cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ftrace.rst (134156B)


      1========================
      2ftrace - Function Tracer
      3========================
      4
      5Copyright 2008 Red Hat Inc.
      6
      7:Author:   Steven Rostedt <srostedt@redhat.com>
      8:License:  The GNU Free Documentation License, Version 1.2
      9          (dual licensed under the GPL v2)
     10:Original Reviewers:  Elias Oltmanns, Randy Dunlap, Andrew Morton,
     11		      John Kacur, and David Teigland.
     12
     13- Written for: 2.6.28-rc2
     14- Updated for: 3.10
     15- Updated for: 4.13 - Copyright 2017 VMware Inc. Steven Rostedt
     16- Converted to rst format - Changbin Du <changbin.du@intel.com>
     17
     18Introduction
     19------------
     20
     21Ftrace is an internal tracer designed to help out developers and
     22designers of systems to find what is going on inside the kernel.
     23It can be used for debugging or analyzing latencies and
     24performance issues that take place outside of user-space.
     25
     26Although ftrace is typically considered the function tracer, it
     27is really a framework of several assorted tracing utilities.
     28There's latency tracing to examine what occurs between interrupts
     29disabled and enabled, as well as for preemption and from a time
     30a task is woken to the task is actually scheduled in.
     31
     32One of the most common uses of ftrace is the event tracing.
     33Throughout the kernel is hundreds of static event points that
     34can be enabled via the tracefs file system to see what is
     35going on in certain parts of the kernel.
     36
     37See events.rst for more information.
     38
     39
     40Implementation Details
     41----------------------
     42
     43See Documentation/trace/ftrace-design.rst for details for arch porters and such.
     44
     45
     46The File System
     47---------------
     48
     49Ftrace uses the tracefs file system to hold the control files as
     50well as the files to display output.
     51
     52When tracefs is configured into the kernel (which selecting any ftrace
     53option will do) the directory /sys/kernel/tracing will be created. To mount
     54this directory, you can add to your /etc/fstab file::
     55
     56 tracefs       /sys/kernel/tracing       tracefs defaults        0       0
     57
     58Or you can mount it at run time with::
     59
     60 mount -t tracefs nodev /sys/kernel/tracing
     61
     62For quicker access to that directory you may want to make a soft link to
     63it::
     64
     65 ln -s /sys/kernel/tracing /tracing
     66
     67.. attention::
     68
     69  Before 4.1, all ftrace tracing control files were within the debugfs
     70  file system, which is typically located at /sys/kernel/debug/tracing.
     71  For backward compatibility, when mounting the debugfs file system,
     72  the tracefs file system will be automatically mounted at:
     73
     74  /sys/kernel/debug/tracing
     75
     76  All files located in the tracefs file system will be located in that
     77  debugfs file system directory as well.
     78
     79.. attention::
     80
     81  Any selected ftrace option will also create the tracefs file system.
     82  The rest of the document will assume that you are in the ftrace directory
     83  (cd /sys/kernel/tracing) and will only concentrate on the files within that
     84  directory and not distract from the content with the extended
     85  "/sys/kernel/tracing" path name.
     86
     87That's it! (assuming that you have ftrace configured into your kernel)
     88
     89After mounting tracefs you will have access to the control and output files
     90of ftrace. Here is a list of some of the key files:
     91
     92
     93 Note: all time values are in microseconds.
     94
     95  current_tracer:
     96
     97	This is used to set or display the current tracer
     98	that is configured. Changing the current tracer clears
     99	the ring buffer content as well as the "snapshot" buffer.
    100
    101  available_tracers:
    102
    103	This holds the different types of tracers that
    104	have been compiled into the kernel. The
    105	tracers listed here can be configured by
    106	echoing their name into current_tracer.
    107
    108  tracing_on:
    109
    110	This sets or displays whether writing to the trace
    111	ring buffer is enabled. Echo 0 into this file to disable
    112	the tracer or 1 to enable it. Note, this only disables
    113	writing to the ring buffer, the tracing overhead may
    114	still be occurring.
    115
    116	The kernel function tracing_off() can be used within the
    117	kernel to disable writing to the ring buffer, which will
    118	set this file to "0". User space can re-enable tracing by
    119	echoing "1" into the file.
    120
    121	Note, the function and event trigger "traceoff" will also
    122	set this file to zero and stop tracing. Which can also
    123	be re-enabled by user space using this file.
    124
    125  trace:
    126
    127	This file holds the output of the trace in a human
    128	readable format (described below). Opening this file for
    129	writing with the O_TRUNC flag clears the ring buffer content.
    130        Note, this file is not a consumer. If tracing is off
    131        (no tracer running, or tracing_on is zero), it will produce
    132        the same output each time it is read. When tracing is on,
    133        it may produce inconsistent results as it tries to read
    134        the entire buffer without consuming it.
    135
    136  trace_pipe:
    137
    138	The output is the same as the "trace" file but this
    139	file is meant to be streamed with live tracing.
    140	Reads from this file will block until new data is
    141	retrieved.  Unlike the "trace" file, this file is a
    142	consumer. This means reading from this file causes
    143	sequential reads to display more current data. Once
    144	data is read from this file, it is consumed, and
    145	will not be read again with a sequential read. The
    146	"trace" file is static, and if the tracer is not
    147	adding more data, it will display the same
    148	information every time it is read.
    149
    150  trace_options:
    151
    152	This file lets the user control the amount of data
    153	that is displayed in one of the above output
    154	files. Options also exist to modify how a tracer
    155	or events work (stack traces, timestamps, etc).
    156
    157  options:
    158
    159	This is a directory that has a file for every available
    160	trace option (also in trace_options). Options may also be set
    161	or cleared by writing a "1" or "0" respectively into the
    162	corresponding file with the option name.
    163
    164  tracing_max_latency:
    165
    166	Some of the tracers record the max latency.
    167	For example, the maximum time that interrupts are disabled.
    168	The maximum time is saved in this file. The max trace will also be
    169	stored,	and displayed by "trace". A new max trace will only be
    170	recorded if the latency is greater than the value in this file
    171	(in microseconds).
    172
    173	By echoing in a time into this file, no latency will be recorded
    174	unless it is greater than the time in this file.
    175
    176  tracing_thresh:
    177
    178	Some latency tracers will record a trace whenever the
    179	latency is greater than the number in this file.
    180	Only active when the file contains a number greater than 0.
    181	(in microseconds)
    182
    183  buffer_size_kb:
    184
    185	This sets or displays the number of kilobytes each CPU
    186	buffer holds. By default, the trace buffers are the same size
    187	for each CPU. The displayed number is the size of the
    188	CPU buffer and not total size of all buffers. The
    189	trace buffers are allocated in pages (blocks of memory
    190	that the kernel uses for allocation, usually 4 KB in size).
    191	A few extra pages may be allocated to accommodate buffer management
    192	meta-data. If the last page allocated has room for more bytes
    193	than requested, the rest of the page will be used,
    194	making the actual allocation bigger than requested or shown.
    195	( Note, the size may not be a multiple of the page size
    196	due to buffer management meta-data. )
    197
    198	Buffer sizes for individual CPUs may vary
    199	(see "per_cpu/cpu0/buffer_size_kb" below), and if they do
    200	this file will show "X".
    201
    202  buffer_total_size_kb:
    203
    204	This displays the total combined size of all the trace buffers.
    205
    206  free_buffer:
    207
    208	If a process is performing tracing, and the ring buffer	should be
    209	shrunk "freed" when the process is finished, even if it were to be
    210	killed by a signal, this file can be used for that purpose. On close
    211	of this file, the ring buffer will be resized to its minimum size.
    212	Having a process that is tracing also open this file, when the process
    213	exits its file descriptor for this file will be closed, and in doing so,
    214	the ring buffer will be "freed".
    215
    216	It may also stop tracing if disable_on_free option is set.
    217
    218  tracing_cpumask:
    219
    220	This is a mask that lets the user only trace on specified CPUs.
    221	The format is a hex string representing the CPUs.
    222
    223  set_ftrace_filter:
    224
    225	When dynamic ftrace is configured in (see the
    226	section below "dynamic ftrace"), the code is dynamically
    227	modified (code text rewrite) to disable calling of the
    228	function profiler (mcount). This lets tracing be configured
    229	in with practically no overhead in performance.  This also
    230	has a side effect of enabling or disabling specific functions
    231	to be traced. Echoing names of functions into this file
    232	will limit the trace to only those functions.
    233	This influences the tracers "function" and "function_graph"
    234	and thus also function profiling (see "function_profile_enabled").
    235
    236	The functions listed in "available_filter_functions" are what
    237	can be written into this file.
    238
    239	This interface also allows for commands to be used. See the
    240	"Filter commands" section for more details.
    241
    242	As a speed up, since processing strings can be quite expensive
    243	and requires a check of all functions registered to tracing, instead
    244	an index can be written into this file. A number (starting with "1")
    245	written will instead select the same corresponding at the line position
    246	of the "available_filter_functions" file.
    247
    248  set_ftrace_notrace:
    249
    250	This has an effect opposite to that of
    251	set_ftrace_filter. Any function that is added here will not
    252	be traced. If a function exists in both set_ftrace_filter
    253	and set_ftrace_notrace,	the function will _not_ be traced.
    254
    255  set_ftrace_pid:
    256
    257	Have the function tracer only trace the threads whose PID are
    258	listed in this file.
    259
    260	If the "function-fork" option is set, then when a task whose
    261	PID is listed in this file forks, the child's PID will
    262	automatically be added to this file, and the child will be
    263	traced by the function tracer as well. This option will also
    264	cause PIDs of tasks that exit to be removed from the file.
    265
    266  set_ftrace_notrace_pid:
    267
    268        Have the function tracer ignore threads whose PID are listed in
    269        this file.
    270
    271        If the "function-fork" option is set, then when a task whose
    272	PID is listed in this file forks, the child's PID will
    273	automatically be added to this file, and the child will not be
    274	traced by the function tracer as well. This option will also
    275	cause PIDs of tasks that exit to be removed from the file.
    276
    277        If a PID is in both this file and "set_ftrace_pid", then this
    278        file takes precedence, and the thread will not be traced.
    279
    280  set_event_pid:
    281
    282	Have the events only trace a task with a PID listed in this file.
    283	Note, sched_switch and sched_wake_up will also trace events
    284	listed in this file.
    285
    286	To have the PIDs of children of tasks with their PID in this file
    287	added on fork, enable the "event-fork" option. That option will also
    288	cause the PIDs of tasks to be removed from this file when the task
    289	exits.
    290
    291  set_event_notrace_pid:
    292
    293	Have the events not trace a task with a PID listed in this file.
    294	Note, sched_switch and sched_wakeup will trace threads not listed
    295	in this file, even if a thread's PID is in the file if the
    296        sched_switch or sched_wakeup events also trace a thread that should
    297        be traced.
    298
    299	To have the PIDs of children of tasks with their PID in this file
    300	added on fork, enable the "event-fork" option. That option will also
    301	cause the PIDs of tasks to be removed from this file when the task
    302	exits.
    303
    304  set_graph_function:
    305
    306	Functions listed in this file will cause the function graph
    307	tracer to only trace these functions and the functions that
    308	they call. (See the section "dynamic ftrace" for more details).
    309	Note, set_ftrace_filter and set_ftrace_notrace still affects
    310	what functions are being traced.
    311
    312  set_graph_notrace:
    313
    314	Similar to set_graph_function, but will disable function graph
    315	tracing when the function is hit until it exits the function.
    316	This makes it possible to ignore tracing functions that are called
    317	by a specific function.
    318
    319  available_filter_functions:
    320
    321	This lists the functions that ftrace has processed and can trace.
    322	These are the function names that you can pass to
    323	"set_ftrace_filter", "set_ftrace_notrace",
    324	"set_graph_function", or "set_graph_notrace".
    325	(See the section "dynamic ftrace" below for more details.)
    326
    327  dyn_ftrace_total_info:
    328
    329	This file is for debugging purposes. The number of functions that
    330	have been converted to nops and are available to be traced.
    331
    332  enabled_functions:
    333
    334	This file is more for debugging ftrace, but can also be useful
    335	in seeing if any function has a callback attached to it.
    336	Not only does the trace infrastructure use ftrace function
    337	trace utility, but other subsystems might too. This file
    338	displays all functions that have a callback attached to them
    339	as well as the number of callbacks that have been attached.
    340	Note, a callback may also call multiple functions which will
    341	not be listed in this count.
    342
    343	If the callback registered to be traced by a function with
    344	the "save regs" attribute (thus even more overhead), a 'R'
    345	will be displayed on the same line as the function that
    346	is returning registers.
    347
    348	If the callback registered to be traced by a function with
    349	the "ip modify" attribute (thus the regs->ip can be changed),
    350	an 'I' will be displayed on the same line as the function that
    351	can be overridden.
    352
    353	If the architecture supports it, it will also show what callback
    354	is being directly called by the function. If the count is greater
    355	than 1 it most likely will be ftrace_ops_list_func().
    356
    357	If the callback of a function jumps to a trampoline that is
    358	specific to the callback and which is not the standard trampoline,
    359	its address will be printed as well as the function that the
    360	trampoline calls.
    361
    362  function_profile_enabled:
    363
    364	When set it will enable all functions with either the function
    365	tracer, or if configured, the function graph tracer. It will
    366	keep a histogram of the number of functions that were called
    367	and if the function graph tracer was configured, it will also keep
    368	track of the time spent in those functions. The histogram
    369	content can be displayed in the files:
    370
    371	trace_stat/function<cpu> ( function0, function1, etc).
    372
    373  trace_stat:
    374
    375	A directory that holds different tracing stats.
    376
    377  kprobe_events:
    378
    379	Enable dynamic trace points. See kprobetrace.rst.
    380
    381  kprobe_profile:
    382
    383	Dynamic trace points stats. See kprobetrace.rst.
    384
    385  max_graph_depth:
    386
    387	Used with the function graph tracer. This is the max depth
    388	it will trace into a function. Setting this to a value of
    389	one will show only the first kernel function that is called
    390	from user space.
    391
    392  printk_formats:
    393
    394	This is for tools that read the raw format files. If an event in
    395	the ring buffer references a string, only a pointer to the string
    396	is recorded into the buffer and not the string itself. This prevents
    397	tools from knowing what that string was. This file displays the string
    398	and address for	the string allowing tools to map the pointers to what
    399	the strings were.
    400
    401  saved_cmdlines:
    402
    403	Only the pid of the task is recorded in a trace event unless
    404	the event specifically saves the task comm as well. Ftrace
    405	makes a cache of pid mappings to comms to try to display
    406	comms for events. If a pid for a comm is not listed, then
    407	"<...>" is displayed in the output.
    408
    409	If the option "record-cmd" is set to "0", then comms of tasks
    410	will not be saved during recording. By default, it is enabled.
    411
    412  saved_cmdlines_size:
    413
    414	By default, 128 comms are saved (see "saved_cmdlines" above). To
    415	increase or decrease the amount of comms that are cached, echo
    416	the number of comms to cache into this file.
    417
    418  saved_tgids:
    419
    420	If the option "record-tgid" is set, on each scheduling context switch
    421	the Task Group ID of a task is saved in a table mapping the PID of
    422	the thread to its TGID. By default, the "record-tgid" option is
    423	disabled.
    424
    425  snapshot:
    426
    427	This displays the "snapshot" buffer and also lets the user
    428	take a snapshot of the current running trace.
    429	See the "Snapshot" section below for more details.
    430
    431  stack_max_size:
    432
    433	When the stack tracer is activated, this will display the
    434	maximum stack size it has encountered.
    435	See the "Stack Trace" section below.
    436
    437  stack_trace:
    438
    439	This displays the stack back trace of the largest stack
    440	that was encountered when the stack tracer is activated.
    441	See the "Stack Trace" section below.
    442
    443  stack_trace_filter:
    444
    445	This is similar to "set_ftrace_filter" but it limits what
    446	functions the stack tracer will check.
    447
    448  trace_clock:
    449
    450	Whenever an event is recorded into the ring buffer, a
    451	"timestamp" is added. This stamp comes from a specified
    452	clock. By default, ftrace uses the "local" clock. This
    453	clock is very fast and strictly per cpu, but on some
    454	systems it may not be monotonic with respect to other
    455	CPUs. In other words, the local clocks may not be in sync
    456	with local clocks on other CPUs.
    457
    458	Usual clocks for tracing::
    459
    460	  # cat trace_clock
    461	  [local] global counter x86-tsc
    462
    463	The clock with the square brackets around it is the one in effect.
    464
    465	local:
    466		Default clock, but may not be in sync across CPUs
    467
    468	global:
    469		This clock is in sync with all CPUs but may
    470		be a bit slower than the local clock.
    471
    472	counter:
    473		This is not a clock at all, but literally an atomic
    474		counter. It counts up one by one, but is in sync
    475		with all CPUs. This is useful when you need to
    476		know exactly the order events occurred with respect to
    477		each other on different CPUs.
    478
    479	uptime:
    480		This uses the jiffies counter and the time stamp
    481		is relative to the time since boot up.
    482
    483	perf:
    484		This makes ftrace use the same clock that perf uses.
    485		Eventually perf will be able to read ftrace buffers
    486		and this will help out in interleaving the data.
    487
    488	x86-tsc:
    489		Architectures may define their own clocks. For
    490		example, x86 uses its own TSC cycle clock here.
    491
    492	ppc-tb:
    493		This uses the powerpc timebase register value.
    494		This is in sync across CPUs and can also be used
    495		to correlate events across hypervisor/guest if
    496		tb_offset is known.
    497
    498	mono:
    499		This uses the fast monotonic clock (CLOCK_MONOTONIC)
    500		which is monotonic and is subject to NTP rate adjustments.
    501
    502	mono_raw:
    503		This is the raw monotonic clock (CLOCK_MONOTONIC_RAW)
    504		which is monotonic but is not subject to any rate adjustments
    505		and ticks at the same rate as the hardware clocksource.
    506
    507	boot:
    508		This is the boot clock (CLOCK_BOOTTIME) and is based on the
    509		fast monotonic clock, but also accounts for time spent in
    510		suspend. Since the clock access is designed for use in
    511		tracing in the suspend path, some side effects are possible
    512		if clock is accessed after the suspend time is accounted before
    513		the fast mono clock is updated. In this case, the clock update
    514		appears to happen slightly sooner than it normally would have.
    515		Also on 32-bit systems, it's possible that the 64-bit boot offset
    516		sees a partial update. These effects are rare and post
    517		processing should be able to handle them. See comments in the
    518		ktime_get_boot_fast_ns() function for more information.
    519
    520	tai:
    521		This is the tai clock (CLOCK_TAI) and is derived from the wall-
    522		clock time. However, this clock does not experience
    523		discontinuities and backwards jumps caused by NTP inserting leap
    524		seconds. Since the clock access is designed for use in tracing,
    525		side effects are possible. The clock access may yield wrong
    526		readouts in case the internal TAI offset is updated e.g., caused
    527		by setting the system time or using adjtimex() with an offset.
    528		These effects are rare and post processing should be able to
    529		handle them. See comments in the ktime_get_tai_fast_ns()
    530		function for more information.
    531
    532	To set a clock, simply echo the clock name into this file::
    533
    534	  # echo global > trace_clock
    535
    536	Setting a clock clears the ring buffer content as well as the
    537	"snapshot" buffer.
    538
    539  trace_marker:
    540
    541	This is a very useful file for synchronizing user space
    542	with events happening in the kernel. Writing strings into
    543	this file will be written into the ftrace buffer.
    544
    545	It is useful in applications to open this file at the start
    546	of the application and just reference the file descriptor
    547	for the file::
    548
    549		void trace_write(const char *fmt, ...)
    550		{
    551			va_list ap;
    552			char buf[256];
    553			int n;
    554
    555			if (trace_fd < 0)
    556				return;
    557
    558			va_start(ap, fmt);
    559			n = vsnprintf(buf, 256, fmt, ap);
    560			va_end(ap);
    561
    562			write(trace_fd, buf, n);
    563		}
    564
    565	start::
    566
    567		trace_fd = open("trace_marker", WR_ONLY);
    568
    569	Note: Writing into the trace_marker file can also initiate triggers
    570	      that are written into /sys/kernel/tracing/events/ftrace/print/trigger
    571	      See "Event triggers" in Documentation/trace/events.rst and an
    572              example in Documentation/trace/histogram.rst (Section 3.)
    573
    574  trace_marker_raw:
    575
    576	This is similar to trace_marker above, but is meant for binary data
    577	to be written to it, where a tool can be used to parse the data
    578	from trace_pipe_raw.
    579
    580  uprobe_events:
    581
    582	Add dynamic tracepoints in programs.
    583	See uprobetracer.rst
    584
    585  uprobe_profile:
    586
    587	Uprobe statistics. See uprobetrace.txt
    588
    589  instances:
    590
    591	This is a way to make multiple trace buffers where different
    592	events can be recorded in different buffers.
    593	See "Instances" section below.
    594
    595  events:
    596
    597	This is the trace event directory. It holds event tracepoints
    598	(also known as static tracepoints) that have been compiled
    599	into the kernel. It shows what event tracepoints exist
    600	and how they are grouped by system. There are "enable"
    601	files at various levels that can enable the tracepoints
    602	when a "1" is written to them.
    603
    604	See events.rst for more information.
    605
    606  set_event:
    607
    608	By echoing in the event into this file, will enable that event.
    609
    610	See events.rst for more information.
    611
    612  available_events:
    613
    614	A list of events that can be enabled in tracing.
    615
    616	See events.rst for more information.
    617
    618  timestamp_mode:
    619
    620	Certain tracers may change the timestamp mode used when
    621	logging trace events into the event buffer.  Events with
    622	different modes can coexist within a buffer but the mode in
    623	effect when an event is logged determines which timestamp mode
    624	is used for that event.  The default timestamp mode is
    625	'delta'.
    626
    627	Usual timestamp modes for tracing:
    628
    629	  # cat timestamp_mode
    630	  [delta] absolute
    631
    632	  The timestamp mode with the square brackets around it is the
    633	  one in effect.
    634
    635	  delta: Default timestamp mode - timestamp is a delta against
    636	         a per-buffer timestamp.
    637
    638	  absolute: The timestamp is a full timestamp, not a delta
    639                 against some other value.  As such it takes up more
    640                 space and is less efficient.
    641
    642  hwlat_detector:
    643
    644	Directory for the Hardware Latency Detector.
    645	See "Hardware Latency Detector" section below.
    646
    647  per_cpu:
    648
    649	This is a directory that contains the trace per_cpu information.
    650
    651  per_cpu/cpu0/buffer_size_kb:
    652
    653	The ftrace buffer is defined per_cpu. That is, there's a separate
    654	buffer for each CPU to allow writes to be done atomically,
    655	and free from cache bouncing. These buffers may have different
    656	size buffers. This file is similar to the buffer_size_kb
    657	file, but it only displays or sets the buffer size for the
    658	specific CPU. (here cpu0).
    659
    660  per_cpu/cpu0/trace:
    661
    662	This is similar to the "trace" file, but it will only display
    663	the data specific for the CPU. If written to, it only clears
    664	the specific CPU buffer.
    665
    666  per_cpu/cpu0/trace_pipe
    667
    668	This is similar to the "trace_pipe" file, and is a consuming
    669	read, but it will only display (and consume) the data specific
    670	for the CPU.
    671
    672  per_cpu/cpu0/trace_pipe_raw
    673
    674	For tools that can parse the ftrace ring buffer binary format,
    675	the trace_pipe_raw file can be used to extract the data
    676	from the ring buffer directly. With the use of the splice()
    677	system call, the buffer data can be quickly transferred to
    678	a file or to the network where a server is collecting the
    679	data.
    680
    681	Like trace_pipe, this is a consuming reader, where multiple
    682	reads will always produce different data.
    683
    684  per_cpu/cpu0/snapshot:
    685
    686	This is similar to the main "snapshot" file, but will only
    687	snapshot the current CPU (if supported). It only displays
    688	the content of the snapshot for a given CPU, and if
    689	written to, only clears this CPU buffer.
    690
    691  per_cpu/cpu0/snapshot_raw:
    692
    693	Similar to the trace_pipe_raw, but will read the binary format
    694	from the snapshot buffer for the given CPU.
    695
    696  per_cpu/cpu0/stats:
    697
    698	This displays certain stats about the ring buffer:
    699
    700	entries:
    701		The number of events that are still in the buffer.
    702
    703	overrun:
    704		The number of lost events due to overwriting when
    705		the buffer was full.
    706
    707	commit overrun:
    708		Should always be zero.
    709		This gets set if so many events happened within a nested
    710		event (ring buffer is re-entrant), that it fills the
    711		buffer and starts dropping events.
    712
    713	bytes:
    714		Bytes actually read (not overwritten).
    715
    716	oldest event ts:
    717		The oldest timestamp in the buffer
    718
    719	now ts:
    720		The current timestamp
    721
    722	dropped events:
    723		Events lost due to overwrite option being off.
    724
    725	read events:
    726		The number of events read.
    727
    728The Tracers
    729-----------
    730
    731Here is the list of current tracers that may be configured.
    732
    733  "function"
    734
    735	Function call tracer to trace all kernel functions.
    736
    737  "function_graph"
    738
    739	Similar to the function tracer except that the
    740	function tracer probes the functions on their entry
    741	whereas the function graph tracer traces on both entry
    742	and exit of the functions. It then provides the ability
    743	to draw a graph of function calls similar to C code
    744	source.
    745
    746  "blk"
    747
    748	The block tracer. The tracer used by the blktrace user
    749	application.
    750
    751  "hwlat"
    752
    753	The Hardware Latency tracer is used to detect if the hardware
    754	produces any latency. See "Hardware Latency Detector" section
    755	below.
    756
    757  "irqsoff"
    758
    759	Traces the areas that disable interrupts and saves
    760	the trace with the longest max latency.
    761	See tracing_max_latency. When a new max is recorded,
    762	it replaces the old trace. It is best to view this
    763	trace with the latency-format option enabled, which
    764	happens automatically when the tracer is selected.
    765
    766  "preemptoff"
    767
    768	Similar to irqsoff but traces and records the amount of
    769	time for which preemption is disabled.
    770
    771  "preemptirqsoff"
    772
    773	Similar to irqsoff and preemptoff, but traces and
    774	records the largest time for which irqs and/or preemption
    775	is disabled.
    776
    777  "wakeup"
    778
    779	Traces and records the max latency that it takes for
    780	the highest priority task to get scheduled after
    781	it has been woken up.
    782        Traces all tasks as an average developer would expect.
    783
    784  "wakeup_rt"
    785
    786        Traces and records the max latency that it takes for just
    787        RT tasks (as the current "wakeup" does). This is useful
    788        for those interested in wake up timings of RT tasks.
    789
    790  "wakeup_dl"
    791
    792	Traces and records the max latency that it takes for
    793	a SCHED_DEADLINE task to be woken (as the "wakeup" and
    794	"wakeup_rt" does).
    795
    796  "mmiotrace"
    797
    798	A special tracer that is used to trace binary module.
    799	It will trace all the calls that a module makes to the
    800	hardware. Everything it writes and reads from the I/O
    801	as well.
    802
    803  "branch"
    804
    805	This tracer can be configured when tracing likely/unlikely
    806	calls within the kernel. It will trace when a likely and
    807	unlikely branch is hit and if it was correct in its prediction
    808	of being correct.
    809
    810  "nop"
    811
    812	This is the "trace nothing" tracer. To remove all
    813	tracers from tracing simply echo "nop" into
    814	current_tracer.
    815
    816Error conditions
    817----------------
    818
    819  For most ftrace commands, failure modes are obvious and communicated
    820  using standard return codes.
    821
    822  For other more involved commands, extended error information may be
    823  available via the tracing/error_log file.  For the commands that
    824  support it, reading the tracing/error_log file after an error will
    825  display more detailed information about what went wrong, if
    826  information is available.  The tracing/error_log file is a circular
    827  error log displaying a small number (currently, 8) of ftrace errors
    828  for the last (8) failed commands.
    829
    830  The extended error information and usage takes the form shown in
    831  this example::
    832
    833    # echo xxx > /sys/kernel/debug/tracing/events/sched/sched_wakeup/trigger
    834    echo: write error: Invalid argument
    835
    836    # cat /sys/kernel/debug/tracing/error_log
    837    [ 5348.887237] location: error: Couldn't yyy: zzz
    838      Command: xxx
    839               ^
    840    [ 7517.023364] location: error: Bad rrr: sss
    841      Command: ppp qqq
    842                   ^
    843
    844  To clear the error log, echo the empty string into it::
    845
    846    # echo > /sys/kernel/debug/tracing/error_log
    847
    848Examples of using the tracer
    849----------------------------
    850
    851Here are typical examples of using the tracers when controlling
    852them only with the tracefs interface (without using any
    853user-land utilities).
    854
    855Output format:
    856--------------
    857
    858Here is an example of the output format of the file "trace"::
    859
    860  # tracer: function
    861  #
    862  # entries-in-buffer/entries-written: 140080/250280   #P:4
    863  #
    864  #                              _-----=> irqs-off
    865  #                             / _----=> need-resched
    866  #                            | / _---=> hardirq/softirq
    867  #                            || / _--=> preempt-depth
    868  #                            ||| /     delay
    869  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
    870  #              | |       |   ||||       |         |
    871              bash-1977  [000] .... 17284.993652: sys_close <-system_call_fastpath
    872              bash-1977  [000] .... 17284.993653: __close_fd <-sys_close
    873              bash-1977  [000] .... 17284.993653: _raw_spin_lock <-__close_fd
    874              sshd-1974  [003] .... 17284.993653: __srcu_read_unlock <-fsnotify
    875              bash-1977  [000] .... 17284.993654: add_preempt_count <-_raw_spin_lock
    876              bash-1977  [000] ...1 17284.993655: _raw_spin_unlock <-__close_fd
    877              bash-1977  [000] ...1 17284.993656: sub_preempt_count <-_raw_spin_unlock
    878              bash-1977  [000] .... 17284.993657: filp_close <-__close_fd
    879              bash-1977  [000] .... 17284.993657: dnotify_flush <-filp_close
    880              sshd-1974  [003] .... 17284.993658: sys_select <-system_call_fastpath
    881              ....
    882
    883A header is printed with the tracer name that is represented by
    884the trace. In this case the tracer is "function". Then it shows the
    885number of events in the buffer as well as the total number of entries
    886that were written. The difference is the number of entries that were
    887lost due to the buffer filling up (250280 - 140080 = 110200 events
    888lost).
    889
    890The header explains the content of the events. Task name "bash", the task
    891PID "1977", the CPU that it was running on "000", the latency format
    892(explained below), the timestamp in <secs>.<usecs> format, the
    893function name that was traced "sys_close" and the parent function that
    894called this function "system_call_fastpath". The timestamp is the time
    895at which the function was entered.
    896
    897Latency trace format
    898--------------------
    899
    900When the latency-format option is enabled or when one of the latency
    901tracers is set, the trace file gives somewhat more information to see
    902why a latency happened. Here is a typical trace::
    903
    904  # tracer: irqsoff
    905  #
    906  # irqsoff latency trace v1.1.5 on 3.8.0-test+
    907  # --------------------------------------------------------------------
    908  # latency: 259 us, #4/4, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
    909  #    -----------------
    910  #    | task: ps-6143 (uid:0 nice:0 policy:0 rt_prio:0)
    911  #    -----------------
    912  #  => started at: __lock_task_sighand
    913  #  => ended at:   _raw_spin_unlock_irqrestore
    914  #
    915  #
    916  #                  _------=> CPU#            
    917  #                 / _-----=> irqs-off        
    918  #                | / _----=> need-resched    
    919  #                || / _---=> hardirq/softirq 
    920  #                ||| / _--=> preempt-depth   
    921  #                |||| /     delay             
    922  #  cmd     pid   ||||| time  |   caller      
    923  #     \   /      |||||  \    |   /           
    924        ps-6143    2d...    0us!: trace_hardirqs_off <-__lock_task_sighand
    925        ps-6143    2d..1  259us+: trace_hardirqs_on <-_raw_spin_unlock_irqrestore
    926        ps-6143    2d..1  263us+: time_hardirqs_on <-_raw_spin_unlock_irqrestore
    927        ps-6143    2d..1  306us : <stack trace>
    928   => trace_hardirqs_on_caller
    929   => trace_hardirqs_on
    930   => _raw_spin_unlock_irqrestore
    931   => do_task_stat
    932   => proc_tgid_stat
    933   => proc_single_show
    934   => seq_read
    935   => vfs_read
    936   => sys_read
    937   => system_call_fastpath
    938
    939
    940This shows that the current tracer is "irqsoff" tracing the time
    941for which interrupts were disabled. It gives the trace version (which
    942never changes) and the version of the kernel upon which this was executed on
    943(3.8). Then it displays the max latency in microseconds (259 us). The number
    944of trace entries displayed and the total number (both are four: #4/4).
    945VP, KP, SP, and HP are always zero and are reserved for later use.
    946#P is the number of online CPUs (#P:4).
    947
    948The task is the process that was running when the latency
    949occurred. (ps pid: 6143).
    950
    951The start and stop (the functions in which the interrupts were
    952disabled and enabled respectively) that caused the latencies:
    953
    954  - __lock_task_sighand is where the interrupts were disabled.
    955  - _raw_spin_unlock_irqrestore is where they were enabled again.
    956
    957The next lines after the header are the trace itself. The header
    958explains which is which.
    959
    960  cmd: The name of the process in the trace.
    961
    962  pid: The PID of that process.
    963
    964  CPU#: The CPU which the process was running on.
    965
    966  irqs-off: 'd' interrupts are disabled. '.' otherwise.
    967	.. caution:: If the architecture does not support a way to
    968		read the irq flags variable, an 'X' will always
    969		be printed here.
    970
    971  need-resched:
    972	- 'N' both TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED is set,
    973	- 'n' only TIF_NEED_RESCHED is set,
    974	- 'p' only PREEMPT_NEED_RESCHED is set,
    975	- '.' otherwise.
    976
    977  hardirq/softirq:
    978	- 'Z' - NMI occurred inside a hardirq
    979	- 'z' - NMI is running
    980	- 'H' - hard irq occurred inside a softirq.
    981	- 'h' - hard irq is running
    982	- 's' - soft irq is running
    983	- '.' - normal context.
    984
    985  preempt-depth: The level of preempt_disabled
    986
    987The above is mostly meaningful for kernel developers.
    988
    989  time:
    990	When the latency-format option is enabled, the trace file
    991	output includes a timestamp relative to the start of the
    992	trace. This differs from the output when latency-format
    993	is disabled, which includes an absolute timestamp.
    994
    995  delay:
    996	This is just to help catch your eye a bit better. And
    997	needs to be fixed to be only relative to the same CPU.
    998	The marks are determined by the difference between this
    999	current trace and the next trace.
   1000
   1001	  - '$' - greater than 1 second
   1002	  - '@' - greater than 100 millisecond
   1003	  - '*' - greater than 10 millisecond
   1004	  - '#' - greater than 1000 microsecond
   1005	  - '!' - greater than 100 microsecond
   1006	  - '+' - greater than 10 microsecond
   1007	  - ' ' - less than or equal to 10 microsecond.
   1008
   1009  The rest is the same as the 'trace' file.
   1010
   1011  Note, the latency tracers will usually end with a back trace
   1012  to easily find where the latency occurred.
   1013
   1014trace_options
   1015-------------
   1016
   1017The trace_options file (or the options directory) is used to control
   1018what gets printed in the trace output, or manipulate the tracers.
   1019To see what is available, simply cat the file::
   1020
   1021  cat trace_options
   1022	print-parent
   1023	nosym-offset
   1024	nosym-addr
   1025	noverbose
   1026	noraw
   1027	nohex
   1028	nobin
   1029	noblock
   1030	trace_printk
   1031	annotate
   1032	nouserstacktrace
   1033	nosym-userobj
   1034	noprintk-msg-only
   1035	context-info
   1036	nolatency-format
   1037	record-cmd
   1038	norecord-tgid
   1039	overwrite
   1040	nodisable_on_free
   1041	irq-info
   1042	markers
   1043	noevent-fork
   1044	function-trace
   1045	nofunction-fork
   1046	nodisplay-graph
   1047	nostacktrace
   1048	nobranch
   1049
   1050To disable one of the options, echo in the option prepended with
   1051"no"::
   1052
   1053  echo noprint-parent > trace_options
   1054
   1055To enable an option, leave off the "no"::
   1056
   1057  echo sym-offset > trace_options
   1058
   1059Here are the available options:
   1060
   1061  print-parent
   1062	On function traces, display the calling (parent)
   1063	function as well as the function being traced.
   1064	::
   1065
   1066	  print-parent:
   1067	   bash-4000  [01]  1477.606694: simple_strtoul <-kstrtoul
   1068
   1069	  noprint-parent:
   1070	   bash-4000  [01]  1477.606694: simple_strtoul
   1071
   1072
   1073  sym-offset
   1074	Display not only the function name, but also the
   1075	offset in the function. For example, instead of
   1076	seeing just "ktime_get", you will see
   1077	"ktime_get+0xb/0x20".
   1078	::
   1079
   1080	  sym-offset:
   1081	   bash-4000  [01]  1477.606694: simple_strtoul+0x6/0xa0
   1082
   1083  sym-addr
   1084	This will also display the function address as well
   1085	as the function name.
   1086	::
   1087
   1088	  sym-addr:
   1089	   bash-4000  [01]  1477.606694: simple_strtoul <c0339346>
   1090
   1091  verbose
   1092	This deals with the trace file when the
   1093        latency-format option is enabled.
   1094	::
   1095
   1096	    bash  4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
   1097	    (+0.000ms): simple_strtoul (kstrtoul)
   1098
   1099  raw
   1100	This will display raw numbers. This option is best for
   1101	use with user applications that can translate the raw
   1102	numbers better than having it done in the kernel.
   1103
   1104  hex
   1105	Similar to raw, but the numbers will be in a hexadecimal format.
   1106
   1107  bin
   1108	This will print out the formats in raw binary.
   1109
   1110  block
   1111	When set, reading trace_pipe will not block when polled.
   1112
   1113  trace_printk
   1114	Can disable trace_printk() from writing into the buffer.
   1115
   1116  annotate
   1117	It is sometimes confusing when the CPU buffers are full
   1118	and one CPU buffer had a lot of events recently, thus
   1119	a shorter time frame, were another CPU may have only had
   1120	a few events, which lets it have older events. When
   1121	the trace is reported, it shows the oldest events first,
   1122	and it may look like only one CPU ran (the one with the
   1123	oldest events). When the annotate option is set, it will
   1124	display when a new CPU buffer started::
   1125
   1126			  <idle>-0     [001] dNs4 21169.031481: wake_up_idle_cpu <-add_timer_on
   1127			  <idle>-0     [001] dNs4 21169.031482: _raw_spin_unlock_irqrestore <-add_timer_on
   1128			  <idle>-0     [001] .Ns4 21169.031484: sub_preempt_count <-_raw_spin_unlock_irqrestore
   1129		##### CPU 2 buffer started ####
   1130			  <idle>-0     [002] .N.1 21169.031484: rcu_idle_exit <-cpu_idle
   1131			  <idle>-0     [001] .Ns3 21169.031484: _raw_spin_unlock <-clocksource_watchdog
   1132			  <idle>-0     [001] .Ns3 21169.031485: sub_preempt_count <-_raw_spin_unlock
   1133
   1134  userstacktrace
   1135	This option changes the trace. It records a
   1136	stacktrace of the current user space thread after
   1137	each trace event.
   1138
   1139  sym-userobj
   1140	when user stacktrace are enabled, look up which
   1141	object the address belongs to, and print a
   1142	relative address. This is especially useful when
   1143	ASLR is on, otherwise you don't get a chance to
   1144	resolve the address to object/file/line after
   1145	the app is no longer running
   1146
   1147	The lookup is performed when you read
   1148	trace,trace_pipe. Example::
   1149
   1150		  a.out-1623  [000] 40874.465068: /root/a.out[+0x480] <-/root/a.out[+0
   1151		  x494] <- /root/a.out[+0x4a8] <- /lib/libc-2.7.so[+0x1e1a6]
   1152
   1153
   1154  printk-msg-only
   1155	When set, trace_printk()s will only show the format
   1156	and not their parameters (if trace_bprintk() or
   1157	trace_bputs() was used to save the trace_printk()).
   1158
   1159  context-info
   1160	Show only the event data. Hides the comm, PID,
   1161	timestamp, CPU, and other useful data.
   1162
   1163  latency-format
   1164	This option changes the trace output. When it is enabled,
   1165	the trace displays additional information about the
   1166	latency, as described in "Latency trace format".
   1167
   1168  pause-on-trace
   1169	When set, opening the trace file for read, will pause
   1170	writing to the ring buffer (as if tracing_on was set to zero).
   1171	This simulates the original behavior of the trace file.
   1172	When the file is closed, tracing will be enabled again.
   1173
   1174  hash-ptr
   1175        When set, "%p" in the event printk format displays the
   1176        hashed pointer value instead of real address.
   1177        This will be useful if you want to find out which hashed
   1178        value is corresponding to the real value in trace log.
   1179
   1180  record-cmd
   1181	When any event or tracer is enabled, a hook is enabled
   1182	in the sched_switch trace point to fill comm cache
   1183	with mapped pids and comms. But this may cause some
   1184	overhead, and if you only care about pids, and not the
   1185	name of the task, disabling this option can lower the
   1186	impact of tracing. See "saved_cmdlines".
   1187
   1188  record-tgid
   1189	When any event or tracer is enabled, a hook is enabled
   1190	in the sched_switch trace point to fill the cache of
   1191	mapped Thread Group IDs (TGID) mapping to pids. See
   1192	"saved_tgids".
   1193
   1194  overwrite
   1195	This controls what happens when the trace buffer is
   1196	full. If "1" (default), the oldest events are
   1197	discarded and overwritten. If "0", then the newest
   1198	events are discarded.
   1199	(see per_cpu/cpu0/stats for overrun and dropped)
   1200
   1201  disable_on_free
   1202	When the free_buffer is closed, tracing will
   1203	stop (tracing_on set to 0).
   1204
   1205  irq-info
   1206	Shows the interrupt, preempt count, need resched data.
   1207	When disabled, the trace looks like::
   1208
   1209		# tracer: function
   1210		#
   1211		# entries-in-buffer/entries-written: 144405/9452052   #P:4
   1212		#
   1213		#           TASK-PID   CPU#      TIMESTAMP  FUNCTION
   1214		#              | |       |          |         |
   1215			  <idle>-0     [002]  23636.756054: ttwu_do_activate.constprop.89 <-try_to_wake_up
   1216			  <idle>-0     [002]  23636.756054: activate_task <-ttwu_do_activate.constprop.89
   1217			  <idle>-0     [002]  23636.756055: enqueue_task <-activate_task
   1218
   1219
   1220  markers
   1221	When set, the trace_marker is writable (only by root).
   1222	When disabled, the trace_marker will error with EINVAL
   1223	on write.
   1224
   1225  event-fork
   1226	When set, tasks with PIDs listed in set_event_pid will have
   1227	the PIDs of their children added to set_event_pid when those
   1228	tasks fork. Also, when tasks with PIDs in set_event_pid exit,
   1229	their PIDs will be removed from the file.
   1230
   1231        This affects PIDs listed in set_event_notrace_pid as well.
   1232
   1233  function-trace
   1234	The latency tracers will enable function tracing
   1235	if this option is enabled (default it is). When
   1236	it is disabled, the latency tracers do not trace
   1237	functions. This keeps the overhead of the tracer down
   1238	when performing latency tests.
   1239
   1240  function-fork
   1241	When set, tasks with PIDs listed in set_ftrace_pid will
   1242	have the PIDs of their children added to set_ftrace_pid
   1243	when those tasks fork. Also, when tasks with PIDs in
   1244	set_ftrace_pid exit, their PIDs will be removed from the
   1245	file.
   1246
   1247        This affects PIDs in set_ftrace_notrace_pid as well.
   1248
   1249  display-graph
   1250	When set, the latency tracers (irqsoff, wakeup, etc) will
   1251	use function graph tracing instead of function tracing.
   1252
   1253  stacktrace
   1254	When set, a stack trace is recorded after any trace event
   1255	is recorded.
   1256
   1257  branch
   1258	Enable branch tracing with the tracer. This enables branch
   1259	tracer along with the currently set tracer. Enabling this
   1260	with the "nop" tracer is the same as just enabling the
   1261	"branch" tracer.
   1262
   1263.. tip:: Some tracers have their own options. They only appear in this
   1264       file when the tracer is active. They always appear in the
   1265       options directory.
   1266
   1267
   1268Here are the per tracer options:
   1269
   1270Options for function tracer:
   1271
   1272  func_stack_trace
   1273	When set, a stack trace is recorded after every
   1274	function that is recorded. NOTE! Limit the functions
   1275	that are recorded before enabling this, with
   1276	"set_ftrace_filter" otherwise the system performance
   1277	will be critically degraded. Remember to disable
   1278	this option before clearing the function filter.
   1279
   1280Options for function_graph tracer:
   1281
   1282 Since the function_graph tracer has a slightly different output
   1283 it has its own options to control what is displayed.
   1284
   1285  funcgraph-overrun
   1286	When set, the "overrun" of the graph stack is
   1287	displayed after each function traced. The
   1288	overrun, is when the stack depth of the calls
   1289	is greater than what is reserved for each task.
   1290	Each task has a fixed array of functions to
   1291	trace in the call graph. If the depth of the
   1292	calls exceeds that, the function is not traced.
   1293	The overrun is the number of functions missed
   1294	due to exceeding this array.
   1295
   1296  funcgraph-cpu
   1297	When set, the CPU number of the CPU where the trace
   1298	occurred is displayed.
   1299
   1300  funcgraph-overhead
   1301	When set, if the function takes longer than
   1302	A certain amount, then a delay marker is
   1303	displayed. See "delay" above, under the
   1304	header description.
   1305
   1306  funcgraph-proc
   1307	Unlike other tracers, the process' command line
   1308	is not displayed by default, but instead only
   1309	when a task is traced in and out during a context
   1310	switch. Enabling this options has the command
   1311	of each process displayed at every line.
   1312
   1313  funcgraph-duration
   1314	At the end of each function (the return)
   1315	the duration of the amount of time in the
   1316	function is displayed in microseconds.
   1317
   1318  funcgraph-abstime
   1319	When set, the timestamp is displayed at each line.
   1320
   1321  funcgraph-irqs
   1322	When disabled, functions that happen inside an
   1323	interrupt will not be traced.
   1324
   1325  funcgraph-tail
   1326	When set, the return event will include the function
   1327	that it represents. By default this is off, and
   1328	only a closing curly bracket "}" is displayed for
   1329	the return of a function.
   1330
   1331  sleep-time
   1332	When running function graph tracer, to include
   1333	the time a task schedules out in its function.
   1334	When enabled, it will account time the task has been
   1335	scheduled out as part of the function call.
   1336
   1337  graph-time
   1338	When running function profiler with function graph tracer,
   1339	to include the time to call nested functions. When this is
   1340	not set, the time reported for the function will only
   1341	include the time the function itself executed for, not the
   1342	time for functions that it called.
   1343
   1344Options for blk tracer:
   1345
   1346  blk_classic
   1347	Shows a more minimalistic output.
   1348
   1349
   1350irqsoff
   1351-------
   1352
   1353When interrupts are disabled, the CPU can not react to any other
   1354external event (besides NMIs and SMIs). This prevents the timer
   1355interrupt from triggering or the mouse interrupt from letting
   1356the kernel know of a new mouse event. The result is a latency
   1357with the reaction time.
   1358
   1359The irqsoff tracer tracks the time for which interrupts are
   1360disabled. When a new maximum latency is hit, the tracer saves
   1361the trace leading up to that latency point so that every time a
   1362new maximum is reached, the old saved trace is discarded and the
   1363new trace is saved.
   1364
   1365To reset the maximum, echo 0 into tracing_max_latency. Here is
   1366an example::
   1367
   1368  # echo 0 > options/function-trace
   1369  # echo irqsoff > current_tracer
   1370  # echo 1 > tracing_on
   1371  # echo 0 > tracing_max_latency
   1372  # ls -ltr
   1373  [...]
   1374  # echo 0 > tracing_on
   1375  # cat trace
   1376  # tracer: irqsoff
   1377  #
   1378  # irqsoff latency trace v1.1.5 on 3.8.0-test+
   1379  # --------------------------------------------------------------------
   1380  # latency: 16 us, #4/4, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1381  #    -----------------
   1382  #    | task: swapper/0-0 (uid:0 nice:0 policy:0 rt_prio:0)
   1383  #    -----------------
   1384  #  => started at: run_timer_softirq
   1385  #  => ended at:   run_timer_softirq
   1386  #
   1387  #
   1388  #                  _------=> CPU#            
   1389  #                 / _-----=> irqs-off        
   1390  #                | / _----=> need-resched    
   1391  #                || / _---=> hardirq/softirq 
   1392  #                ||| / _--=> preempt-depth   
   1393  #                |||| /     delay             
   1394  #  cmd     pid   ||||| time  |   caller      
   1395  #     \   /      |||||  \    |   /           
   1396    <idle>-0       0d.s2    0us+: _raw_spin_lock_irq <-run_timer_softirq
   1397    <idle>-0       0dNs3   17us : _raw_spin_unlock_irq <-run_timer_softirq
   1398    <idle>-0       0dNs3   17us+: trace_hardirqs_on <-run_timer_softirq
   1399    <idle>-0       0dNs3   25us : <stack trace>
   1400   => _raw_spin_unlock_irq
   1401   => run_timer_softirq
   1402   => __do_softirq
   1403   => call_softirq
   1404   => do_softirq
   1405   => irq_exit
   1406   => smp_apic_timer_interrupt
   1407   => apic_timer_interrupt
   1408   => rcu_idle_exit
   1409   => cpu_idle
   1410   => rest_init
   1411   => start_kernel
   1412   => x86_64_start_reservations
   1413   => x86_64_start_kernel
   1414
   1415Here we see that we had a latency of 16 microseconds (which is
   1416very good). The _raw_spin_lock_irq in run_timer_softirq disabled
   1417interrupts. The difference between the 16 and the displayed
   1418timestamp 25us occurred because the clock was incremented
   1419between the time of recording the max latency and the time of
   1420recording the function that had that latency.
   1421
   1422Note the above example had function-trace not set. If we set
   1423function-trace, we get a much larger output::
   1424
   1425 with echo 1 > options/function-trace
   1426
   1427  # tracer: irqsoff
   1428  #
   1429  # irqsoff latency trace v1.1.5 on 3.8.0-test+
   1430  # --------------------------------------------------------------------
   1431  # latency: 71 us, #168/168, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1432  #    -----------------
   1433  #    | task: bash-2042 (uid:0 nice:0 policy:0 rt_prio:0)
   1434  #    -----------------
   1435  #  => started at: ata_scsi_queuecmd
   1436  #  => ended at:   ata_scsi_queuecmd
   1437  #
   1438  #
   1439  #                  _------=> CPU#            
   1440  #                 / _-----=> irqs-off        
   1441  #                | / _----=> need-resched    
   1442  #                || / _---=> hardirq/softirq 
   1443  #                ||| / _--=> preempt-depth   
   1444  #                |||| /     delay             
   1445  #  cmd     pid   ||||| time  |   caller      
   1446  #     \   /      |||||  \    |   /           
   1447      bash-2042    3d...    0us : _raw_spin_lock_irqsave <-ata_scsi_queuecmd
   1448      bash-2042    3d...    0us : add_preempt_count <-_raw_spin_lock_irqsave
   1449      bash-2042    3d..1    1us : ata_scsi_find_dev <-ata_scsi_queuecmd
   1450      bash-2042    3d..1    1us : __ata_scsi_find_dev <-ata_scsi_find_dev
   1451      bash-2042    3d..1    2us : ata_find_dev.part.14 <-__ata_scsi_find_dev
   1452      bash-2042    3d..1    2us : ata_qc_new_init <-__ata_scsi_queuecmd
   1453      bash-2042    3d..1    3us : ata_sg_init <-__ata_scsi_queuecmd
   1454      bash-2042    3d..1    4us : ata_scsi_rw_xlat <-__ata_scsi_queuecmd
   1455      bash-2042    3d..1    4us : ata_build_rw_tf <-ata_scsi_rw_xlat
   1456  [...]
   1457      bash-2042    3d..1   67us : delay_tsc <-__delay
   1458      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
   1459      bash-2042    3d..2   67us : sub_preempt_count <-delay_tsc
   1460      bash-2042    3d..1   67us : add_preempt_count <-delay_tsc
   1461      bash-2042    3d..2   68us : sub_preempt_count <-delay_tsc
   1462      bash-2042    3d..1   68us+: ata_bmdma_start <-ata_bmdma_qc_issue
   1463      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
   1464      bash-2042    3d..1   71us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
   1465      bash-2042    3d..1   72us+: trace_hardirqs_on <-ata_scsi_queuecmd
   1466      bash-2042    3d..1  120us : <stack trace>
   1467   => _raw_spin_unlock_irqrestore
   1468   => ata_scsi_queuecmd
   1469   => scsi_dispatch_cmd
   1470   => scsi_request_fn
   1471   => __blk_run_queue_uncond
   1472   => __blk_run_queue
   1473   => blk_queue_bio
   1474   => submit_bio_noacct
   1475   => submit_bio
   1476   => submit_bh
   1477   => __ext3_get_inode_loc
   1478   => ext3_iget
   1479   => ext3_lookup
   1480   => lookup_real
   1481   => __lookup_hash
   1482   => walk_component
   1483   => lookup_last
   1484   => path_lookupat
   1485   => filename_lookup
   1486   => user_path_at_empty
   1487   => user_path_at
   1488   => vfs_fstatat
   1489   => vfs_stat
   1490   => sys_newstat
   1491   => system_call_fastpath
   1492
   1493
   1494Here we traced a 71 microsecond latency. But we also see all the
   1495functions that were called during that time. Note that by
   1496enabling function tracing, we incur an added overhead. This
   1497overhead may extend the latency times. But nevertheless, this
   1498trace has provided some very helpful debugging information.
   1499
   1500If we prefer function graph output instead of function, we can set
   1501display-graph option::
   1502
   1503 with echo 1 > options/display-graph
   1504
   1505  # tracer: irqsoff
   1506  #
   1507  # irqsoff latency trace v1.1.5 on 4.20.0-rc6+
   1508  # --------------------------------------------------------------------
   1509  # latency: 3751 us, #274/274, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:4)
   1510  #    -----------------
   1511  #    | task: bash-1507 (uid:0 nice:0 policy:0 rt_prio:0)
   1512  #    -----------------
   1513  #  => started at: free_debug_processing
   1514  #  => ended at:   return_to_handler
   1515  #
   1516  #
   1517  #                                       _-----=> irqs-off
   1518  #                                      / _----=> need-resched
   1519  #                                     | / _---=> hardirq/softirq
   1520  #                                     || / _--=> preempt-depth
   1521  #                                     ||| /
   1522  #   REL TIME      CPU  TASK/PID       ||||     DURATION                  FUNCTION CALLS
   1523  #      |          |     |    |        ||||      |   |                     |   |   |   |
   1524          0 us |   0)   bash-1507    |  d... |   0.000 us    |  _raw_spin_lock_irqsave();
   1525          0 us |   0)   bash-1507    |  d..1 |   0.378 us    |    do_raw_spin_trylock();
   1526          1 us |   0)   bash-1507    |  d..2 |               |    set_track() {
   1527          2 us |   0)   bash-1507    |  d..2 |               |      save_stack_trace() {
   1528          2 us |   0)   bash-1507    |  d..2 |               |        __save_stack_trace() {
   1529          3 us |   0)   bash-1507    |  d..2 |               |          __unwind_start() {
   1530          3 us |   0)   bash-1507    |  d..2 |               |            get_stack_info() {
   1531          3 us |   0)   bash-1507    |  d..2 |   0.351 us    |              in_task_stack();
   1532          4 us |   0)   bash-1507    |  d..2 |   1.107 us    |            }
   1533  [...]
   1534       3750 us |   0)   bash-1507    |  d..1 |   0.516 us    |      do_raw_spin_unlock();
   1535       3750 us |   0)   bash-1507    |  d..1 |   0.000 us    |  _raw_spin_unlock_irqrestore();
   1536       3764 us |   0)   bash-1507    |  d..1 |   0.000 us    |  tracer_hardirqs_on();
   1537      bash-1507    0d..1 3792us : <stack trace>
   1538   => free_debug_processing
   1539   => __slab_free
   1540   => kmem_cache_free
   1541   => vm_area_free
   1542   => remove_vma
   1543   => exit_mmap
   1544   => mmput
   1545   => begin_new_exec
   1546   => load_elf_binary
   1547   => search_binary_handler
   1548   => __do_execve_file.isra.32
   1549   => __x64_sys_execve
   1550   => do_syscall_64
   1551   => entry_SYSCALL_64_after_hwframe
   1552
   1553preemptoff
   1554----------
   1555
   1556When preemption is disabled, we may be able to receive
   1557interrupts but the task cannot be preempted and a higher
   1558priority task must wait for preemption to be enabled again
   1559before it can preempt a lower priority task.
   1560
   1561The preemptoff tracer traces the places that disable preemption.
   1562Like the irqsoff tracer, it records the maximum latency for
   1563which preemption was disabled. The control of preemptoff tracer
   1564is much like the irqsoff tracer.
   1565::
   1566
   1567  # echo 0 > options/function-trace
   1568  # echo preemptoff > current_tracer
   1569  # echo 1 > tracing_on
   1570  # echo 0 > tracing_max_latency
   1571  # ls -ltr
   1572  [...]
   1573  # echo 0 > tracing_on
   1574  # cat trace
   1575  # tracer: preemptoff
   1576  #
   1577  # preemptoff latency trace v1.1.5 on 3.8.0-test+
   1578  # --------------------------------------------------------------------
   1579  # latency: 46 us, #4/4, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1580  #    -----------------
   1581  #    | task: sshd-1991 (uid:0 nice:0 policy:0 rt_prio:0)
   1582  #    -----------------
   1583  #  => started at: do_IRQ
   1584  #  => ended at:   do_IRQ
   1585  #
   1586  #
   1587  #                  _------=> CPU#            
   1588  #                 / _-----=> irqs-off        
   1589  #                | / _----=> need-resched    
   1590  #                || / _---=> hardirq/softirq 
   1591  #                ||| / _--=> preempt-depth   
   1592  #                |||| /     delay             
   1593  #  cmd     pid   ||||| time  |   caller      
   1594  #     \   /      |||||  \    |   /           
   1595      sshd-1991    1d.h.    0us+: irq_enter <-do_IRQ
   1596      sshd-1991    1d..1   46us : irq_exit <-do_IRQ
   1597      sshd-1991    1d..1   47us+: trace_preempt_on <-do_IRQ
   1598      sshd-1991    1d..1   52us : <stack trace>
   1599   => sub_preempt_count
   1600   => irq_exit
   1601   => do_IRQ
   1602   => ret_from_intr
   1603
   1604
   1605This has some more changes. Preemption was disabled when an
   1606interrupt came in (notice the 'h'), and was enabled on exit.
   1607But we also see that interrupts have been disabled when entering
   1608the preempt off section and leaving it (the 'd'). We do not know if
   1609interrupts were enabled in the mean time or shortly after this
   1610was over.
   1611::
   1612
   1613  # tracer: preemptoff
   1614  #
   1615  # preemptoff latency trace v1.1.5 on 3.8.0-test+
   1616  # --------------------------------------------------------------------
   1617  # latency: 83 us, #241/241, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1618  #    -----------------
   1619  #    | task: bash-1994 (uid:0 nice:0 policy:0 rt_prio:0)
   1620  #    -----------------
   1621  #  => started at: wake_up_new_task
   1622  #  => ended at:   task_rq_unlock
   1623  #
   1624  #
   1625  #                  _------=> CPU#            
   1626  #                 / _-----=> irqs-off        
   1627  #                | / _----=> need-resched    
   1628  #                || / _---=> hardirq/softirq 
   1629  #                ||| / _--=> preempt-depth   
   1630  #                |||| /     delay             
   1631  #  cmd     pid   ||||| time  |   caller      
   1632  #     \   /      |||||  \    |   /           
   1633      bash-1994    1d..1    0us : _raw_spin_lock_irqsave <-wake_up_new_task
   1634      bash-1994    1d..1    0us : select_task_rq_fair <-select_task_rq
   1635      bash-1994    1d..1    1us : __rcu_read_lock <-select_task_rq_fair
   1636      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
   1637      bash-1994    1d..1    1us : source_load <-select_task_rq_fair
   1638  [...]
   1639      bash-1994    1d..1   12us : irq_enter <-smp_apic_timer_interrupt
   1640      bash-1994    1d..1   12us : rcu_irq_enter <-irq_enter
   1641      bash-1994    1d..1   13us : add_preempt_count <-irq_enter
   1642      bash-1994    1d.h1   13us : exit_idle <-smp_apic_timer_interrupt
   1643      bash-1994    1d.h1   13us : hrtimer_interrupt <-smp_apic_timer_interrupt
   1644      bash-1994    1d.h1   13us : _raw_spin_lock <-hrtimer_interrupt
   1645      bash-1994    1d.h1   14us : add_preempt_count <-_raw_spin_lock
   1646      bash-1994    1d.h2   14us : ktime_get_update_offsets <-hrtimer_interrupt
   1647  [...]
   1648      bash-1994    1d.h1   35us : lapic_next_event <-clockevents_program_event
   1649      bash-1994    1d.h1   35us : irq_exit <-smp_apic_timer_interrupt
   1650      bash-1994    1d.h1   36us : sub_preempt_count <-irq_exit
   1651      bash-1994    1d..2   36us : do_softirq <-irq_exit
   1652      bash-1994    1d..2   36us : __do_softirq <-call_softirq
   1653      bash-1994    1d..2   36us : __local_bh_disable <-__do_softirq
   1654      bash-1994    1d.s2   37us : add_preempt_count <-_raw_spin_lock_irq
   1655      bash-1994    1d.s3   38us : _raw_spin_unlock <-run_timer_softirq
   1656      bash-1994    1d.s3   39us : sub_preempt_count <-_raw_spin_unlock
   1657      bash-1994    1d.s2   39us : call_timer_fn <-run_timer_softirq
   1658  [...]
   1659      bash-1994    1dNs2   81us : cpu_needs_another_gp <-rcu_process_callbacks
   1660      bash-1994    1dNs2   82us : __local_bh_enable <-__do_softirq
   1661      bash-1994    1dNs2   82us : sub_preempt_count <-__local_bh_enable
   1662      bash-1994    1dN.2   82us : idle_cpu <-irq_exit
   1663      bash-1994    1dN.2   83us : rcu_irq_exit <-irq_exit
   1664      bash-1994    1dN.2   83us : sub_preempt_count <-irq_exit
   1665      bash-1994    1.N.1   84us : _raw_spin_unlock_irqrestore <-task_rq_unlock
   1666      bash-1994    1.N.1   84us+: trace_preempt_on <-task_rq_unlock
   1667      bash-1994    1.N.1  104us : <stack trace>
   1668   => sub_preempt_count
   1669   => _raw_spin_unlock_irqrestore
   1670   => task_rq_unlock
   1671   => wake_up_new_task
   1672   => do_fork
   1673   => sys_clone
   1674   => stub_clone
   1675
   1676
   1677The above is an example of the preemptoff trace with
   1678function-trace set. Here we see that interrupts were not disabled
   1679the entire time. The irq_enter code lets us know that we entered
   1680an interrupt 'h'. Before that, the functions being traced still
   1681show that it is not in an interrupt, but we can see from the
   1682functions themselves that this is not the case.
   1683
   1684preemptirqsoff
   1685--------------
   1686
   1687Knowing the locations that have interrupts disabled or
   1688preemption disabled for the longest times is helpful. But
   1689sometimes we would like to know when either preemption and/or
   1690interrupts are disabled.
   1691
   1692Consider the following code::
   1693
   1694    local_irq_disable();
   1695    call_function_with_irqs_off();
   1696    preempt_disable();
   1697    call_function_with_irqs_and_preemption_off();
   1698    local_irq_enable();
   1699    call_function_with_preemption_off();
   1700    preempt_enable();
   1701
   1702The irqsoff tracer will record the total length of
   1703call_function_with_irqs_off() and
   1704call_function_with_irqs_and_preemption_off().
   1705
   1706The preemptoff tracer will record the total length of
   1707call_function_with_irqs_and_preemption_off() and
   1708call_function_with_preemption_off().
   1709
   1710But neither will trace the time that interrupts and/or
   1711preemption is disabled. This total time is the time that we can
   1712not schedule. To record this time, use the preemptirqsoff
   1713tracer.
   1714
   1715Again, using this trace is much like the irqsoff and preemptoff
   1716tracers.
   1717::
   1718
   1719  # echo 0 > options/function-trace
   1720  # echo preemptirqsoff > current_tracer
   1721  # echo 1 > tracing_on
   1722  # echo 0 > tracing_max_latency
   1723  # ls -ltr
   1724  [...]
   1725  # echo 0 > tracing_on
   1726  # cat trace
   1727  # tracer: preemptirqsoff
   1728  #
   1729  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
   1730  # --------------------------------------------------------------------
   1731  # latency: 100 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1732  #    -----------------
   1733  #    | task: ls-2230 (uid:0 nice:0 policy:0 rt_prio:0)
   1734  #    -----------------
   1735  #  => started at: ata_scsi_queuecmd
   1736  #  => ended at:   ata_scsi_queuecmd
   1737  #
   1738  #
   1739  #                  _------=> CPU#            
   1740  #                 / _-----=> irqs-off        
   1741  #                | / _----=> need-resched    
   1742  #                || / _---=> hardirq/softirq 
   1743  #                ||| / _--=> preempt-depth   
   1744  #                |||| /     delay             
   1745  #  cmd     pid   ||||| time  |   caller      
   1746  #     \   /      |||||  \    |   /           
   1747        ls-2230    3d...    0us+: _raw_spin_lock_irqsave <-ata_scsi_queuecmd
   1748        ls-2230    3...1  100us : _raw_spin_unlock_irqrestore <-ata_scsi_queuecmd
   1749        ls-2230    3...1  101us+: trace_preempt_on <-ata_scsi_queuecmd
   1750        ls-2230    3...1  111us : <stack trace>
   1751   => sub_preempt_count
   1752   => _raw_spin_unlock_irqrestore
   1753   => ata_scsi_queuecmd
   1754   => scsi_dispatch_cmd
   1755   => scsi_request_fn
   1756   => __blk_run_queue_uncond
   1757   => __blk_run_queue
   1758   => blk_queue_bio
   1759   => submit_bio_noacct
   1760   => submit_bio
   1761   => submit_bh
   1762   => ext3_bread
   1763   => ext3_dir_bread
   1764   => htree_dirblock_to_tree
   1765   => ext3_htree_fill_tree
   1766   => ext3_readdir
   1767   => vfs_readdir
   1768   => sys_getdents
   1769   => system_call_fastpath
   1770
   1771
   1772The trace_hardirqs_off_thunk is called from assembly on x86 when
   1773interrupts are disabled in the assembly code. Without the
   1774function tracing, we do not know if interrupts were enabled
   1775within the preemption points. We do see that it started with
   1776preemption enabled.
   1777
   1778Here is a trace with function-trace set::
   1779
   1780  # tracer: preemptirqsoff
   1781  #
   1782  # preemptirqsoff latency trace v1.1.5 on 3.8.0-test+
   1783  # --------------------------------------------------------------------
   1784  # latency: 161 us, #339/339, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1785  #    -----------------
   1786  #    | task: ls-2269 (uid:0 nice:0 policy:0 rt_prio:0)
   1787  #    -----------------
   1788  #  => started at: schedule
   1789  #  => ended at:   mutex_unlock
   1790  #
   1791  #
   1792  #                  _------=> CPU#            
   1793  #                 / _-----=> irqs-off        
   1794  #                | / _----=> need-resched    
   1795  #                || / _---=> hardirq/softirq 
   1796  #                ||| / _--=> preempt-depth   
   1797  #                |||| /     delay             
   1798  #  cmd     pid   ||||| time  |   caller      
   1799  #     \   /      |||||  \    |   /           
   1800  kworker/-59      3...1    0us : __schedule <-schedule
   1801  kworker/-59      3d..1    0us : rcu_preempt_qs <-rcu_note_context_switch
   1802  kworker/-59      3d..1    1us : add_preempt_count <-_raw_spin_lock_irq
   1803  kworker/-59      3d..2    1us : deactivate_task <-__schedule
   1804  kworker/-59      3d..2    1us : dequeue_task <-deactivate_task
   1805  kworker/-59      3d..2    2us : update_rq_clock <-dequeue_task
   1806  kworker/-59      3d..2    2us : dequeue_task_fair <-dequeue_task
   1807  kworker/-59      3d..2    2us : update_curr <-dequeue_task_fair
   1808  kworker/-59      3d..2    2us : update_min_vruntime <-update_curr
   1809  kworker/-59      3d..2    3us : cpuacct_charge <-update_curr
   1810  kworker/-59      3d..2    3us : __rcu_read_lock <-cpuacct_charge
   1811  kworker/-59      3d..2    3us : __rcu_read_unlock <-cpuacct_charge
   1812  kworker/-59      3d..2    3us : update_cfs_rq_blocked_load <-dequeue_task_fair
   1813  kworker/-59      3d..2    4us : clear_buddies <-dequeue_task_fair
   1814  kworker/-59      3d..2    4us : account_entity_dequeue <-dequeue_task_fair
   1815  kworker/-59      3d..2    4us : update_min_vruntime <-dequeue_task_fair
   1816  kworker/-59      3d..2    4us : update_cfs_shares <-dequeue_task_fair
   1817  kworker/-59      3d..2    5us : hrtick_update <-dequeue_task_fair
   1818  kworker/-59      3d..2    5us : wq_worker_sleeping <-__schedule
   1819  kworker/-59      3d..2    5us : kthread_data <-wq_worker_sleeping
   1820  kworker/-59      3d..2    5us : put_prev_task_fair <-__schedule
   1821  kworker/-59      3d..2    6us : pick_next_task_fair <-pick_next_task
   1822  kworker/-59      3d..2    6us : clear_buddies <-pick_next_task_fair
   1823  kworker/-59      3d..2    6us : set_next_entity <-pick_next_task_fair
   1824  kworker/-59      3d..2    6us : update_stats_wait_end <-set_next_entity
   1825        ls-2269    3d..2    7us : finish_task_switch <-__schedule
   1826        ls-2269    3d..2    7us : _raw_spin_unlock_irq <-finish_task_switch
   1827        ls-2269    3d..2    8us : do_IRQ <-ret_from_intr
   1828        ls-2269    3d..2    8us : irq_enter <-do_IRQ
   1829        ls-2269    3d..2    8us : rcu_irq_enter <-irq_enter
   1830        ls-2269    3d..2    9us : add_preempt_count <-irq_enter
   1831        ls-2269    3d.h2    9us : exit_idle <-do_IRQ
   1832  [...]
   1833        ls-2269    3d.h3   20us : sub_preempt_count <-_raw_spin_unlock
   1834        ls-2269    3d.h2   20us : irq_exit <-do_IRQ
   1835        ls-2269    3d.h2   21us : sub_preempt_count <-irq_exit
   1836        ls-2269    3d..3   21us : do_softirq <-irq_exit
   1837        ls-2269    3d..3   21us : __do_softirq <-call_softirq
   1838        ls-2269    3d..3   21us+: __local_bh_disable <-__do_softirq
   1839        ls-2269    3d.s4   29us : sub_preempt_count <-_local_bh_enable_ip
   1840        ls-2269    3d.s5   29us : sub_preempt_count <-_local_bh_enable_ip
   1841        ls-2269    3d.s5   31us : do_IRQ <-ret_from_intr
   1842        ls-2269    3d.s5   31us : irq_enter <-do_IRQ
   1843        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
   1844  [...]
   1845        ls-2269    3d.s5   31us : rcu_irq_enter <-irq_enter
   1846        ls-2269    3d.s5   32us : add_preempt_count <-irq_enter
   1847        ls-2269    3d.H5   32us : exit_idle <-do_IRQ
   1848        ls-2269    3d.H5   32us : handle_irq <-do_IRQ
   1849        ls-2269    3d.H5   32us : irq_to_desc <-handle_irq
   1850        ls-2269    3d.H5   33us : handle_fasteoi_irq <-handle_irq
   1851  [...]
   1852        ls-2269    3d.s5  158us : _raw_spin_unlock_irqrestore <-rtl8139_poll
   1853        ls-2269    3d.s3  158us : net_rps_action_and_irq_enable.isra.65 <-net_rx_action
   1854        ls-2269    3d.s3  159us : __local_bh_enable <-__do_softirq
   1855        ls-2269    3d.s3  159us : sub_preempt_count <-__local_bh_enable
   1856        ls-2269    3d..3  159us : idle_cpu <-irq_exit
   1857        ls-2269    3d..3  159us : rcu_irq_exit <-irq_exit
   1858        ls-2269    3d..3  160us : sub_preempt_count <-irq_exit
   1859        ls-2269    3d...  161us : __mutex_unlock_slowpath <-mutex_unlock
   1860        ls-2269    3d...  162us+: trace_hardirqs_on <-mutex_unlock
   1861        ls-2269    3d...  186us : <stack trace>
   1862   => __mutex_unlock_slowpath
   1863   => mutex_unlock
   1864   => process_output
   1865   => n_tty_write
   1866   => tty_write
   1867   => vfs_write
   1868   => sys_write
   1869   => system_call_fastpath
   1870
   1871This is an interesting trace. It started with kworker running and
   1872scheduling out and ls taking over. But as soon as ls released the
   1873rq lock and enabled interrupts (but not preemption) an interrupt
   1874triggered. When the interrupt finished, it started running softirqs.
   1875But while the softirq was running, another interrupt triggered.
   1876When an interrupt is running inside a softirq, the annotation is 'H'.
   1877
   1878
   1879wakeup
   1880------
   1881
   1882One common case that people are interested in tracing is the
   1883time it takes for a task that is woken to actually wake up.
   1884Now for non Real-Time tasks, this can be arbitrary. But tracing
   1885it none the less can be interesting. 
   1886
   1887Without function tracing::
   1888
   1889  # echo 0 > options/function-trace
   1890  # echo wakeup > current_tracer
   1891  # echo 1 > tracing_on
   1892  # echo 0 > tracing_max_latency
   1893  # chrt -f 5 sleep 1
   1894  # echo 0 > tracing_on
   1895  # cat trace
   1896  # tracer: wakeup
   1897  #
   1898  # wakeup latency trace v1.1.5 on 3.8.0-test+
   1899  # --------------------------------------------------------------------
   1900  # latency: 15 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1901  #    -----------------
   1902  #    | task: kworker/3:1H-312 (uid:0 nice:-20 policy:0 rt_prio:0)
   1903  #    -----------------
   1904  #
   1905  #                  _------=> CPU#            
   1906  #                 / _-----=> irqs-off        
   1907  #                | / _----=> need-resched    
   1908  #                || / _---=> hardirq/softirq 
   1909  #                ||| / _--=> preempt-depth   
   1910  #                |||| /     delay             
   1911  #  cmd     pid   ||||| time  |   caller      
   1912  #     \   /      |||||  \    |   /           
   1913    <idle>-0       3dNs7    0us :      0:120:R   + [003]   312:100:R kworker/3:1H
   1914    <idle>-0       3dNs7    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
   1915    <idle>-0       3d..3   15us : __schedule <-schedule
   1916    <idle>-0       3d..3   15us :      0:120:R ==> [003]   312:100:R kworker/3:1H
   1917
   1918The tracer only traces the highest priority task in the system
   1919to avoid tracing the normal circumstances. Here we see that
   1920the kworker with a nice priority of -20 (not very nice), took
   1921just 15 microseconds from the time it woke up, to the time it
   1922ran.
   1923
   1924Non Real-Time tasks are not that interesting. A more interesting
   1925trace is to concentrate only on Real-Time tasks.
   1926
   1927wakeup_rt
   1928---------
   1929
   1930In a Real-Time environment it is very important to know the
   1931wakeup time it takes for the highest priority task that is woken
   1932up to the time that it executes. This is also known as "schedule
   1933latency". I stress the point that this is about RT tasks. It is
   1934also important to know the scheduling latency of non-RT tasks,
   1935but the average schedule latency is better for non-RT tasks.
   1936Tools like LatencyTop are more appropriate for such
   1937measurements.
   1938
   1939Real-Time environments are interested in the worst case latency.
   1940That is the longest latency it takes for something to happen,
   1941and not the average. We can have a very fast scheduler that may
   1942only have a large latency once in a while, but that would not
   1943work well with Real-Time tasks.  The wakeup_rt tracer was designed
   1944to record the worst case wakeups of RT tasks. Non-RT tasks are
   1945not recorded because the tracer only records one worst case and
   1946tracing non-RT tasks that are unpredictable will overwrite the
   1947worst case latency of RT tasks (just run the normal wakeup
   1948tracer for a while to see that effect).
   1949
   1950Since this tracer only deals with RT tasks, we will run this
   1951slightly differently than we did with the previous tracers.
   1952Instead of performing an 'ls', we will run 'sleep 1' under
   1953'chrt' which changes the priority of the task.
   1954::
   1955
   1956  # echo 0 > options/function-trace
   1957  # echo wakeup_rt > current_tracer
   1958  # echo 1 > tracing_on
   1959  # echo 0 > tracing_max_latency
   1960  # chrt -f 5 sleep 1
   1961  # echo 0 > tracing_on
   1962  # cat trace
   1963  # tracer: wakeup
   1964  #
   1965  # tracer: wakeup_rt
   1966  #
   1967  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
   1968  # --------------------------------------------------------------------
   1969  # latency: 5 us, #4/4, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   1970  #    -----------------
   1971  #    | task: sleep-2389 (uid:0 nice:0 policy:1 rt_prio:5)
   1972  #    -----------------
   1973  #
   1974  #                  _------=> CPU#            
   1975  #                 / _-----=> irqs-off        
   1976  #                | / _----=> need-resched    
   1977  #                || / _---=> hardirq/softirq 
   1978  #                ||| / _--=> preempt-depth   
   1979  #                |||| /     delay             
   1980  #  cmd     pid   ||||| time  |   caller      
   1981  #     \   /      |||||  \    |   /           
   1982    <idle>-0       3d.h4    0us :      0:120:R   + [003]  2389: 94:R sleep
   1983    <idle>-0       3d.h4    1us+: ttwu_do_activate.constprop.87 <-try_to_wake_up
   1984    <idle>-0       3d..3    5us : __schedule <-schedule
   1985    <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
   1986
   1987
   1988Running this on an idle system, we see that it only took 5 microseconds
   1989to perform the task switch.  Note, since the trace point in the schedule
   1990is before the actual "switch", we stop the tracing when the recorded task
   1991is about to schedule in. This may change if we add a new marker at the
   1992end of the scheduler.
   1993
   1994Notice that the recorded task is 'sleep' with the PID of 2389
   1995and it has an rt_prio of 5. This priority is user-space priority
   1996and not the internal kernel priority. The policy is 1 for
   1997SCHED_FIFO and 2 for SCHED_RR.
   1998
   1999Note, that the trace data shows the internal priority (99 - rtprio).
   2000::
   2001
   2002  <idle>-0       3d..3    5us :      0:120:R ==> [003]  2389: 94:R sleep
   2003
   2004The 0:120:R means idle was running with a nice priority of 0 (120 - 120)
   2005and in the running state 'R'. The sleep task was scheduled in with
   20062389: 94:R. That is the priority is the kernel rtprio (99 - 5 = 94)
   2007and it too is in the running state.
   2008
   2009Doing the same with chrt -r 5 and function-trace set.
   2010::
   2011
   2012  echo 1 > options/function-trace
   2013
   2014  # tracer: wakeup_rt
   2015  #
   2016  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
   2017  # --------------------------------------------------------------------
   2018  # latency: 29 us, #85/85, CPU#3 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   2019  #    -----------------
   2020  #    | task: sleep-2448 (uid:0 nice:0 policy:1 rt_prio:5)
   2021  #    -----------------
   2022  #
   2023  #                  _------=> CPU#            
   2024  #                 / _-----=> irqs-off        
   2025  #                | / _----=> need-resched    
   2026  #                || / _---=> hardirq/softirq 
   2027  #                ||| / _--=> preempt-depth   
   2028  #                |||| /     delay             
   2029  #  cmd     pid   ||||| time  |   caller      
   2030  #     \   /      |||||  \    |   /           
   2031    <idle>-0       3d.h4    1us+:      0:120:R   + [003]  2448: 94:R sleep
   2032    <idle>-0       3d.h4    2us : ttwu_do_activate.constprop.87 <-try_to_wake_up
   2033    <idle>-0       3d.h3    3us : check_preempt_curr <-ttwu_do_wakeup
   2034    <idle>-0       3d.h3    3us : resched_curr <-check_preempt_curr
   2035    <idle>-0       3dNh3    4us : task_woken_rt <-ttwu_do_wakeup
   2036    <idle>-0       3dNh3    4us : _raw_spin_unlock <-try_to_wake_up
   2037    <idle>-0       3dNh3    4us : sub_preempt_count <-_raw_spin_unlock
   2038    <idle>-0       3dNh2    5us : ttwu_stat <-try_to_wake_up
   2039    <idle>-0       3dNh2    5us : _raw_spin_unlock_irqrestore <-try_to_wake_up
   2040    <idle>-0       3dNh2    6us : sub_preempt_count <-_raw_spin_unlock_irqrestore
   2041    <idle>-0       3dNh1    6us : _raw_spin_lock <-__run_hrtimer
   2042    <idle>-0       3dNh1    6us : add_preempt_count <-_raw_spin_lock
   2043    <idle>-0       3dNh2    7us : _raw_spin_unlock <-hrtimer_interrupt
   2044    <idle>-0       3dNh2    7us : sub_preempt_count <-_raw_spin_unlock
   2045    <idle>-0       3dNh1    7us : tick_program_event <-hrtimer_interrupt
   2046    <idle>-0       3dNh1    7us : clockevents_program_event <-tick_program_event
   2047    <idle>-0       3dNh1    8us : ktime_get <-clockevents_program_event
   2048    <idle>-0       3dNh1    8us : lapic_next_event <-clockevents_program_event
   2049    <idle>-0       3dNh1    8us : irq_exit <-smp_apic_timer_interrupt
   2050    <idle>-0       3dNh1    9us : sub_preempt_count <-irq_exit
   2051    <idle>-0       3dN.2    9us : idle_cpu <-irq_exit
   2052    <idle>-0       3dN.2    9us : rcu_irq_exit <-irq_exit
   2053    <idle>-0       3dN.2   10us : rcu_eqs_enter_common.isra.45 <-rcu_irq_exit
   2054    <idle>-0       3dN.2   10us : sub_preempt_count <-irq_exit
   2055    <idle>-0       3.N.1   11us : rcu_idle_exit <-cpu_idle
   2056    <idle>-0       3dN.1   11us : rcu_eqs_exit_common.isra.43 <-rcu_idle_exit
   2057    <idle>-0       3.N.1   11us : tick_nohz_idle_exit <-cpu_idle
   2058    <idle>-0       3dN.1   12us : menu_hrtimer_cancel <-tick_nohz_idle_exit
   2059    <idle>-0       3dN.1   12us : ktime_get <-tick_nohz_idle_exit
   2060    <idle>-0       3dN.1   12us : tick_do_update_jiffies64 <-tick_nohz_idle_exit
   2061    <idle>-0       3dN.1   13us : cpu_load_update_nohz <-tick_nohz_idle_exit
   2062    <idle>-0       3dN.1   13us : _raw_spin_lock <-cpu_load_update_nohz
   2063    <idle>-0       3dN.1   13us : add_preempt_count <-_raw_spin_lock
   2064    <idle>-0       3dN.2   13us : __cpu_load_update <-cpu_load_update_nohz
   2065    <idle>-0       3dN.2   14us : sched_avg_update <-__cpu_load_update
   2066    <idle>-0       3dN.2   14us : _raw_spin_unlock <-cpu_load_update_nohz
   2067    <idle>-0       3dN.2   14us : sub_preempt_count <-_raw_spin_unlock
   2068    <idle>-0       3dN.1   15us : calc_load_nohz_stop <-tick_nohz_idle_exit
   2069    <idle>-0       3dN.1   15us : touch_softlockup_watchdog <-tick_nohz_idle_exit
   2070    <idle>-0       3dN.1   15us : hrtimer_cancel <-tick_nohz_idle_exit
   2071    <idle>-0       3dN.1   15us : hrtimer_try_to_cancel <-hrtimer_cancel
   2072    <idle>-0       3dN.1   16us : lock_hrtimer_base.isra.18 <-hrtimer_try_to_cancel
   2073    <idle>-0       3dN.1   16us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
   2074    <idle>-0       3dN.1   16us : add_preempt_count <-_raw_spin_lock_irqsave
   2075    <idle>-0       3dN.2   17us : __remove_hrtimer <-remove_hrtimer.part.16
   2076    <idle>-0       3dN.2   17us : hrtimer_force_reprogram <-__remove_hrtimer
   2077    <idle>-0       3dN.2   17us : tick_program_event <-hrtimer_force_reprogram
   2078    <idle>-0       3dN.2   18us : clockevents_program_event <-tick_program_event
   2079    <idle>-0       3dN.2   18us : ktime_get <-clockevents_program_event
   2080    <idle>-0       3dN.2   18us : lapic_next_event <-clockevents_program_event
   2081    <idle>-0       3dN.2   19us : _raw_spin_unlock_irqrestore <-hrtimer_try_to_cancel
   2082    <idle>-0       3dN.2   19us : sub_preempt_count <-_raw_spin_unlock_irqrestore
   2083    <idle>-0       3dN.1   19us : hrtimer_forward <-tick_nohz_idle_exit
   2084    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
   2085    <idle>-0       3dN.1   20us : ktime_add_safe <-hrtimer_forward
   2086    <idle>-0       3dN.1   20us : hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
   2087    <idle>-0       3dN.1   20us : __hrtimer_start_range_ns <-hrtimer_start_range_ns
   2088    <idle>-0       3dN.1   21us : lock_hrtimer_base.isra.18 <-__hrtimer_start_range_ns
   2089    <idle>-0       3dN.1   21us : _raw_spin_lock_irqsave <-lock_hrtimer_base.isra.18
   2090    <idle>-0       3dN.1   21us : add_preempt_count <-_raw_spin_lock_irqsave
   2091    <idle>-0       3dN.2   22us : ktime_add_safe <-__hrtimer_start_range_ns
   2092    <idle>-0       3dN.2   22us : enqueue_hrtimer <-__hrtimer_start_range_ns
   2093    <idle>-0       3dN.2   22us : tick_program_event <-__hrtimer_start_range_ns
   2094    <idle>-0       3dN.2   23us : clockevents_program_event <-tick_program_event
   2095    <idle>-0       3dN.2   23us : ktime_get <-clockevents_program_event
   2096    <idle>-0       3dN.2   23us : lapic_next_event <-clockevents_program_event
   2097    <idle>-0       3dN.2   24us : _raw_spin_unlock_irqrestore <-__hrtimer_start_range_ns
   2098    <idle>-0       3dN.2   24us : sub_preempt_count <-_raw_spin_unlock_irqrestore
   2099    <idle>-0       3dN.1   24us : account_idle_ticks <-tick_nohz_idle_exit
   2100    <idle>-0       3dN.1   24us : account_idle_time <-account_idle_ticks
   2101    <idle>-0       3.N.1   25us : sub_preempt_count <-cpu_idle
   2102    <idle>-0       3.N..   25us : schedule <-cpu_idle
   2103    <idle>-0       3.N..   25us : __schedule <-preempt_schedule
   2104    <idle>-0       3.N..   26us : add_preempt_count <-__schedule
   2105    <idle>-0       3.N.1   26us : rcu_note_context_switch <-__schedule
   2106    <idle>-0       3.N.1   26us : rcu_sched_qs <-rcu_note_context_switch
   2107    <idle>-0       3dN.1   27us : rcu_preempt_qs <-rcu_note_context_switch
   2108    <idle>-0       3.N.1   27us : _raw_spin_lock_irq <-__schedule
   2109    <idle>-0       3dN.1   27us : add_preempt_count <-_raw_spin_lock_irq
   2110    <idle>-0       3dN.2   28us : put_prev_task_idle <-__schedule
   2111    <idle>-0       3dN.2   28us : pick_next_task_stop <-pick_next_task
   2112    <idle>-0       3dN.2   28us : pick_next_task_rt <-pick_next_task
   2113    <idle>-0       3dN.2   29us : dequeue_pushable_task <-pick_next_task_rt
   2114    <idle>-0       3d..3   29us : __schedule <-preempt_schedule
   2115    <idle>-0       3d..3   30us :      0:120:R ==> [003]  2448: 94:R sleep
   2116
   2117This isn't that big of a trace, even with function tracing enabled,
   2118so I included the entire trace.
   2119
   2120The interrupt went off while when the system was idle. Somewhere
   2121before task_woken_rt() was called, the NEED_RESCHED flag was set,
   2122this is indicated by the first occurrence of the 'N' flag.
   2123
   2124Latency tracing and events
   2125--------------------------
   2126As function tracing can induce a much larger latency, but without
   2127seeing what happens within the latency it is hard to know what
   2128caused it. There is a middle ground, and that is with enabling
   2129events.
   2130::
   2131
   2132  # echo 0 > options/function-trace
   2133  # echo wakeup_rt > current_tracer
   2134  # echo 1 > events/enable
   2135  # echo 1 > tracing_on
   2136  # echo 0 > tracing_max_latency
   2137  # chrt -f 5 sleep 1
   2138  # echo 0 > tracing_on
   2139  # cat trace
   2140  # tracer: wakeup_rt
   2141  #
   2142  # wakeup_rt latency trace v1.1.5 on 3.8.0-test+
   2143  # --------------------------------------------------------------------
   2144  # latency: 6 us, #12/12, CPU#2 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:4)
   2145  #    -----------------
   2146  #    | task: sleep-5882 (uid:0 nice:0 policy:1 rt_prio:5)
   2147  #    -----------------
   2148  #
   2149  #                  _------=> CPU#            
   2150  #                 / _-----=> irqs-off        
   2151  #                | / _----=> need-resched    
   2152  #                || / _---=> hardirq/softirq 
   2153  #                ||| / _--=> preempt-depth   
   2154  #                |||| /     delay             
   2155  #  cmd     pid   ||||| time  |   caller      
   2156  #     \   /      |||||  \    |   /           
   2157    <idle>-0       2d.h4    0us :      0:120:R   + [002]  5882: 94:R sleep
   2158    <idle>-0       2d.h4    0us : ttwu_do_activate.constprop.87 <-try_to_wake_up
   2159    <idle>-0       2d.h4    1us : sched_wakeup: comm=sleep pid=5882 prio=94 success=1 target_cpu=002
   2160    <idle>-0       2dNh2    1us : hrtimer_expire_exit: hrtimer=ffff88007796feb8
   2161    <idle>-0       2.N.2    2us : power_end: cpu_id=2
   2162    <idle>-0       2.N.2    3us : cpu_idle: state=4294967295 cpu_id=2
   2163    <idle>-0       2dN.3    4us : hrtimer_cancel: hrtimer=ffff88007d50d5e0
   2164    <idle>-0       2dN.3    4us : hrtimer_start: hrtimer=ffff88007d50d5e0 function=tick_sched_timer expires=34311211000000 softexpires=34311211000000
   2165    <idle>-0       2.N.2    5us : rcu_utilization: Start context switch
   2166    <idle>-0       2.N.2    5us : rcu_utilization: End context switch
   2167    <idle>-0       2d..3    6us : __schedule <-schedule
   2168    <idle>-0       2d..3    6us :      0:120:R ==> [002]  5882: 94:R sleep
   2169
   2170
   2171Hardware Latency Detector
   2172-------------------------
   2173
   2174The hardware latency detector is executed by enabling the "hwlat" tracer.
   2175
   2176NOTE, this tracer will affect the performance of the system as it will
   2177periodically make a CPU constantly busy with interrupts disabled.
   2178::
   2179
   2180  # echo hwlat > current_tracer
   2181  # sleep 100
   2182  # cat trace
   2183  # tracer: hwlat
   2184  #
   2185  # entries-in-buffer/entries-written: 13/13   #P:8
   2186  #
   2187  #                              _-----=> irqs-off
   2188  #                             / _----=> need-resched
   2189  #                            | / _---=> hardirq/softirq
   2190  #                            || / _--=> preempt-depth
   2191  #                            ||| /     delay
   2192  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   2193  #              | |       |   ||||       |         |
   2194             <...>-1729  [001] d...   678.473449: #1     inner/outer(us):   11/12    ts:1581527483.343962693 count:6
   2195             <...>-1729  [004] d...   689.556542: #2     inner/outer(us):   16/9     ts:1581527494.889008092 count:1
   2196             <...>-1729  [005] d...   714.756290: #3     inner/outer(us):   16/16    ts:1581527519.678961629 count:5
   2197             <...>-1729  [001] d...   718.788247: #4     inner/outer(us):    9/17    ts:1581527523.889012713 count:1
   2198             <...>-1729  [002] d...   719.796341: #5     inner/outer(us):   13/9     ts:1581527524.912872606 count:1
   2199             <...>-1729  [006] d...   844.787091: #6     inner/outer(us):    9/12    ts:1581527649.889048502 count:2
   2200             <...>-1729  [003] d...   849.827033: #7     inner/outer(us):   18/9     ts:1581527654.889013793 count:1
   2201             <...>-1729  [007] d...   853.859002: #8     inner/outer(us):    9/12    ts:1581527658.889065736 count:1
   2202             <...>-1729  [001] d...   855.874978: #9     inner/outer(us):    9/11    ts:1581527660.861991877 count:1
   2203             <...>-1729  [001] d...   863.938932: #10    inner/outer(us):    9/11    ts:1581527668.970010500 count:1 nmi-total:7 nmi-count:1
   2204             <...>-1729  [007] d...   878.050780: #11    inner/outer(us):    9/12    ts:1581527683.385002600 count:1 nmi-total:5 nmi-count:1
   2205             <...>-1729  [007] d...   886.114702: #12    inner/outer(us):    9/12    ts:1581527691.385001600 count:1
   2206
   2207
   2208The above output is somewhat the same in the header. All events will have
   2209interrupts disabled 'd'. Under the FUNCTION title there is:
   2210
   2211 #1
   2212	This is the count of events recorded that were greater than the
   2213	tracing_threshold (See below).
   2214
   2215 inner/outer(us):   11/11
   2216
   2217      This shows two numbers as "inner latency" and "outer latency". The test
   2218      runs in a loop checking a timestamp twice. The latency detected within
   2219      the two timestamps is the "inner latency" and the latency detected
   2220      after the previous timestamp and the next timestamp in the loop is
   2221      the "outer latency".
   2222
   2223 ts:1581527483.343962693
   2224
   2225      The absolute timestamp that the first latency was recorded in the window.
   2226
   2227 count:6
   2228
   2229      The number of times a latency was detected during the window.
   2230
   2231 nmi-total:7 nmi-count:1
   2232
   2233      On architectures that support it, if an NMI comes in during the
   2234      test, the time spent in NMI is reported in "nmi-total" (in
   2235      microseconds).
   2236
   2237      All architectures that have NMIs will show the "nmi-count" if an
   2238      NMI comes in during the test.
   2239
   2240hwlat files:
   2241
   2242  tracing_threshold
   2243	This gets automatically set to "10" to represent 10
   2244	microseconds. This is the threshold of latency that
   2245	needs to be detected before the trace will be recorded.
   2246
   2247	Note, when hwlat tracer is finished (another tracer is
   2248	written into "current_tracer"), the original value for
   2249	tracing_threshold is placed back into this file.
   2250
   2251  hwlat_detector/width
   2252	The length of time the test runs with interrupts disabled.
   2253
   2254  hwlat_detector/window
   2255	The length of time of the window which the test
   2256	runs. That is, the test will run for "width"
   2257	microseconds per "window" microseconds
   2258
   2259  tracing_cpumask
   2260	When the test is started. A kernel thread is created that
   2261	runs the test. This thread will alternate between CPUs
   2262	listed in the tracing_cpumask between each period
   2263	(one "window"). To limit the test to specific CPUs
   2264	set the mask in this file to only the CPUs that the test
   2265	should run on.
   2266
   2267function
   2268--------
   2269
   2270This tracer is the function tracer. Enabling the function tracer
   2271can be done from the debug file system. Make sure the
   2272ftrace_enabled is set; otherwise this tracer is a nop.
   2273See the "ftrace_enabled" section below.
   2274::
   2275
   2276  # sysctl kernel.ftrace_enabled=1
   2277  # echo function > current_tracer
   2278  # echo 1 > tracing_on
   2279  # usleep 1
   2280  # echo 0 > tracing_on
   2281  # cat trace
   2282  # tracer: function
   2283  #
   2284  # entries-in-buffer/entries-written: 24799/24799   #P:4
   2285  #
   2286  #                              _-----=> irqs-off
   2287  #                             / _----=> need-resched
   2288  #                            | / _---=> hardirq/softirq
   2289  #                            || / _--=> preempt-depth
   2290  #                            ||| /     delay
   2291  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   2292  #              | |       |   ||||       |         |
   2293              bash-1994  [002] ....  3082.063030: mutex_unlock <-rb_simple_write
   2294              bash-1994  [002] ....  3082.063031: __mutex_unlock_slowpath <-mutex_unlock
   2295              bash-1994  [002] ....  3082.063031: __fsnotify_parent <-fsnotify_modify
   2296              bash-1994  [002] ....  3082.063032: fsnotify <-fsnotify_modify
   2297              bash-1994  [002] ....  3082.063032: __srcu_read_lock <-fsnotify
   2298              bash-1994  [002] ....  3082.063032: add_preempt_count <-__srcu_read_lock
   2299              bash-1994  [002] ...1  3082.063032: sub_preempt_count <-__srcu_read_lock
   2300              bash-1994  [002] ....  3082.063033: __srcu_read_unlock <-fsnotify
   2301  [...]
   2302
   2303
   2304Note: function tracer uses ring buffers to store the above
   2305entries. The newest data may overwrite the oldest data.
   2306Sometimes using echo to stop the trace is not sufficient because
   2307the tracing could have overwritten the data that you wanted to
   2308record. For this reason, it is sometimes better to disable
   2309tracing directly from a program. This allows you to stop the
   2310tracing at the point that you hit the part that you are
   2311interested in. To disable the tracing directly from a C program,
   2312something like following code snippet can be used::
   2313
   2314	int trace_fd;
   2315	[...]
   2316	int main(int argc, char *argv[]) {
   2317		[...]
   2318		trace_fd = open(tracing_file("tracing_on"), O_WRONLY);
   2319		[...]
   2320		if (condition_hit()) {
   2321			write(trace_fd, "0", 1);
   2322		}
   2323		[...]
   2324	}
   2325
   2326
   2327Single thread tracing
   2328---------------------
   2329
   2330By writing into set_ftrace_pid you can trace a
   2331single thread. For example::
   2332
   2333  # cat set_ftrace_pid
   2334  no pid
   2335  # echo 3111 > set_ftrace_pid
   2336  # cat set_ftrace_pid
   2337  3111
   2338  # echo function > current_tracer
   2339  # cat trace | head
   2340  # tracer: function
   2341  #
   2342  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
   2343  #              | |       |          |         |
   2344      yum-updatesd-3111  [003]  1637.254676: finish_task_switch <-thread_return
   2345      yum-updatesd-3111  [003]  1637.254681: hrtimer_cancel <-schedule_hrtimeout_range
   2346      yum-updatesd-3111  [003]  1637.254682: hrtimer_try_to_cancel <-hrtimer_cancel
   2347      yum-updatesd-3111  [003]  1637.254683: lock_hrtimer_base <-hrtimer_try_to_cancel
   2348      yum-updatesd-3111  [003]  1637.254685: fget_light <-do_sys_poll
   2349      yum-updatesd-3111  [003]  1637.254686: pipe_poll <-do_sys_poll
   2350  # echo > set_ftrace_pid
   2351  # cat trace |head
   2352  # tracer: function
   2353  #
   2354  #           TASK-PID    CPU#    TIMESTAMP  FUNCTION
   2355  #              | |       |          |         |
   2356  ##### CPU 3 buffer started ####
   2357      yum-updatesd-3111  [003]  1701.957688: free_poll_entry <-poll_freewait
   2358      yum-updatesd-3111  [003]  1701.957689: remove_wait_queue <-free_poll_entry
   2359      yum-updatesd-3111  [003]  1701.957691: fput <-free_poll_entry
   2360      yum-updatesd-3111  [003]  1701.957692: audit_syscall_exit <-sysret_audit
   2361      yum-updatesd-3111  [003]  1701.957693: path_put <-audit_syscall_exit
   2362
   2363If you want to trace a function when executing, you could use
   2364something like this simple program.
   2365::
   2366
   2367	#include <stdio.h>
   2368	#include <stdlib.h>
   2369	#include <sys/types.h>
   2370	#include <sys/stat.h>
   2371	#include <fcntl.h>
   2372	#include <unistd.h>
   2373	#include <string.h>
   2374
   2375	#define _STR(x) #x
   2376	#define STR(x) _STR(x)
   2377	#define MAX_PATH 256
   2378
   2379	const char *find_tracefs(void)
   2380	{
   2381	       static char tracefs[MAX_PATH+1];
   2382	       static int tracefs_found;
   2383	       char type[100];
   2384	       FILE *fp;
   2385
   2386	       if (tracefs_found)
   2387		       return tracefs;
   2388
   2389	       if ((fp = fopen("/proc/mounts","r")) == NULL) {
   2390		       perror("/proc/mounts");
   2391		       return NULL;
   2392	       }
   2393
   2394	       while (fscanf(fp, "%*s %"
   2395		             STR(MAX_PATH)
   2396		             "s %99s %*s %*d %*d\n",
   2397		             tracefs, type) == 2) {
   2398		       if (strcmp(type, "tracefs") == 0)
   2399		               break;
   2400	       }
   2401	       fclose(fp);
   2402
   2403	       if (strcmp(type, "tracefs") != 0) {
   2404		       fprintf(stderr, "tracefs not mounted");
   2405		       return NULL;
   2406	       }
   2407
   2408	       strcat(tracefs, "/tracing/");
   2409	       tracefs_found = 1;
   2410
   2411	       return tracefs;
   2412	}
   2413
   2414	const char *tracing_file(const char *file_name)
   2415	{
   2416	       static char trace_file[MAX_PATH+1];
   2417	       snprintf(trace_file, MAX_PATH, "%s/%s", find_tracefs(), file_name);
   2418	       return trace_file;
   2419	}
   2420
   2421	int main (int argc, char **argv)
   2422	{
   2423		if (argc < 1)
   2424		        exit(-1);
   2425
   2426		if (fork() > 0) {
   2427		        int fd, ffd;
   2428		        char line[64];
   2429		        int s;
   2430
   2431		        ffd = open(tracing_file("current_tracer"), O_WRONLY);
   2432		        if (ffd < 0)
   2433		                exit(-1);
   2434		        write(ffd, "nop", 3);
   2435
   2436		        fd = open(tracing_file("set_ftrace_pid"), O_WRONLY);
   2437		        s = sprintf(line, "%d\n", getpid());
   2438		        write(fd, line, s);
   2439
   2440		        write(ffd, "function", 8);
   2441
   2442		        close(fd);
   2443		        close(ffd);
   2444
   2445		        execvp(argv[1], argv+1);
   2446		}
   2447
   2448		return 0;
   2449	}
   2450
   2451Or this simple script!
   2452::
   2453
   2454  #!/bin/bash
   2455
   2456  tracefs=`sed -ne 's/^tracefs \(.*\) tracefs.*/\1/p' /proc/mounts`
   2457  echo 0 > $tracefs/tracing_on
   2458  echo $$ > $tracefs/set_ftrace_pid
   2459  echo function > $tracefs/current_tracer
   2460  echo 1 > $tracefs/tracing_on
   2461  exec "$@"
   2462
   2463
   2464function graph tracer
   2465---------------------------
   2466
   2467This tracer is similar to the function tracer except that it
   2468probes a function on its entry and its exit. This is done by
   2469using a dynamically allocated stack of return addresses in each
   2470task_struct. On function entry the tracer overwrites the return
   2471address of each function traced to set a custom probe. Thus the
   2472original return address is stored on the stack of return address
   2473in the task_struct.
   2474
   2475Probing on both ends of a function leads to special features
   2476such as:
   2477
   2478- measure of a function's time execution
   2479- having a reliable call stack to draw function calls graph
   2480
   2481This tracer is useful in several situations:
   2482
   2483- you want to find the reason of a strange kernel behavior and
   2484  need to see what happens in detail on any areas (or specific
   2485  ones).
   2486
   2487- you are experiencing weird latencies but it's difficult to
   2488  find its origin.
   2489
   2490- you want to find quickly which path is taken by a specific
   2491  function
   2492
   2493- you just want to peek inside a working kernel and want to see
   2494  what happens there.
   2495
   2496::
   2497
   2498  # tracer: function_graph
   2499  #
   2500  # CPU  DURATION                  FUNCTION CALLS
   2501  # |     |   |                     |   |   |   |
   2502
   2503   0)               |  sys_open() {
   2504   0)               |    do_sys_open() {
   2505   0)               |      getname() {
   2506   0)               |        kmem_cache_alloc() {
   2507   0)   1.382 us    |          __might_sleep();
   2508   0)   2.478 us    |        }
   2509   0)               |        strncpy_from_user() {
   2510   0)               |          might_fault() {
   2511   0)   1.389 us    |            __might_sleep();
   2512   0)   2.553 us    |          }
   2513   0)   3.807 us    |        }
   2514   0)   7.876 us    |      }
   2515   0)               |      alloc_fd() {
   2516   0)   0.668 us    |        _spin_lock();
   2517   0)   0.570 us    |        expand_files();
   2518   0)   0.586 us    |        _spin_unlock();
   2519
   2520
   2521There are several columns that can be dynamically
   2522enabled/disabled. You can use every combination of options you
   2523want, depending on your needs.
   2524
   2525- The cpu number on which the function executed is default
   2526  enabled.  It is sometimes better to only trace one cpu (see
   2527  tracing_cpu_mask file) or you might sometimes see unordered
   2528  function calls while cpu tracing switch.
   2529
   2530	- hide: echo nofuncgraph-cpu > trace_options
   2531	- show: echo funcgraph-cpu > trace_options
   2532
   2533- The duration (function's time of execution) is displayed on
   2534  the closing bracket line of a function or on the same line
   2535  than the current function in case of a leaf one. It is default
   2536  enabled.
   2537
   2538	- hide: echo nofuncgraph-duration > trace_options
   2539	- show: echo funcgraph-duration > trace_options
   2540
   2541- The overhead field precedes the duration field in case of
   2542  reached duration thresholds.
   2543
   2544	- hide: echo nofuncgraph-overhead > trace_options
   2545	- show: echo funcgraph-overhead > trace_options
   2546	- depends on: funcgraph-duration
   2547
   2548  ie::
   2549
   2550    3) # 1837.709 us |          } /* __switch_to */
   2551    3)               |          finish_task_switch() {
   2552    3)   0.313 us    |            _raw_spin_unlock_irq();
   2553    3)   3.177 us    |          }
   2554    3) # 1889.063 us |        } /* __schedule */
   2555    3) ! 140.417 us  |      } /* __schedule */
   2556    3) # 2034.948 us |    } /* schedule */
   2557    3) * 33998.59 us |  } /* schedule_preempt_disabled */
   2558
   2559    [...]
   2560
   2561    1)   0.260 us    |              msecs_to_jiffies();
   2562    1)   0.313 us    |              __rcu_read_unlock();
   2563    1) + 61.770 us   |            }
   2564    1) + 64.479 us   |          }
   2565    1)   0.313 us    |          rcu_bh_qs();
   2566    1)   0.313 us    |          __local_bh_enable();
   2567    1) ! 217.240 us  |        }
   2568    1)   0.365 us    |        idle_cpu();
   2569    1)               |        rcu_irq_exit() {
   2570    1)   0.417 us    |          rcu_eqs_enter_common.isra.47();
   2571    1)   3.125 us    |        }
   2572    1) ! 227.812 us  |      }
   2573    1) ! 457.395 us  |    }
   2574    1) @ 119760.2 us |  }
   2575
   2576    [...]
   2577
   2578    2)               |    handle_IPI() {
   2579    1)   6.979 us    |                  }
   2580    2)   0.417 us    |      scheduler_ipi();
   2581    1)   9.791 us    |                }
   2582    1) + 12.917 us   |              }
   2583    2)   3.490 us    |    }
   2584    1) + 15.729 us   |            }
   2585    1) + 18.542 us   |          }
   2586    2) $ 3594274 us  |  }
   2587
   2588Flags::
   2589
   2590  + means that the function exceeded 10 usecs.
   2591  ! means that the function exceeded 100 usecs.
   2592  # means that the function exceeded 1000 usecs.
   2593  * means that the function exceeded 10 msecs.
   2594  @ means that the function exceeded 100 msecs.
   2595  $ means that the function exceeded 1 sec.
   2596
   2597
   2598- The task/pid field displays the thread cmdline and pid which
   2599  executed the function. It is default disabled.
   2600
   2601	- hide: echo nofuncgraph-proc > trace_options
   2602	- show: echo funcgraph-proc > trace_options
   2603
   2604  ie::
   2605
   2606    # tracer: function_graph
   2607    #
   2608    # CPU  TASK/PID        DURATION                  FUNCTION CALLS
   2609    # |    |    |           |   |                     |   |   |   |
   2610    0)    sh-4802     |               |                  d_free() {
   2611    0)    sh-4802     |               |                    call_rcu() {
   2612    0)    sh-4802     |               |                      __call_rcu() {
   2613    0)    sh-4802     |   0.616 us    |                        rcu_process_gp_end();
   2614    0)    sh-4802     |   0.586 us    |                        check_for_new_grace_period();
   2615    0)    sh-4802     |   2.899 us    |                      }
   2616    0)    sh-4802     |   4.040 us    |                    }
   2617    0)    sh-4802     |   5.151 us    |                  }
   2618    0)    sh-4802     | + 49.370 us   |                }
   2619
   2620
   2621- The absolute time field is an absolute timestamp given by the
   2622  system clock since it started. A snapshot of this time is
   2623  given on each entry/exit of functions
   2624
   2625	- hide: echo nofuncgraph-abstime > trace_options
   2626	- show: echo funcgraph-abstime > trace_options
   2627
   2628  ie::
   2629
   2630    #
   2631    #      TIME       CPU  DURATION                  FUNCTION CALLS
   2632    #       |         |     |   |                     |   |   |   |
   2633    360.774522 |   1)   0.541 us    |                                          }
   2634    360.774522 |   1)   4.663 us    |                                        }
   2635    360.774523 |   1)   0.541 us    |                                        __wake_up_bit();
   2636    360.774524 |   1)   6.796 us    |                                      }
   2637    360.774524 |   1)   7.952 us    |                                    }
   2638    360.774525 |   1)   9.063 us    |                                  }
   2639    360.774525 |   1)   0.615 us    |                                  journal_mark_dirty();
   2640    360.774527 |   1)   0.578 us    |                                  __brelse();
   2641    360.774528 |   1)               |                                  reiserfs_prepare_for_journal() {
   2642    360.774528 |   1)               |                                    unlock_buffer() {
   2643    360.774529 |   1)               |                                      wake_up_bit() {
   2644    360.774529 |   1)               |                                        bit_waitqueue() {
   2645    360.774530 |   1)   0.594 us    |                                          __phys_addr();
   2646
   2647
   2648The function name is always displayed after the closing bracket
   2649for a function if the start of that function is not in the
   2650trace buffer.
   2651
   2652Display of the function name after the closing bracket may be
   2653enabled for functions whose start is in the trace buffer,
   2654allowing easier searching with grep for function durations.
   2655It is default disabled.
   2656
   2657	- hide: echo nofuncgraph-tail > trace_options
   2658	- show: echo funcgraph-tail > trace_options
   2659
   2660  Example with nofuncgraph-tail (default)::
   2661
   2662    0)               |      putname() {
   2663    0)               |        kmem_cache_free() {
   2664    0)   0.518 us    |          __phys_addr();
   2665    0)   1.757 us    |        }
   2666    0)   2.861 us    |      }
   2667
   2668  Example with funcgraph-tail::
   2669
   2670    0)               |      putname() {
   2671    0)               |        kmem_cache_free() {
   2672    0)   0.518 us    |          __phys_addr();
   2673    0)   1.757 us    |        } /* kmem_cache_free() */
   2674    0)   2.861 us    |      } /* putname() */
   2675
   2676You can put some comments on specific functions by using
   2677trace_printk() For example, if you want to put a comment inside
   2678the __might_sleep() function, you just have to include
   2679<linux/ftrace.h> and call trace_printk() inside __might_sleep()::
   2680
   2681	trace_printk("I'm a comment!\n")
   2682
   2683will produce::
   2684
   2685   1)               |             __might_sleep() {
   2686   1)               |                /* I'm a comment! */
   2687   1)   1.449 us    |             }
   2688
   2689
   2690You might find other useful features for this tracer in the
   2691following "dynamic ftrace" section such as tracing only specific
   2692functions or tasks.
   2693
   2694dynamic ftrace
   2695--------------
   2696
   2697If CONFIG_DYNAMIC_FTRACE is set, the system will run with
   2698virtually no overhead when function tracing is disabled. The way
   2699this works is the mcount function call (placed at the start of
   2700every kernel function, produced by the -pg switch in gcc),
   2701starts of pointing to a simple return. (Enabling FTRACE will
   2702include the -pg switch in the compiling of the kernel.)
   2703
   2704At compile time every C file object is run through the
   2705recordmcount program (located in the scripts directory). This
   2706program will parse the ELF headers in the C object to find all
   2707the locations in the .text section that call mcount. Starting
   2708with gcc version 4.6, the -mfentry has been added for x86, which
   2709calls "__fentry__" instead of "mcount". Which is called before
   2710the creation of the stack frame.
   2711
   2712Note, not all sections are traced. They may be prevented by either
   2713a notrace, or blocked another way and all inline functions are not
   2714traced. Check the "available_filter_functions" file to see what functions
   2715can be traced.
   2716
   2717A section called "__mcount_loc" is created that holds
   2718references to all the mcount/fentry call sites in the .text section.
   2719The recordmcount program re-links this section back into the
   2720original object. The final linking stage of the kernel will add all these
   2721references into a single table.
   2722
   2723On boot up, before SMP is initialized, the dynamic ftrace code
   2724scans this table and updates all the locations into nops. It
   2725also records the locations, which are added to the
   2726available_filter_functions list.  Modules are processed as they
   2727are loaded and before they are executed.  When a module is
   2728unloaded, it also removes its functions from the ftrace function
   2729list. This is automatic in the module unload code, and the
   2730module author does not need to worry about it.
   2731
   2732When tracing is enabled, the process of modifying the function
   2733tracepoints is dependent on architecture. The old method is to use
   2734kstop_machine to prevent races with the CPUs executing code being
   2735modified (which can cause the CPU to do undesirable things, especially
   2736if the modified code crosses cache (or page) boundaries), and the nops are
   2737patched back to calls. But this time, they do not call mcount
   2738(which is just a function stub). They now call into the ftrace
   2739infrastructure.
   2740
   2741The new method of modifying the function tracepoints is to place
   2742a breakpoint at the location to be modified, sync all CPUs, modify
   2743the rest of the instruction not covered by the breakpoint. Sync
   2744all CPUs again, and then remove the breakpoint with the finished
   2745version to the ftrace call site.
   2746
   2747Some archs do not even need to monkey around with the synchronization,
   2748and can just slap the new code on top of the old without any
   2749problems with other CPUs executing it at the same time.
   2750
   2751One special side-effect to the recording of the functions being
   2752traced is that we can now selectively choose which functions we
   2753wish to trace and which ones we want the mcount calls to remain
   2754as nops.
   2755
   2756Two files are used, one for enabling and one for disabling the
   2757tracing of specified functions. They are:
   2758
   2759  set_ftrace_filter
   2760
   2761and
   2762
   2763  set_ftrace_notrace
   2764
   2765A list of available functions that you can add to these files is
   2766listed in:
   2767
   2768   available_filter_functions
   2769
   2770::
   2771
   2772  # cat available_filter_functions
   2773  put_prev_task_idle
   2774  kmem_cache_create
   2775  pick_next_task_rt
   2776  cpus_read_lock
   2777  pick_next_task_fair
   2778  mutex_lock
   2779  [...]
   2780
   2781If I am only interested in sys_nanosleep and hrtimer_interrupt::
   2782
   2783  # echo sys_nanosleep hrtimer_interrupt > set_ftrace_filter
   2784  # echo function > current_tracer
   2785  # echo 1 > tracing_on
   2786  # usleep 1
   2787  # echo 0 > tracing_on
   2788  # cat trace
   2789  # tracer: function
   2790  #
   2791  # entries-in-buffer/entries-written: 5/5   #P:4
   2792  #
   2793  #                              _-----=> irqs-off
   2794  #                             / _----=> need-resched
   2795  #                            | / _---=> hardirq/softirq
   2796  #                            || / _--=> preempt-depth
   2797  #                            ||| /     delay
   2798  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   2799  #              | |       |   ||||       |         |
   2800            usleep-2665  [001] ....  4186.475355: sys_nanosleep <-system_call_fastpath
   2801            <idle>-0     [001] d.h1  4186.475409: hrtimer_interrupt <-smp_apic_timer_interrupt
   2802            usleep-2665  [001] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
   2803            <idle>-0     [003] d.h1  4186.475426: hrtimer_interrupt <-smp_apic_timer_interrupt
   2804            <idle>-0     [002] d.h1  4186.475427: hrtimer_interrupt <-smp_apic_timer_interrupt
   2805
   2806To see which functions are being traced, you can cat the file:
   2807::
   2808
   2809  # cat set_ftrace_filter
   2810  hrtimer_interrupt
   2811  sys_nanosleep
   2812
   2813
   2814Perhaps this is not enough. The filters also allow glob(7) matching.
   2815
   2816  ``<match>*``
   2817	will match functions that begin with <match>
   2818  ``*<match>``
   2819	will match functions that end with <match>
   2820  ``*<match>*``
   2821	will match functions that have <match> in it
   2822  ``<match1>*<match2>``
   2823	will match functions that begin with <match1> and end with <match2>
   2824
   2825.. note::
   2826      It is better to use quotes to enclose the wild cards,
   2827      otherwise the shell may expand the parameters into names
   2828      of files in the local directory.
   2829
   2830::
   2831
   2832  # echo 'hrtimer_*' > set_ftrace_filter
   2833
   2834Produces::
   2835
   2836  # tracer: function
   2837  #
   2838  # entries-in-buffer/entries-written: 897/897   #P:4
   2839  #
   2840  #                              _-----=> irqs-off
   2841  #                             / _----=> need-resched
   2842  #                            | / _---=> hardirq/softirq
   2843  #                            || / _--=> preempt-depth
   2844  #                            ||| /     delay
   2845  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   2846  #              | |       |   ||||       |         |
   2847            <idle>-0     [003] dN.1  4228.547803: hrtimer_cancel <-tick_nohz_idle_exit
   2848            <idle>-0     [003] dN.1  4228.547804: hrtimer_try_to_cancel <-hrtimer_cancel
   2849            <idle>-0     [003] dN.2  4228.547805: hrtimer_force_reprogram <-__remove_hrtimer
   2850            <idle>-0     [003] dN.1  4228.547805: hrtimer_forward <-tick_nohz_idle_exit
   2851            <idle>-0     [003] dN.1  4228.547805: hrtimer_start_range_ns <-hrtimer_start_expires.constprop.11
   2852            <idle>-0     [003] d..1  4228.547858: hrtimer_get_next_event <-get_next_timer_interrupt
   2853            <idle>-0     [003] d..1  4228.547859: hrtimer_start <-__tick_nohz_idle_enter
   2854            <idle>-0     [003] d..2  4228.547860: hrtimer_force_reprogram <-__rem
   2855
   2856Notice that we lost the sys_nanosleep.
   2857::
   2858
   2859  # cat set_ftrace_filter
   2860  hrtimer_run_queues
   2861  hrtimer_run_pending
   2862  hrtimer_init
   2863  hrtimer_cancel
   2864  hrtimer_try_to_cancel
   2865  hrtimer_forward
   2866  hrtimer_start
   2867  hrtimer_reprogram
   2868  hrtimer_force_reprogram
   2869  hrtimer_get_next_event
   2870  hrtimer_interrupt
   2871  hrtimer_nanosleep
   2872  hrtimer_wakeup
   2873  hrtimer_get_remaining
   2874  hrtimer_get_res
   2875  hrtimer_init_sleeper
   2876
   2877
   2878This is because the '>' and '>>' act just like they do in bash.
   2879To rewrite the filters, use '>'
   2880To append to the filters, use '>>'
   2881
   2882To clear out a filter so that all functions will be recorded
   2883again::
   2884
   2885 # echo > set_ftrace_filter
   2886 # cat set_ftrace_filter
   2887 #
   2888
   2889Again, now we want to append.
   2890
   2891::
   2892
   2893  # echo sys_nanosleep > set_ftrace_filter
   2894  # cat set_ftrace_filter
   2895  sys_nanosleep
   2896  # echo 'hrtimer_*' >> set_ftrace_filter
   2897  # cat set_ftrace_filter
   2898  hrtimer_run_queues
   2899  hrtimer_run_pending
   2900  hrtimer_init
   2901  hrtimer_cancel
   2902  hrtimer_try_to_cancel
   2903  hrtimer_forward
   2904  hrtimer_start
   2905  hrtimer_reprogram
   2906  hrtimer_force_reprogram
   2907  hrtimer_get_next_event
   2908  hrtimer_interrupt
   2909  sys_nanosleep
   2910  hrtimer_nanosleep
   2911  hrtimer_wakeup
   2912  hrtimer_get_remaining
   2913  hrtimer_get_res
   2914  hrtimer_init_sleeper
   2915
   2916
   2917The set_ftrace_notrace prevents those functions from being
   2918traced.
   2919::
   2920
   2921  # echo '*preempt*' '*lock*' > set_ftrace_notrace
   2922
   2923Produces::
   2924
   2925  # tracer: function
   2926  #
   2927  # entries-in-buffer/entries-written: 39608/39608   #P:4
   2928  #
   2929  #                              _-----=> irqs-off
   2930  #                             / _----=> need-resched
   2931  #                            | / _---=> hardirq/softirq
   2932  #                            || / _--=> preempt-depth
   2933  #                            ||| /     delay
   2934  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   2935  #              | |       |   ||||       |         |
   2936              bash-1994  [000] ....  4342.324896: file_ra_state_init <-do_dentry_open
   2937              bash-1994  [000] ....  4342.324897: open_check_o_direct <-do_last
   2938              bash-1994  [000] ....  4342.324897: ima_file_check <-do_last
   2939              bash-1994  [000] ....  4342.324898: process_measurement <-ima_file_check
   2940              bash-1994  [000] ....  4342.324898: ima_get_action <-process_measurement
   2941              bash-1994  [000] ....  4342.324898: ima_match_policy <-ima_get_action
   2942              bash-1994  [000] ....  4342.324899: do_truncate <-do_last
   2943              bash-1994  [000] ....  4342.324899: should_remove_suid <-do_truncate
   2944              bash-1994  [000] ....  4342.324899: notify_change <-do_truncate
   2945              bash-1994  [000] ....  4342.324900: current_fs_time <-notify_change
   2946              bash-1994  [000] ....  4342.324900: current_kernel_time <-current_fs_time
   2947              bash-1994  [000] ....  4342.324900: timespec_trunc <-current_fs_time
   2948
   2949We can see that there's no more lock or preempt tracing.
   2950
   2951Selecting function filters via index
   2952------------------------------------
   2953
   2954Because processing of strings is expensive (the address of the function
   2955needs to be looked up before comparing to the string being passed in),
   2956an index can be used as well to enable functions. This is useful in the
   2957case of setting thousands of specific functions at a time. By passing
   2958in a list of numbers, no string processing will occur. Instead, the function
   2959at the specific location in the internal array (which corresponds to the
   2960functions in the "available_filter_functions" file), is selected.
   2961
   2962::
   2963
   2964  # echo 1 > set_ftrace_filter
   2965
   2966Will select the first function listed in "available_filter_functions"
   2967
   2968::
   2969
   2970  # head -1 available_filter_functions
   2971  trace_initcall_finish_cb
   2972
   2973  # cat set_ftrace_filter
   2974  trace_initcall_finish_cb
   2975
   2976  # head -50 available_filter_functions | tail -1
   2977  x86_pmu_commit_txn
   2978
   2979  # echo 1 50 > set_ftrace_filter
   2980  # cat set_ftrace_filter
   2981  trace_initcall_finish_cb
   2982  x86_pmu_commit_txn
   2983
   2984Dynamic ftrace with the function graph tracer
   2985---------------------------------------------
   2986
   2987Although what has been explained above concerns both the
   2988function tracer and the function-graph-tracer, there are some
   2989special features only available in the function-graph tracer.
   2990
   2991If you want to trace only one function and all of its children,
   2992you just have to echo its name into set_graph_function::
   2993
   2994 echo __do_fault > set_graph_function
   2995
   2996will produce the following "expanded" trace of the __do_fault()
   2997function::
   2998
   2999   0)               |  __do_fault() {
   3000   0)               |    filemap_fault() {
   3001   0)               |      find_lock_page() {
   3002   0)   0.804 us    |        find_get_page();
   3003   0)               |        __might_sleep() {
   3004   0)   1.329 us    |        }
   3005   0)   3.904 us    |      }
   3006   0)   4.979 us    |    }
   3007   0)   0.653 us    |    _spin_lock();
   3008   0)   0.578 us    |    page_add_file_rmap();
   3009   0)   0.525 us    |    native_set_pte_at();
   3010   0)   0.585 us    |    _spin_unlock();
   3011   0)               |    unlock_page() {
   3012   0)   0.541 us    |      page_waitqueue();
   3013   0)   0.639 us    |      __wake_up_bit();
   3014   0)   2.786 us    |    }
   3015   0) + 14.237 us   |  }
   3016   0)               |  __do_fault() {
   3017   0)               |    filemap_fault() {
   3018   0)               |      find_lock_page() {
   3019   0)   0.698 us    |        find_get_page();
   3020   0)               |        __might_sleep() {
   3021   0)   1.412 us    |        }
   3022   0)   3.950 us    |      }
   3023   0)   5.098 us    |    }
   3024   0)   0.631 us    |    _spin_lock();
   3025   0)   0.571 us    |    page_add_file_rmap();
   3026   0)   0.526 us    |    native_set_pte_at();
   3027   0)   0.586 us    |    _spin_unlock();
   3028   0)               |    unlock_page() {
   3029   0)   0.533 us    |      page_waitqueue();
   3030   0)   0.638 us    |      __wake_up_bit();
   3031   0)   2.793 us    |    }
   3032   0) + 14.012 us   |  }
   3033
   3034You can also expand several functions at once::
   3035
   3036 echo sys_open > set_graph_function
   3037 echo sys_close >> set_graph_function
   3038
   3039Now if you want to go back to trace all functions you can clear
   3040this special filter via::
   3041
   3042 echo > set_graph_function
   3043
   3044
   3045ftrace_enabled
   3046--------------
   3047
   3048Note, the proc sysctl ftrace_enable is a big on/off switch for the
   3049function tracer. By default it is enabled (when function tracing is
   3050enabled in the kernel). If it is disabled, all function tracing is
   3051disabled. This includes not only the function tracers for ftrace, but
   3052also for any other uses (perf, kprobes, stack tracing, profiling, etc). It
   3053cannot be disabled if there is a callback with FTRACE_OPS_FL_PERMANENT set
   3054registered.
   3055
   3056Please disable this with care.
   3057
   3058This can be disable (and enabled) with::
   3059
   3060  sysctl kernel.ftrace_enabled=0
   3061  sysctl kernel.ftrace_enabled=1
   3062
   3063 or
   3064
   3065  echo 0 > /proc/sys/kernel/ftrace_enabled
   3066  echo 1 > /proc/sys/kernel/ftrace_enabled
   3067
   3068
   3069Filter commands
   3070---------------
   3071
   3072A few commands are supported by the set_ftrace_filter interface.
   3073Trace commands have the following format::
   3074
   3075  <function>:<command>:<parameter>
   3076
   3077The following commands are supported:
   3078
   3079- mod:
   3080  This command enables function filtering per module. The
   3081  parameter defines the module. For example, if only the write*
   3082  functions in the ext3 module are desired, run:
   3083
   3084   echo 'write*:mod:ext3' > set_ftrace_filter
   3085
   3086  This command interacts with the filter in the same way as
   3087  filtering based on function names. Thus, adding more functions
   3088  in a different module is accomplished by appending (>>) to the
   3089  filter file. Remove specific module functions by prepending
   3090  '!'::
   3091
   3092   echo '!writeback*:mod:ext3' >> set_ftrace_filter
   3093
   3094  Mod command supports module globbing. Disable tracing for all
   3095  functions except a specific module::
   3096
   3097   echo '!*:mod:!ext3' >> set_ftrace_filter
   3098
   3099  Disable tracing for all modules, but still trace kernel::
   3100
   3101   echo '!*:mod:*' >> set_ftrace_filter
   3102
   3103  Enable filter only for kernel::
   3104
   3105   echo '*write*:mod:!*' >> set_ftrace_filter
   3106
   3107  Enable filter for module globbing::
   3108
   3109   echo '*write*:mod:*snd*' >> set_ftrace_filter
   3110
   3111- traceon/traceoff:
   3112  These commands turn tracing on and off when the specified
   3113  functions are hit. The parameter determines how many times the
   3114  tracing system is turned on and off. If unspecified, there is
   3115  no limit. For example, to disable tracing when a schedule bug
   3116  is hit the first 5 times, run::
   3117
   3118   echo '__schedule_bug:traceoff:5' > set_ftrace_filter
   3119
   3120  To always disable tracing when __schedule_bug is hit::
   3121
   3122   echo '__schedule_bug:traceoff' > set_ftrace_filter
   3123
   3124  These commands are cumulative whether or not they are appended
   3125  to set_ftrace_filter. To remove a command, prepend it by '!'
   3126  and drop the parameter::
   3127
   3128   echo '!__schedule_bug:traceoff:0' > set_ftrace_filter
   3129
   3130  The above removes the traceoff command for __schedule_bug
   3131  that have a counter. To remove commands without counters::
   3132
   3133   echo '!__schedule_bug:traceoff' > set_ftrace_filter
   3134
   3135- snapshot:
   3136  Will cause a snapshot to be triggered when the function is hit.
   3137  ::
   3138
   3139   echo 'native_flush_tlb_others:snapshot' > set_ftrace_filter
   3140
   3141  To only snapshot once:
   3142  ::
   3143
   3144   echo 'native_flush_tlb_others:snapshot:1' > set_ftrace_filter
   3145
   3146  To remove the above commands::
   3147
   3148   echo '!native_flush_tlb_others:snapshot' > set_ftrace_filter
   3149   echo '!native_flush_tlb_others:snapshot:0' > set_ftrace_filter
   3150
   3151- enable_event/disable_event:
   3152  These commands can enable or disable a trace event. Note, because
   3153  function tracing callbacks are very sensitive, when these commands
   3154  are registered, the trace point is activated, but disabled in
   3155  a "soft" mode. That is, the tracepoint will be called, but
   3156  just will not be traced. The event tracepoint stays in this mode
   3157  as long as there's a command that triggers it.
   3158  ::
   3159
   3160   echo 'try_to_wake_up:enable_event:sched:sched_switch:2' > \
   3161   	 set_ftrace_filter
   3162
   3163  The format is::
   3164
   3165    <function>:enable_event:<system>:<event>[:count]
   3166    <function>:disable_event:<system>:<event>[:count]
   3167
   3168  To remove the events commands::
   3169
   3170   echo '!try_to_wake_up:enable_event:sched:sched_switch:0' > \
   3171   	 set_ftrace_filter
   3172   echo '!schedule:disable_event:sched:sched_switch' > \
   3173   	 set_ftrace_filter
   3174
   3175- dump:
   3176  When the function is hit, it will dump the contents of the ftrace
   3177  ring buffer to the console. This is useful if you need to debug
   3178  something, and want to dump the trace when a certain function
   3179  is hit. Perhaps it's a function that is called before a triple
   3180  fault happens and does not allow you to get a regular dump.
   3181
   3182- cpudump:
   3183  When the function is hit, it will dump the contents of the ftrace
   3184  ring buffer for the current CPU to the console. Unlike the "dump"
   3185  command, it only prints out the contents of the ring buffer for the
   3186  CPU that executed the function that triggered the dump.
   3187
   3188- stacktrace:
   3189  When the function is hit, a stack trace is recorded.
   3190
   3191trace_pipe
   3192----------
   3193
   3194The trace_pipe outputs the same content as the trace file, but
   3195the effect on the tracing is different. Every read from
   3196trace_pipe is consumed. This means that subsequent reads will be
   3197different. The trace is live.
   3198::
   3199
   3200  # echo function > current_tracer
   3201  # cat trace_pipe > /tmp/trace.out &
   3202  [1] 4153
   3203  # echo 1 > tracing_on
   3204  # usleep 1
   3205  # echo 0 > tracing_on
   3206  # cat trace
   3207  # tracer: function
   3208  #
   3209  # entries-in-buffer/entries-written: 0/0   #P:4
   3210  #
   3211  #                              _-----=> irqs-off
   3212  #                             / _----=> need-resched
   3213  #                            | / _---=> hardirq/softirq
   3214  #                            || / _--=> preempt-depth
   3215  #                            ||| /     delay
   3216  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   3217  #              | |       |   ||||       |         |
   3218
   3219  #
   3220  # cat /tmp/trace.out
   3221             bash-1994  [000] ....  5281.568961: mutex_unlock <-rb_simple_write
   3222             bash-1994  [000] ....  5281.568963: __mutex_unlock_slowpath <-mutex_unlock
   3223             bash-1994  [000] ....  5281.568963: __fsnotify_parent <-fsnotify_modify
   3224             bash-1994  [000] ....  5281.568964: fsnotify <-fsnotify_modify
   3225             bash-1994  [000] ....  5281.568964: __srcu_read_lock <-fsnotify
   3226             bash-1994  [000] ....  5281.568964: add_preempt_count <-__srcu_read_lock
   3227             bash-1994  [000] ...1  5281.568965: sub_preempt_count <-__srcu_read_lock
   3228             bash-1994  [000] ....  5281.568965: __srcu_read_unlock <-fsnotify
   3229             bash-1994  [000] ....  5281.568967: sys_dup2 <-system_call_fastpath
   3230
   3231
   3232Note, reading the trace_pipe file will block until more input is
   3233added. This is contrary to the trace file. If any process opened
   3234the trace file for reading, it will actually disable tracing and
   3235prevent new entries from being added. The trace_pipe file does
   3236not have this limitation.
   3237
   3238trace entries
   3239-------------
   3240
   3241Having too much or not enough data can be troublesome in
   3242diagnosing an issue in the kernel. The file buffer_size_kb is
   3243used to modify the size of the internal trace buffers. The
   3244number listed is the number of entries that can be recorded per
   3245CPU. To know the full size, multiply the number of possible CPUs
   3246with the number of entries.
   3247::
   3248
   3249  # cat buffer_size_kb
   3250  1408 (units kilobytes)
   3251
   3252Or simply read buffer_total_size_kb
   3253::
   3254
   3255  # cat buffer_total_size_kb 
   3256  5632
   3257
   3258To modify the buffer, simple echo in a number (in 1024 byte segments).
   3259::
   3260
   3261  # echo 10000 > buffer_size_kb
   3262  # cat buffer_size_kb
   3263  10000 (units kilobytes)
   3264
   3265It will try to allocate as much as possible. If you allocate too
   3266much, it can cause Out-Of-Memory to trigger.
   3267::
   3268
   3269  # echo 1000000000000 > buffer_size_kb
   3270  -bash: echo: write error: Cannot allocate memory
   3271  # cat buffer_size_kb
   3272  85
   3273
   3274The per_cpu buffers can be changed individually as well:
   3275::
   3276
   3277  # echo 10000 > per_cpu/cpu0/buffer_size_kb
   3278  # echo 100 > per_cpu/cpu1/buffer_size_kb
   3279
   3280When the per_cpu buffers are not the same, the buffer_size_kb
   3281at the top level will just show an X
   3282::
   3283
   3284  # cat buffer_size_kb
   3285  X
   3286
   3287This is where the buffer_total_size_kb is useful:
   3288::
   3289
   3290  # cat buffer_total_size_kb 
   3291  12916
   3292
   3293Writing to the top level buffer_size_kb will reset all the buffers
   3294to be the same again.
   3295
   3296Snapshot
   3297--------
   3298CONFIG_TRACER_SNAPSHOT makes a generic snapshot feature
   3299available to all non latency tracers. (Latency tracers which
   3300record max latency, such as "irqsoff" or "wakeup", can't use
   3301this feature, since those are already using the snapshot
   3302mechanism internally.)
   3303
   3304Snapshot preserves a current trace buffer at a particular point
   3305in time without stopping tracing. Ftrace swaps the current
   3306buffer with a spare buffer, and tracing continues in the new
   3307current (=previous spare) buffer.
   3308
   3309The following tracefs files in "tracing" are related to this
   3310feature:
   3311
   3312  snapshot:
   3313
   3314	This is used to take a snapshot and to read the output
   3315	of the snapshot. Echo 1 into this file to allocate a
   3316	spare buffer and to take a snapshot (swap), then read
   3317	the snapshot from this file in the same format as
   3318	"trace" (described above in the section "The File
   3319	System"). Both reads snapshot and tracing are executable
   3320	in parallel. When the spare buffer is allocated, echoing
   3321	0 frees it, and echoing else (positive) values clear the
   3322	snapshot contents.
   3323	More details are shown in the table below.
   3324
   3325	+--------------+------------+------------+------------+
   3326	|status\\input |     0      |     1      |    else    |
   3327	+==============+============+============+============+
   3328	|not allocated |(do nothing)| alloc+swap |(do nothing)|
   3329	+--------------+------------+------------+------------+
   3330	|allocated     |    free    |    swap    |   clear    |
   3331	+--------------+------------+------------+------------+
   3332
   3333Here is an example of using the snapshot feature.
   3334::
   3335
   3336  # echo 1 > events/sched/enable
   3337  # echo 1 > snapshot
   3338  # cat snapshot
   3339  # tracer: nop
   3340  #
   3341  # entries-in-buffer/entries-written: 71/71   #P:8
   3342  #
   3343  #                              _-----=> irqs-off
   3344  #                             / _----=> need-resched
   3345  #                            | / _---=> hardirq/softirq
   3346  #                            || / _--=> preempt-depth
   3347  #                            ||| /     delay
   3348  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   3349  #              | |       |   ||||       |         |
   3350            <idle>-0     [005] d...  2440.603828: sched_switch: prev_comm=swapper/5 prev_pid=0 prev_prio=120   prev_state=R ==> next_comm=snapshot-test-2 next_pid=2242 next_prio=120
   3351             sleep-2242  [005] d...  2440.603846: sched_switch: prev_comm=snapshot-test-2 prev_pid=2242 prev_prio=120   prev_state=R ==> next_comm=kworker/5:1 next_pid=60 next_prio=120
   3352  [...]
   3353          <idle>-0     [002] d...  2440.707230: sched_switch: prev_comm=swapper/2 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2229 next_prio=120  
   3354
   3355  # cat trace  
   3356  # tracer: nop
   3357  #
   3358  # entries-in-buffer/entries-written: 77/77   #P:8
   3359  #
   3360  #                              _-----=> irqs-off
   3361  #                             / _----=> need-resched
   3362  #                            | / _---=> hardirq/softirq
   3363  #                            || / _--=> preempt-depth
   3364  #                            ||| /     delay
   3365  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   3366  #              | |       |   ||||       |         |
   3367            <idle>-0     [007] d...  2440.707395: sched_switch: prev_comm=swapper/7 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=snapshot-test-2 next_pid=2243 next_prio=120
   3368   snapshot-test-2-2229  [002] d...  2440.707438: sched_switch: prev_comm=snapshot-test-2 prev_pid=2229 prev_prio=120 prev_state=S ==> next_comm=swapper/2 next_pid=0 next_prio=120
   3369  [...]
   3370
   3371
   3372If you try to use this snapshot feature when current tracer is
   3373one of the latency tracers, you will get the following results.
   3374::
   3375
   3376  # echo wakeup > current_tracer
   3377  # echo 1 > snapshot
   3378  bash: echo: write error: Device or resource busy
   3379  # cat snapshot
   3380  cat: snapshot: Device or resource busy
   3381
   3382
   3383Instances
   3384---------
   3385In the tracefs tracing directory, there is a directory called "instances".
   3386This directory can have new directories created inside of it using
   3387mkdir, and removing directories with rmdir. The directory created
   3388with mkdir in this directory will already contain files and other
   3389directories after it is created.
   3390::
   3391
   3392  # mkdir instances/foo
   3393  # ls instances/foo
   3394  buffer_size_kb  buffer_total_size_kb  events  free_buffer  per_cpu
   3395  set_event  snapshot  trace  trace_clock  trace_marker  trace_options
   3396  trace_pipe  tracing_on
   3397
   3398As you can see, the new directory looks similar to the tracing directory
   3399itself. In fact, it is very similar, except that the buffer and
   3400events are agnostic from the main directory, or from any other
   3401instances that are created.
   3402
   3403The files in the new directory work just like the files with the
   3404same name in the tracing directory except the buffer that is used
   3405is a separate and new buffer. The files affect that buffer but do not
   3406affect the main buffer with the exception of trace_options. Currently,
   3407the trace_options affect all instances and the top level buffer
   3408the same, but this may change in future releases. That is, options
   3409may become specific to the instance they reside in.
   3410
   3411Notice that none of the function tracer files are there, nor is
   3412current_tracer and available_tracers. This is because the buffers
   3413can currently only have events enabled for them.
   3414::
   3415
   3416  # mkdir instances/foo
   3417  # mkdir instances/bar
   3418  # mkdir instances/zoot
   3419  # echo 100000 > buffer_size_kb
   3420  # echo 1000 > instances/foo/buffer_size_kb
   3421  # echo 5000 > instances/bar/per_cpu/cpu1/buffer_size_kb
   3422  # echo function > current_trace
   3423  # echo 1 > instances/foo/events/sched/sched_wakeup/enable
   3424  # echo 1 > instances/foo/events/sched/sched_wakeup_new/enable
   3425  # echo 1 > instances/foo/events/sched/sched_switch/enable
   3426  # echo 1 > instances/bar/events/irq/enable
   3427  # echo 1 > instances/zoot/events/syscalls/enable
   3428  # cat trace_pipe
   3429  CPU:2 [LOST 11745 EVENTS]
   3430              bash-2044  [002] .... 10594.481032: _raw_spin_lock_irqsave <-get_page_from_freelist
   3431              bash-2044  [002] d... 10594.481032: add_preempt_count <-_raw_spin_lock_irqsave
   3432              bash-2044  [002] d..1 10594.481032: __rmqueue <-get_page_from_freelist
   3433              bash-2044  [002] d..1 10594.481033: _raw_spin_unlock <-get_page_from_freelist
   3434              bash-2044  [002] d..1 10594.481033: sub_preempt_count <-_raw_spin_unlock
   3435              bash-2044  [002] d... 10594.481033: get_pageblock_flags_group <-get_pageblock_migratetype
   3436              bash-2044  [002] d... 10594.481034: __mod_zone_page_state <-get_page_from_freelist
   3437              bash-2044  [002] d... 10594.481034: zone_statistics <-get_page_from_freelist
   3438              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
   3439              bash-2044  [002] d... 10594.481034: __inc_zone_state <-zone_statistics
   3440              bash-2044  [002] .... 10594.481035: arch_dup_task_struct <-copy_process
   3441  [...]
   3442
   3443  # cat instances/foo/trace_pipe
   3444              bash-1998  [000] d..4   136.676759: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
   3445              bash-1998  [000] dN.4   136.676760: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
   3446            <idle>-0     [003] d.h3   136.676906: sched_wakeup: comm=rcu_preempt pid=9 prio=120 success=1 target_cpu=003
   3447            <idle>-0     [003] d..3   136.676909: sched_switch: prev_comm=swapper/3 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=rcu_preempt next_pid=9 next_prio=120
   3448       rcu_preempt-9     [003] d..3   136.676916: sched_switch: prev_comm=rcu_preempt prev_pid=9 prev_prio=120 prev_state=S ==> next_comm=swapper/3 next_pid=0 next_prio=120
   3449              bash-1998  [000] d..4   136.677014: sched_wakeup: comm=kworker/0:1 pid=59 prio=120 success=1 target_cpu=000
   3450              bash-1998  [000] dN.4   136.677016: sched_wakeup: comm=bash pid=1998 prio=120 success=1 target_cpu=000
   3451              bash-1998  [000] d..3   136.677018: sched_switch: prev_comm=bash prev_pid=1998 prev_prio=120 prev_state=R+ ==> next_comm=kworker/0:1 next_pid=59 next_prio=120
   3452       kworker/0:1-59    [000] d..4   136.677022: sched_wakeup: comm=sshd pid=1995 prio=120 success=1 target_cpu=001
   3453       kworker/0:1-59    [000] d..3   136.677025: sched_switch: prev_comm=kworker/0:1 prev_pid=59 prev_prio=120 prev_state=S ==> next_comm=bash next_pid=1998 next_prio=120
   3454  [...]
   3455
   3456  # cat instances/bar/trace_pipe
   3457       migration/1-14    [001] d.h3   138.732674: softirq_raise: vec=3 [action=NET_RX]
   3458            <idle>-0     [001] dNh3   138.732725: softirq_raise: vec=3 [action=NET_RX]
   3459              bash-1998  [000] d.h1   138.733101: softirq_raise: vec=1 [action=TIMER]
   3460              bash-1998  [000] d.h1   138.733102: softirq_raise: vec=9 [action=RCU]
   3461              bash-1998  [000] ..s2   138.733105: softirq_entry: vec=1 [action=TIMER]
   3462              bash-1998  [000] ..s2   138.733106: softirq_exit: vec=1 [action=TIMER]
   3463              bash-1998  [000] ..s2   138.733106: softirq_entry: vec=9 [action=RCU]
   3464              bash-1998  [000] ..s2   138.733109: softirq_exit: vec=9 [action=RCU]
   3465              sshd-1995  [001] d.h1   138.733278: irq_handler_entry: irq=21 name=uhci_hcd:usb4
   3466              sshd-1995  [001] d.h1   138.733280: irq_handler_exit: irq=21 ret=unhandled
   3467              sshd-1995  [001] d.h1   138.733281: irq_handler_entry: irq=21 name=eth0
   3468              sshd-1995  [001] d.h1   138.733283: irq_handler_exit: irq=21 ret=handled
   3469  [...]
   3470
   3471  # cat instances/zoot/trace
   3472  # tracer: nop
   3473  #
   3474  # entries-in-buffer/entries-written: 18996/18996   #P:4
   3475  #
   3476  #                              _-----=> irqs-off
   3477  #                             / _----=> need-resched
   3478  #                            | / _---=> hardirq/softirq
   3479  #                            || / _--=> preempt-depth
   3480  #                            ||| /     delay
   3481  #           TASK-PID   CPU#  ||||    TIMESTAMP  FUNCTION
   3482  #              | |       |   ||||       |         |
   3483              bash-1998  [000] d...   140.733501: sys_write -> 0x2
   3484              bash-1998  [000] d...   140.733504: sys_dup2(oldfd: a, newfd: 1)
   3485              bash-1998  [000] d...   140.733506: sys_dup2 -> 0x1
   3486              bash-1998  [000] d...   140.733508: sys_fcntl(fd: a, cmd: 1, arg: 0)
   3487              bash-1998  [000] d...   140.733509: sys_fcntl -> 0x1
   3488              bash-1998  [000] d...   140.733510: sys_close(fd: a)
   3489              bash-1998  [000] d...   140.733510: sys_close -> 0x0
   3490              bash-1998  [000] d...   140.733514: sys_rt_sigprocmask(how: 0, nset: 0, oset: 6e2768, sigsetsize: 8)
   3491              bash-1998  [000] d...   140.733515: sys_rt_sigprocmask -> 0x0
   3492              bash-1998  [000] d...   140.733516: sys_rt_sigaction(sig: 2, act: 7fff718846f0, oact: 7fff71884650, sigsetsize: 8)
   3493              bash-1998  [000] d...   140.733516: sys_rt_sigaction -> 0x0
   3494
   3495You can see that the trace of the top most trace buffer shows only
   3496the function tracing. The foo instance displays wakeups and task
   3497switches.
   3498
   3499To remove the instances, simply delete their directories:
   3500::
   3501
   3502  # rmdir instances/foo
   3503  # rmdir instances/bar
   3504  # rmdir instances/zoot
   3505
   3506Note, if a process has a trace file open in one of the instance
   3507directories, the rmdir will fail with EBUSY.
   3508
   3509
   3510Stack trace
   3511-----------
   3512Since the kernel has a fixed sized stack, it is important not to
   3513waste it in functions. A kernel developer must be conscience of
   3514what they allocate on the stack. If they add too much, the system
   3515can be in danger of a stack overflow, and corruption will occur,
   3516usually leading to a system panic.
   3517
   3518There are some tools that check this, usually with interrupts
   3519periodically checking usage. But if you can perform a check
   3520at every function call that will become very useful. As ftrace provides
   3521a function tracer, it makes it convenient to check the stack size
   3522at every function call. This is enabled via the stack tracer.
   3523
   3524CONFIG_STACK_TRACER enables the ftrace stack tracing functionality.
   3525To enable it, write a '1' into /proc/sys/kernel/stack_tracer_enabled.
   3526::
   3527
   3528 # echo 1 > /proc/sys/kernel/stack_tracer_enabled
   3529
   3530You can also enable it from the kernel command line to trace
   3531the stack size of the kernel during boot up, by adding "stacktrace"
   3532to the kernel command line parameter.
   3533
   3534After running it for a few minutes, the output looks like:
   3535::
   3536
   3537  # cat stack_max_size
   3538  2928
   3539
   3540  # cat stack_trace
   3541          Depth    Size   Location    (18 entries)
   3542          -----    ----   --------
   3543    0)     2928     224   update_sd_lb_stats+0xbc/0x4ac
   3544    1)     2704     160   find_busiest_group+0x31/0x1f1
   3545    2)     2544     256   load_balance+0xd9/0x662
   3546    3)     2288      80   idle_balance+0xbb/0x130
   3547    4)     2208     128   __schedule+0x26e/0x5b9
   3548    5)     2080      16   schedule+0x64/0x66
   3549    6)     2064     128   schedule_timeout+0x34/0xe0
   3550    7)     1936     112   wait_for_common+0x97/0xf1
   3551    8)     1824      16   wait_for_completion+0x1d/0x1f
   3552    9)     1808     128   flush_work+0xfe/0x119
   3553   10)     1680      16   tty_flush_to_ldisc+0x1e/0x20
   3554   11)     1664      48   input_available_p+0x1d/0x5c
   3555   12)     1616      48   n_tty_poll+0x6d/0x134
   3556   13)     1568      64   tty_poll+0x64/0x7f
   3557   14)     1504     880   do_select+0x31e/0x511
   3558   15)      624     400   core_sys_select+0x177/0x216
   3559   16)      224      96   sys_select+0x91/0xb9
   3560   17)      128     128   system_call_fastpath+0x16/0x1b
   3561
   3562Note, if -mfentry is being used by gcc, functions get traced before
   3563they set up the stack frame. This means that leaf level functions
   3564are not tested by the stack tracer when -mfentry is used.
   3565
   3566Currently, -mfentry is used by gcc 4.6.0 and above on x86 only.
   3567
   3568More
   3569----
   3570More details can be found in the source code, in the `kernel/trace/*.c` files.