
   1016    *
   1017    *      Locks: none
   1018    *
   1019    *      Calling context: process
   1020    *
   1021    *      Notes: Mid level structures for given device are still in place
   1022    *      but are about to be torn down. Any per device resources allocated
   1023    *      by this driver for given device should be freed now. No further
   1024    *      commands will be sent for this sdp instance. [However the device
   1025    *      could be re-attached in the future in which case a new instance
   1026    *      of struct scsi_device would be supplied by future slave_alloc()
   1027    *      and slave_configure() calls.]
   1028    *
   1029    *      Optionally defined in: LLD
   1030    **/
   1031	void slave_destroy(struct scsi_device *sdp)
   1032
   1033
   1034
   1035Data Structures
   1036===============
   1037struct scsi_host_template
   1038-------------------------
   1039There is one "struct scsi_host_template" instance per LLD [#]_. It is
   1040typically initialized as a file scope static in a driver's header file. That
   1041way members that are not explicitly initialized will be set to 0 or NULL.
   1042Member of interest:
   1043
   1044    name
   1045		 - name of driver (may contain spaces, please limit to
   1046                   less than 80 characters)
   1047
   1048    proc_name
   1049		 - name used in "/proc/scsi/<proc_name>/<host_no>" and
   1050                   by sysfs in one of its "drivers" directories. Hence
   1051                   "proc_name" should only contain characters acceptable
   1052                   to a Unix file name.
   1053
   1054   ``(*queuecommand)()``
   1055		 - primary callback that the mid level uses to inject
   1056                   SCSI commands into an LLD.
   1057
   1058The structure is defined and commented in include/scsi/scsi_host.h
   1059
   1060.. [#] In extreme situations a single driver may have several instances
   1061       if it controls several different classes of hardware (e.g. an LLD
   1062       that handles both ISA and PCI cards and has a separate instance of
   1063       struct scsi_host_template for each class).
   1064
   1065struct Scsi_Host
   1066----------------
   1067There is one struct Scsi_Host instance per host (HBA) that an LLD
   1068controls. The struct Scsi_Host structure has many members in common
   1069with "struct scsi_host_template". When a new struct Scsi_Host instance
   1070is created (in scsi_host_alloc() in hosts.c) those common members are
   1071initialized from the driver's struct scsi_host_template instance. Members
   1072of interest:
   1073
   1074    host_no
   1075		 - system wide unique number that is used for identifying
   1076                   this host. Issued in ascending order from 0.
   1077    can_queue
   1078		 - must be greater than 0; do not send more than can_queue
   1079                   commands to the adapter.
   1080    this_id
   1081		 - scsi id of host (scsi initiator) or -1 if not known
   1082    sg_tablesize
   1083		 - maximum scatter gather elements allowed by host.
   1084                   Set this to SG_ALL or less to avoid chained SG lists.
   1085                   Must be at least 1.
   1086    max_sectors
   1087		 - maximum number of sectors (usually 512 bytes) allowed
   1088                   in a single SCSI command. The default value of 0 leads
   1089                   to a setting of SCSI_DEFAULT_MAX_SECTORS (defined in
   1090                   scsi_host.h) which is currently set to 1024. So for a
   1091                   disk the maximum transfer size is 512 KB when max_sectors
   1092                   is not defined. Note that this size may not be sufficient
   1093                   for disk firmware uploads.
   1094    cmd_per_lun
   1095		 - maximum number of commands that can be queued on devices
   1096                   controlled by the host. Overridden by LLD calls to
   1097                   scsi_change_queue_depth().
   1098    no_async_abort
   1099		 - 1=>Asynchronous aborts are not supported
   1100		 - 0=>Timed-out commands will be aborted asynchronously
   1101    hostt
   1102		 - pointer to driver's struct scsi_host_template from which
   1103                   this struct Scsi_Host instance was spawned
   1104    hostt->proc_name
   1105		 - name of LLD. This is the driver name that sysfs uses
   1106    transportt
   1107		 - pointer to driver's struct scsi_transport_template instance
   1108                   (if any). FC and SPI transports currently supported.
   1109    sh_list
   1110		 - a double linked list of pointers to all struct Scsi_Host
   1111                   instances (currently ordered by ascending host_no)
   1112    my_devices
   1113		 - a double linked list of pointers to struct scsi_device
   1114                   instances that belong to this host.
   1115    hostdata[0]
   1116		 - area reserved for LLD at end of struct Scsi_Host. Size
   1117                   is set by the second argument (named 'xtr_bytes') to
   1118                   scsi_host_alloc() or scsi_register().
   1119    vendor_id
   1120		 - a unique value that identifies the vendor supplying
   1121                   the LLD for the Scsi_Host.  Used most often in validating
   1122                   vendor-specific message requests.  Value consists of an
   1123                   identifier type and a vendor-specific value.
   1124                   See scsi_netlink.h for a description of valid formats.
   1125
   1126The scsi_host structure is defined in include/scsi/scsi_host.h
   1127
   1128struct scsi_device
   1129------------------
   1130Generally, there is one instance of this structure for each SCSI logical unit
   1131on a host. Scsi devices connected to a host are uniquely identified by a
   1132channel number, target id and logical unit number (lun).
   1133The structure is defined in include/scsi/scsi_device.h
   1134
   1135struct scsi_cmnd
   1136----------------
   1137Instances of this structure convey SCSI commands to the LLD and responses
   1138back to the mid level. The SCSI mid level will ensure that no more SCSI
   1139commands become queued against the LLD than are indicated by
   1140scsi_change_queue_depth() (or struct Scsi_Host::cmd_per_lun). There will
   1141be at least one instance of struct scsi_cmnd available for each SCSI device.
   1142Members of interest:
   1143
   1144    cmnd
   1145		 - array containing SCSI command
   1146    cmnd_len
   1147		 - length (in bytes) of SCSI command
   1148    sc_data_direction
   1149		 - direction of data transfer in data phase. See
   1150                   "enum dma_data_direction" in include/linux/dma-mapping.h
   1151    request_bufflen
   1152		 - number of data bytes to transfer (0 if no data phase)
   1153    use_sg
   1154		 - ==0 -> no scatter gather list, hence transfer data
   1155                          to/from request_buffer
   1156                 - >0 ->  scatter gather list (actually an array) in
   1157                          request_buffer with use_sg elements
   1158    request_buffer
   1159		   - either contains data buffer or scatter gather list
   1160                     depending on the setting of use_sg. Scatter gather
   1161                     elements are defined by 'struct scatterlist' found
   1162                     in include/linux/scatterlist.h .
   1163    done
   1164		 - function pointer that should be invoked by LLD when the
   1165                   SCSI command is completed (successfully or otherwise).
   1166                   Should only be called by an LLD if the LLD has accepted
   1167                   the command (i.e. queuecommand() returned or will return
   1168                   0). The LLD may invoke 'done'  prior to queuecommand()
   1169                   finishing.
   1170    result
   1171		 - should be set by LLD prior to calling 'done'. A value
   1172                   of 0 implies a successfully completed command (and all
   1173                   data (if any) has been transferred to or from the SCSI
   1174                   target device). 'result' is a 32 bit unsigned integer that
   1175                   can be viewed as 2 related bytes. The SCSI status value is
   1176                   in the LSB. See include/scsi/scsi.h status_byte() and
   1177                   host_byte() macros and related constants.
   1178    sense_buffer
   1179		 - an array (maximum size: SCSI_SENSE_BUFFERSIZE bytes) that
   1180                   should be written when the SCSI status (LSB of 'result')
   1181                   is set to CHECK_CONDITION (2). When CHECK_CONDITION is
   1182                   set, if the top nibble of sense_buffer[0] has the value 7
   1183                   then the mid level will assume the sense_buffer array
   1184                   contains a valid SCSI sense buffer; otherwise the mid
   1185                   level will issue a REQUEST_SENSE SCSI command to
   1186                   retrieve the sense buffer. The latter strategy is error
   1187                   prone in the presence of command queuing so the LLD should
   1188                   always "auto-sense".
   1189    device
   1190		 - pointer to scsi_device object that this command is
   1191                   associated with.
   1192    resid
   1193		 - an LLD should set this signed integer to the requested
   1194                   transfer length (i.e. 'request_bufflen') less the number
   1195                   of bytes that are actually transferred. 'resid' is
   1196                   preset to 0 so an LLD can ignore it if it cannot detect
   1197                   underruns (overruns should be rare). If possible an LLD
   1198                   should set 'resid' prior to invoking 'done'. The most
   1199                   interesting case is data transfers from a SCSI target
   1200                   device (e.g. READs) that underrun.
   1201    underflow
   1202		 - LLD should place (DID_ERROR << 16) in 'result' if
   1203                   actual number of bytes transferred is less than this
   1204                   figure. Not many LLDs implement this check and some that
   1205                   do just output an error message to the log rather than
   1206                   report a DID_ERROR. Better for an LLD to implement
   1207                   'resid'.
   1208
   1209It is recommended that a LLD set 'resid' on data transfers from a SCSI
   1210target device (e.g. READs). It is especially important that 'resid' is set
   1211when such data transfers have sense keys of MEDIUM ERROR and HARDWARE ERROR
   1212(and possibly RECOVERED ERROR). In these cases if a LLD is in doubt how much
   1213data has been received then the safest approach is to indicate no bytes have
   1214been received. For example: to indicate that no valid data has been received
   1215a LLD might use these helpers::
   1216
   1217    scsi_set_resid(SCpnt, scsi_bufflen(SCpnt));
   1218
   1219where 'SCpnt' is a pointer to a scsi_cmnd object. To indicate only three 512
   1220bytes blocks has been received 'resid' could be set like this::
   1221
   1222    scsi_set_resid(SCpnt, scsi_bufflen(SCpnt) - (3 * 512));
   1223
   1224The scsi_cmnd structure is defined in include/scsi/scsi_cmnd.h
   1225
   1226
   1227Locks
   1228=====
   1229Each struct Scsi_Host instance has a spin_lock called struct
   1230Scsi_Host::default_lock which is initialized in scsi_host_alloc() [found in
   1231hosts.c]. Within the same function the struct Scsi_Host::host_lock pointer
   1232is initialized to point at default_lock.  Thereafter lock and unlock
   1233operations performed by the mid level use the struct Scsi_Host::host_lock
   1234pointer.  Previously drivers could override the host_lock pointer but
   1235this is not allowed anymore.
   1236
   1237
   1238Autosense
   1239=========
   1240Autosense (or auto-sense) is defined in the SAM-2 document as "the
   1241automatic return of sense data to the application client coincident
   1242with the completion of a SCSI command" when a status of CHECK CONDITION
   1243occurs. LLDs should perform autosense. This should be done when the LLD
   1244detects a CHECK CONDITION status by either:
   1245
   1246    a) instructing the SCSI protocol (e.g. SCSI Parallel Interface (SPI))
   1247       to perform an extra data in phase on such responses
   1248    b) or, the LLD issuing a REQUEST SENSE command itself
   1249
   1250Either way, when a status of CHECK CONDITION is detected, the mid level
   1251decides whether the LLD has performed autosense by checking struct
   1252scsi_cmnd::sense_buffer[0] . If this byte has an upper nibble of 7 (or 0xf)
   1253then autosense is assumed to have taken place. If it has another value (and
   1254this byte is initialized to 0 before each command) then the mid level will
   1255issue a REQUEST SENSE command.
   1256
   1257In the presence of queued commands the "nexus" that maintains sense
   1258buffer data from the command that failed until a following REQUEST SENSE
   1259may get out of synchronization. This is why it is best for the LLD
   1260to perform autosense.
   1261
   1262
   1263Changes since lk 2.4 series
   1264===========================
   1265io_request_lock has been replaced by several finer grained locks. The lock
   1266relevant to LLDs is struct Scsi_Host::host_lock and there is
   1267one per SCSI host.
   1268
   1269The older error handling mechanism has been removed. This means the
   1270LLD interface functions abort() and reset() have been removed.
   1271The struct scsi_host_template::use_new_eh_code flag has been removed.
   1272
   1273In the 2.4 series the SCSI subsystem configuration descriptions were
   1274aggregated with the configuration descriptions from all other Linux
   1275subsystems in the Documentation/Configure.help file. In the 2.6 series,
   1276the SCSI subsystem now has its own (much smaller) drivers/scsi/Kconfig
   1277file that contains both configuration and help information.
   1278
   1279struct SHT has been renamed to struct scsi_host_template.
   1280
   1281Addition of the "hotplug initialization model" and many extra functions
   1282to support it.
   1283
   1284
   1285Credits
   1286=======
   1287The following people have contributed to this document:
   1288
   1289	- Mike Anderson <andmike at us dot ibm dot com>
   1290	- James Bottomley <James dot Bottomley at hansenpartnership dot com>
   1291	- Patrick Mansfield <patmans at us dot ibm dot com>
   1292	- Christoph Hellwig <hch at infradead dot org>
   1293	- Doug Ledford <dledford at redhat dot com>
   1294	- Andries Brouwer <Andries dot Brouwer at cwi dot nl>
   1295	- Randy Dunlap <rdunlap at xenotime dot net>
   1296	- Alan Stern <stern at rowland dot harvard dot edu>
   1297
   1298
   1299Douglas Gilbert
   1300dgilbert at interlog dot com
   1301
   130221st September 2004