timekeeping.rst (9041B)
1=========================================================== 2Clock sources, Clock events, sched_clock() and delay timers 3=========================================================== 4 5This document tries to briefly explain some basic kernel timekeeping 6abstractions. It partly pertains to the drivers usually found in 7drivers/clocksource in the kernel tree, but the code may be spread out 8across the kernel. 9 10If you grep through the kernel source you will find a number of architecture- 11specific implementations of clock sources, clockevents and several likewise 12architecture-specific overrides of the sched_clock() function and some 13delay timers. 14 15To provide timekeeping for your platform, the clock source provides 16the basic timeline, whereas clock events shoot interrupts on certain points 17on this timeline, providing facilities such as high-resolution timers. 18sched_clock() is used for scheduling and timestamping, and delay timers 19provide an accurate delay source using hardware counters. 20 21 22Clock sources 23------------- 24 25The purpose of the clock source is to provide a timeline for the system that 26tells you where you are in time. For example issuing the command 'date' on 27a Linux system will eventually read the clock source to determine exactly 28what time it is. 29 30Typically the clock source is a monotonic, atomic counter which will provide 31n bits which count from 0 to (2^n)-1 and then wraps around to 0 and start over. 32It will ideally NEVER stop ticking as long as the system is running. It 33may stop during system suspend. 34 35The clock source shall have as high resolution as possible, and the frequency 36shall be as stable and correct as possible as compared to a real-world wall 37clock. It should not move unpredictably back and forth in time or miss a few 38cycles here and there. 39 40It must be immune to the kind of effects that occur in hardware where e.g. 41the counter register is read in two phases on the bus lowest 16 bits first 42and the higher 16 bits in a second bus cycle with the counter bits 43potentially being updated in between leading to the risk of very strange 44values from the counter. 45 46When the wall-clock accuracy of the clock source isn't satisfactory, there 47are various quirks and layers in the timekeeping code for e.g. synchronizing 48the user-visible time to RTC clocks in the system or against networked time 49servers using NTP, but all they do basically is update an offset against 50the clock source, which provides the fundamental timeline for the system. 51These measures does not affect the clock source per se, they only adapt the 52system to the shortcomings of it. 53 54The clock source struct shall provide means to translate the provided counter 55into a nanosecond value as an unsigned long long (unsigned 64 bit) number. 56Since this operation may be invoked very often, doing this in a strict 57mathematical sense is not desirable: instead the number is taken as close as 58possible to a nanosecond value using only the arithmetic operations 59multiply and shift, so in clocksource_cyc2ns() you find: 60 61 ns ~= (clocksource * mult) >> shift 62 63You will find a number of helper functions in the clock source code intended 64to aid in providing these mult and shift values, such as 65clocksource_khz2mult(), clocksource_hz2mult() that help determine the 66mult factor from a fixed shift, and clocksource_register_hz() and 67clocksource_register_khz() which will help out assigning both shift and mult 68factors using the frequency of the clock source as the only input. 69 70For real simple clock sources accessed from a single I/O memory location 71there is nowadays even clocksource_mmio_init() which will take a memory 72location, bit width, a parameter telling whether the counter in the 73register counts up or down, and the timer clock rate, and then conjure all 74necessary parameters. 75 76Since a 32-bit counter at say 100 MHz will wrap around to zero after some 43 77seconds, the code handling the clock source will have to compensate for this. 78That is the reason why the clock source struct also contains a 'mask' 79member telling how many bits of the source are valid. This way the timekeeping 80code knows when the counter will wrap around and can insert the necessary 81compensation code on both sides of the wrap point so that the system timeline 82remains monotonic. 83 84 85Clock events 86------------ 87 88Clock events are the conceptual reverse of clock sources: they take a 89desired time specification value and calculate the values to poke into 90hardware timer registers. 91 92Clock events are orthogonal to clock sources. The same hardware 93and register range may be used for the clock event, but it is essentially 94a different thing. The hardware driving clock events has to be able to 95fire interrupts, so as to trigger events on the system timeline. On an SMP 96system, it is ideal (and customary) to have one such event driving timer per 97CPU core, so that each core can trigger events independently of any other 98core. 99 100You will notice that the clock event device code is based on the same basic 101idea about translating counters to nanoseconds using mult and shift 102arithmetic, and you find the same family of helper functions again for 103assigning these values. The clock event driver does not need a 'mask' 104attribute however: the system will not try to plan events beyond the time 105horizon of the clock event. 106 107 108sched_clock() 109------------- 110 111In addition to the clock sources and clock events there is a special weak 112function in the kernel called sched_clock(). This function shall return the 113number of nanoseconds since the system was started. An architecture may or 114may not provide an implementation of sched_clock() on its own. If a local 115implementation is not provided, the system jiffy counter will be used as 116sched_clock(). 117 118As the name suggests, sched_clock() is used for scheduling the system, 119determining the absolute timeslice for a certain process in the CFS scheduler 120for example. It is also used for printk timestamps when you have selected to 121include time information in printk for things like bootcharts. 122 123Compared to clock sources, sched_clock() has to be very fast: it is called 124much more often, especially by the scheduler. If you have to do trade-offs 125between accuracy compared to the clock source, you may sacrifice accuracy 126for speed in sched_clock(). It however requires some of the same basic 127characteristics as the clock source, i.e. it should be monotonic. 128 129The sched_clock() function may wrap only on unsigned long long boundaries, 130i.e. after 64 bits. Since this is a nanosecond value this will mean it wraps 131after circa 585 years. (For most practical systems this means "never".) 132 133If an architecture does not provide its own implementation of this function, 134it will fall back to using jiffies, making its maximum resolution 1/HZ of the 135jiffy frequency for the architecture. This will affect scheduling accuracy 136and will likely show up in system benchmarks. 137 138The clock driving sched_clock() may stop or reset to zero during system 139suspend/sleep. This does not matter to the function it serves of scheduling 140events on the system. However it may result in interesting timestamps in 141printk(). 142 143The sched_clock() function should be callable in any context, IRQ- and 144NMI-safe and return a sane value in any context. 145 146Some architectures may have a limited set of time sources and lack a nice 147counter to derive a 64-bit nanosecond value, so for example on the ARM 148architecture, special helper functions have been created to provide a 149sched_clock() nanosecond base from a 16- or 32-bit counter. Sometimes the 150same counter that is also used as clock source is used for this purpose. 151 152On SMP systems, it is crucial for performance that sched_clock() can be called 153independently on each CPU without any synchronization performance hits. 154Some hardware (such as the x86 TSC) will cause the sched_clock() function to 155drift between the CPUs on the system. The kernel can work around this by 156enabling the CONFIG_HAVE_UNSTABLE_SCHED_CLOCK option. This is another aspect 157that makes sched_clock() different from the ordinary clock source. 158 159 160Delay timers (some architectures only) 161-------------------------------------- 162 163On systems with variable CPU frequency, the various kernel delay() functions 164will sometimes behave strangely. Basically these delays usually use a hard 165loop to delay a certain number of jiffy fractions using a "lpj" (loops per 166jiffy) value, calibrated on boot. 167 168Let's hope that your system is running on maximum frequency when this value 169is calibrated: as an effect when the frequency is geared down to half the 170full frequency, any delay() will be twice as long. Usually this does not 171hurt, as you're commonly requesting that amount of delay *or more*. But 172basically the semantics are quite unpredictable on such systems. 173 174Enter timer-based delays. Using these, a timer read may be used instead of 175a hard-coded loop for providing the desired delay. 176 177This is done by declaring a struct delay_timer and assigning the appropriate 178function pointers and rate settings for this delay timer. 179 180This is available on some architectures like OpenRISC or ARM.