cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

dma.h (12664B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * include/asm-alpha/dma.h
      4 *
      5 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs
      6 * use ISA-compatible dma.  The only extension is support for high-page
      7 * registers that allow to set the top 8 bits of a 32-bit DMA address.
      8 * This register should be written last when setting up a DMA address
      9 * as this will also enable DMA across 64 KB boundaries.
     10 */
     11
     12/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $
     13 * linux/include/asm/dma.h: Defines for using and allocating dma channels.
     14 * Written by Hennus Bergman, 1992.
     15 * High DMA channel support & info by Hannu Savolainen
     16 * and John Boyd, Nov. 1992.
     17 */
     18
     19#ifndef _ASM_DMA_H
     20#define _ASM_DMA_H
     21
     22#include <linux/spinlock.h>
     23#include <asm/io.h>
     24
     25#define dma_outb	outb
     26#define dma_inb		inb
     27
     28/*
     29 * NOTES about DMA transfers:
     30 *
     31 *  controller 1: channels 0-3, byte operations, ports 00-1F
     32 *  controller 2: channels 4-7, word operations, ports C0-DF
     33 *
     34 *  - ALL registers are 8 bits only, regardless of transfer size
     35 *  - channel 4 is not used - cascades 1 into 2.
     36 *  - channels 0-3 are byte - addresses/counts are for physical bytes
     37 *  - channels 5-7 are word - addresses/counts are for physical words
     38 *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
     39 *  - transfer count loaded to registers is 1 less than actual count
     40 *  - controller 2 offsets are all even (2x offsets for controller 1)
     41 *  - page registers for 5-7 don't use data bit 0, represent 128K pages
     42 *  - page registers for 0-3 use bit 0, represent 64K pages
     43 *
     44 * DMA transfers are limited to the lower 16MB of _physical_ memory.  
     45 * Note that addresses loaded into registers must be _physical_ addresses,
     46 * not logical addresses (which may differ if paging is active).
     47 *
     48 *  Address mapping for channels 0-3:
     49 *
     50 *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
     51 *    |  ...  |   |  ... |   |  ... |
     52 *    |  ...  |   |  ... |   |  ... |
     53 *    |  ...  |   |  ... |   |  ... |
     54 *   P7  ...  P0  A7 ... A0  A7 ... A0   
     55 * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
     56 *
     57 *  Address mapping for channels 5-7:
     58 *
     59 *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
     60 *    |  ...  |   \   \   ... \  \  \  ... \  \
     61 *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
     62 *    |  ...  |     \   \   ... \  \  \  ... \
     63 *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0   
     64 * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
     65 *
     66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
     67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
     68 * the hardware level, so odd-byte transfers aren't possible).
     69 *
     70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual
     71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
     72 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 
     73 *
     74 */
     75
     76#define MAX_DMA_CHANNELS	8
     77
     78/*
     79  ISA DMA limitations on Alpha platforms,
     80
     81  These may be due to SIO (PCI<->ISA bridge) chipset limitation, or
     82  just a wiring limit.
     83*/
     84
     85/* The maximum address for ISA DMA transfer on Alpha XL, due to an
     86   hardware SIO limitation, is 64MB.
     87*/
     88#define ALPHA_XL_MAX_ISA_DMA_ADDRESS		0x04000000UL
     89
     90/* The maximum address for ISA DMA transfer on RUFFIAN,
     91   due to an hardware SIO limitation, is 16MB.
     92*/
     93#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS	0x01000000UL
     94
     95/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs,
     96   due to an hardware SIO chip limitation, is 2GB.
     97*/
     98#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS		0x80000000UL
     99#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS		0x80000000UL
    100
    101/*
    102  Maximum address for all the others is the complete 32-bit bus
    103  address space.
    104*/
    105#define ALPHA_MAX_ISA_DMA_ADDRESS		0x100000000UL
    106
    107#ifdef CONFIG_ALPHA_GENERIC
    108# define MAX_ISA_DMA_ADDRESS		(alpha_mv.max_isa_dma_address)
    109#else
    110# if defined(CONFIG_ALPHA_XL)
    111#  define MAX_ISA_DMA_ADDRESS		ALPHA_XL_MAX_ISA_DMA_ADDRESS
    112# elif defined(CONFIG_ALPHA_RUFFIAN)
    113#  define MAX_ISA_DMA_ADDRESS		ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS
    114# elif defined(CONFIG_ALPHA_SABLE)
    115#  define MAX_ISA_DMA_ADDRESS		ALPHA_SABLE_MAX_ISA_DMA_ADDRESS
    116# elif defined(CONFIG_ALPHA_ALCOR)
    117#  define MAX_ISA_DMA_ADDRESS		ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS
    118# else
    119#  define MAX_ISA_DMA_ADDRESS		ALPHA_MAX_ISA_DMA_ADDRESS
    120# endif
    121#endif
    122
    123/* If we have the iommu, we don't have any address limitations on DMA.
    124   Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone
    125   like i386. */
    126#define MAX_DMA_ADDRESS		(alpha_mv.mv_pci_tbi ?	\
    127				 ~0UL : IDENT_ADDR + 0x01000000)
    128
    129/* 8237 DMA controllers */
    130#define IO_DMA1_BASE	0x00	/* 8 bit slave DMA, channels 0..3 */
    131#define IO_DMA2_BASE	0xC0	/* 16 bit master DMA, ch 4(=slave input)..7 */
    132
    133/* DMA controller registers */
    134#define DMA1_CMD_REG		0x08	/* command register (w) */
    135#define DMA1_STAT_REG		0x08	/* status register (r) */
    136#define DMA1_REQ_REG            0x09    /* request register (w) */
    137#define DMA1_MASK_REG		0x0A	/* single-channel mask (w) */
    138#define DMA1_MODE_REG		0x0B	/* mode register (w) */
    139#define DMA1_CLEAR_FF_REG	0x0C	/* clear pointer flip-flop (w) */
    140#define DMA1_TEMP_REG           0x0D    /* Temporary Register (r) */
    141#define DMA1_RESET_REG		0x0D	/* Master Clear (w) */
    142#define DMA1_CLR_MASK_REG       0x0E    /* Clear Mask */
    143#define DMA1_MASK_ALL_REG       0x0F    /* all-channels mask (w) */
    144#define DMA1_EXT_MODE_REG	(0x400 | DMA1_MODE_REG)
    145
    146#define DMA2_CMD_REG		0xD0	/* command register (w) */
    147#define DMA2_STAT_REG		0xD0	/* status register (r) */
    148#define DMA2_REQ_REG            0xD2    /* request register (w) */
    149#define DMA2_MASK_REG		0xD4	/* single-channel mask (w) */
    150#define DMA2_MODE_REG		0xD6	/* mode register (w) */
    151#define DMA2_CLEAR_FF_REG	0xD8	/* clear pointer flip-flop (w) */
    152#define DMA2_TEMP_REG           0xDA    /* Temporary Register (r) */
    153#define DMA2_RESET_REG		0xDA	/* Master Clear (w) */
    154#define DMA2_CLR_MASK_REG       0xDC    /* Clear Mask */
    155#define DMA2_MASK_ALL_REG       0xDE    /* all-channels mask (w) */
    156#define DMA2_EXT_MODE_REG	(0x400 | DMA2_MODE_REG)
    157
    158#define DMA_ADDR_0              0x00    /* DMA address registers */
    159#define DMA_ADDR_1              0x02
    160#define DMA_ADDR_2              0x04
    161#define DMA_ADDR_3              0x06
    162#define DMA_ADDR_4              0xC0
    163#define DMA_ADDR_5              0xC4
    164#define DMA_ADDR_6              0xC8
    165#define DMA_ADDR_7              0xCC
    166
    167#define DMA_CNT_0               0x01    /* DMA count registers */
    168#define DMA_CNT_1               0x03
    169#define DMA_CNT_2               0x05
    170#define DMA_CNT_3               0x07
    171#define DMA_CNT_4               0xC2
    172#define DMA_CNT_5               0xC6
    173#define DMA_CNT_6               0xCA
    174#define DMA_CNT_7               0xCE
    175
    176#define DMA_PAGE_0              0x87    /* DMA page registers */
    177#define DMA_PAGE_1              0x83
    178#define DMA_PAGE_2              0x81
    179#define DMA_PAGE_3              0x82
    180#define DMA_PAGE_5              0x8B
    181#define DMA_PAGE_6              0x89
    182#define DMA_PAGE_7              0x8A
    183
    184#define DMA_HIPAGE_0		(0x400 | DMA_PAGE_0)
    185#define DMA_HIPAGE_1		(0x400 | DMA_PAGE_1)
    186#define DMA_HIPAGE_2		(0x400 | DMA_PAGE_2)
    187#define DMA_HIPAGE_3		(0x400 | DMA_PAGE_3)
    188#define DMA_HIPAGE_4		(0x400 | DMA_PAGE_4)
    189#define DMA_HIPAGE_5		(0x400 | DMA_PAGE_5)
    190#define DMA_HIPAGE_6		(0x400 | DMA_PAGE_6)
    191#define DMA_HIPAGE_7		(0x400 | DMA_PAGE_7)
    192
    193#define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
    194#define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
    195#define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
    196
    197#define DMA_AUTOINIT	0x10
    198
    199extern spinlock_t  dma_spin_lock;
    200
    201static __inline__ unsigned long claim_dma_lock(void)
    202{
    203	unsigned long flags;
    204	spin_lock_irqsave(&dma_spin_lock, flags);
    205	return flags;
    206}
    207
    208static __inline__ void release_dma_lock(unsigned long flags)
    209{
    210	spin_unlock_irqrestore(&dma_spin_lock, flags);
    211}
    212
    213/* enable/disable a specific DMA channel */
    214static __inline__ void enable_dma(unsigned int dmanr)
    215{
    216	if (dmanr<=3)
    217		dma_outb(dmanr,  DMA1_MASK_REG);
    218	else
    219		dma_outb(dmanr & 3,  DMA2_MASK_REG);
    220}
    221
    222static __inline__ void disable_dma(unsigned int dmanr)
    223{
    224	if (dmanr<=3)
    225		dma_outb(dmanr | 4,  DMA1_MASK_REG);
    226	else
    227		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
    228}
    229
    230/* Clear the 'DMA Pointer Flip Flop'.
    231 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
    232 * Use this once to initialize the FF to a known state.
    233 * After that, keep track of it. :-)
    234 * --- In order to do that, the DMA routines below should ---
    235 * --- only be used while interrupts are disabled! ---
    236 */
    237static __inline__ void clear_dma_ff(unsigned int dmanr)
    238{
    239	if (dmanr<=3)
    240		dma_outb(0,  DMA1_CLEAR_FF_REG);
    241	else
    242		dma_outb(0,  DMA2_CLEAR_FF_REG);
    243}
    244
    245/* set mode (above) for a specific DMA channel */
    246static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
    247{
    248	if (dmanr<=3)
    249		dma_outb(mode | dmanr,  DMA1_MODE_REG);
    250	else
    251		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
    252}
    253
    254/* set extended mode for a specific DMA channel */
    255static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode)
    256{
    257	if (dmanr<=3)
    258		dma_outb(ext_mode | dmanr,  DMA1_EXT_MODE_REG);
    259	else
    260		dma_outb(ext_mode | (dmanr&3),  DMA2_EXT_MODE_REG);
    261}
    262
    263/* Set only the page register bits of the transfer address.
    264 * This is used for successive transfers when we know the contents of
    265 * the lower 16 bits of the DMA current address register.
    266 */
    267static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr)
    268{
    269	switch(dmanr) {
    270		case 0:
    271			dma_outb(pagenr, DMA_PAGE_0);
    272			dma_outb((pagenr >> 8), DMA_HIPAGE_0);
    273			break;
    274		case 1:
    275			dma_outb(pagenr, DMA_PAGE_1);
    276			dma_outb((pagenr >> 8), DMA_HIPAGE_1);
    277			break;
    278		case 2:
    279			dma_outb(pagenr, DMA_PAGE_2);
    280			dma_outb((pagenr >> 8), DMA_HIPAGE_2);
    281			break;
    282		case 3:
    283			dma_outb(pagenr, DMA_PAGE_3);
    284			dma_outb((pagenr >> 8), DMA_HIPAGE_3);
    285			break;
    286		case 5:
    287			dma_outb(pagenr & 0xfe, DMA_PAGE_5);
    288			dma_outb((pagenr >> 8), DMA_HIPAGE_5);
    289			break;
    290		case 6:
    291			dma_outb(pagenr & 0xfe, DMA_PAGE_6);
    292			dma_outb((pagenr >> 8), DMA_HIPAGE_6);
    293			break;
    294		case 7:
    295			dma_outb(pagenr & 0xfe, DMA_PAGE_7);
    296			dma_outb((pagenr >> 8), DMA_HIPAGE_7);
    297			break;
    298	}
    299}
    300
    301
    302/* Set transfer address & page bits for specific DMA channel.
    303 * Assumes dma flipflop is clear.
    304 */
    305static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
    306{
    307	if (dmanr <= 3)  {
    308	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
    309            dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
    310	}  else  {
    311	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
    312	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
    313	}
    314	set_dma_page(dmanr, a>>16);	/* set hipage last to enable 32-bit mode */
    315}
    316
    317
    318/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
    319 * a specific DMA channel.
    320 * You must ensure the parameters are valid.
    321 * NOTE: from a manual: "the number of transfers is one more
    322 * than the initial word count"! This is taken into account.
    323 * Assumes dma flip-flop is clear.
    324 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
    325 */
    326static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
    327{
    328        count--;
    329	if (dmanr <= 3)  {
    330	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
    331	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
    332        } else {
    333	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
    334	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
    335        }
    336}
    337
    338
    339/* Get DMA residue count. After a DMA transfer, this
    340 * should return zero. Reading this while a DMA transfer is
    341 * still in progress will return unpredictable results.
    342 * If called before the channel has been used, it may return 1.
    343 * Otherwise, it returns the number of _bytes_ left to transfer.
    344 *
    345 * Assumes DMA flip-flop is clear.
    346 */
    347static __inline__ int get_dma_residue(unsigned int dmanr)
    348{
    349	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
    350					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
    351
    352	/* using short to get 16-bit wrap around */
    353	unsigned short count;
    354
    355	count = 1 + dma_inb(io_port);
    356	count += dma_inb(io_port) << 8;
    357	
    358	return (dmanr<=3)? count : (count<<1);
    359}
    360
    361
    362/* These are in kernel/dma.c: */
    363extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
    364extern void free_dma(unsigned int dmanr);	/* release it again */
    365#define KERNEL_HAVE_CHECK_DMA
    366extern int check_dma(unsigned int dmanr);
    367
    368/* From PCI */
    369
    370#ifdef CONFIG_PCI
    371extern int isa_dma_bridge_buggy;
    372#else
    373#define isa_dma_bridge_buggy 	(0)
    374#endif
    375
    376
    377#endif /* _ASM_DMA_H */