dma.h (12664B)
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * include/asm-alpha/dma.h 4 * 5 * This is essentially the same as the i386 DMA stuff, as the AlphaPCs 6 * use ISA-compatible dma. The only extension is support for high-page 7 * registers that allow to set the top 8 bits of a 32-bit DMA address. 8 * This register should be written last when setting up a DMA address 9 * as this will also enable DMA across 64 KB boundaries. 10 */ 11 12/* $Id: dma.h,v 1.7 1992/12/14 00:29:34 root Exp root $ 13 * linux/include/asm/dma.h: Defines for using and allocating dma channels. 14 * Written by Hennus Bergman, 1992. 15 * High DMA channel support & info by Hannu Savolainen 16 * and John Boyd, Nov. 1992. 17 */ 18 19#ifndef _ASM_DMA_H 20#define _ASM_DMA_H 21 22#include <linux/spinlock.h> 23#include <asm/io.h> 24 25#define dma_outb outb 26#define dma_inb inb 27 28/* 29 * NOTES about DMA transfers: 30 * 31 * controller 1: channels 0-3, byte operations, ports 00-1F 32 * controller 2: channels 4-7, word operations, ports C0-DF 33 * 34 * - ALL registers are 8 bits only, regardless of transfer size 35 * - channel 4 is not used - cascades 1 into 2. 36 * - channels 0-3 are byte - addresses/counts are for physical bytes 37 * - channels 5-7 are word - addresses/counts are for physical words 38 * - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries 39 * - transfer count loaded to registers is 1 less than actual count 40 * - controller 2 offsets are all even (2x offsets for controller 1) 41 * - page registers for 5-7 don't use data bit 0, represent 128K pages 42 * - page registers for 0-3 use bit 0, represent 64K pages 43 * 44 * DMA transfers are limited to the lower 16MB of _physical_ memory. 45 * Note that addresses loaded into registers must be _physical_ addresses, 46 * not logical addresses (which may differ if paging is active). 47 * 48 * Address mapping for channels 0-3: 49 * 50 * A23 ... A16 A15 ... A8 A7 ... A0 (Physical addresses) 51 * | ... | | ... | | ... | 52 * | ... | | ... | | ... | 53 * | ... | | ... | | ... | 54 * P7 ... P0 A7 ... A0 A7 ... A0 55 * | Page | Addr MSB | Addr LSB | (DMA registers) 56 * 57 * Address mapping for channels 5-7: 58 * 59 * A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0 (Physical addresses) 60 * | ... | \ \ ... \ \ \ ... \ \ 61 * | ... | \ \ ... \ \ \ ... \ (not used) 62 * | ... | \ \ ... \ \ \ ... \ 63 * P7 ... P1 (0) A7 A6 ... A0 A7 A6 ... A0 64 * | Page | Addr MSB | Addr LSB | (DMA registers) 65 * 66 * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses 67 * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at 68 * the hardware level, so odd-byte transfers aren't possible). 69 * 70 * Transfer count (_not # bytes_) is limited to 64K, represented as actual 71 * count - 1 : 64K => 0xFFFF, 1 => 0x0000. Thus, count is always 1 or more, 72 * and up to 128K bytes may be transferred on channels 5-7 in one operation. 73 * 74 */ 75 76#define MAX_DMA_CHANNELS 8 77 78/* 79 ISA DMA limitations on Alpha platforms, 80 81 These may be due to SIO (PCI<->ISA bridge) chipset limitation, or 82 just a wiring limit. 83*/ 84 85/* The maximum address for ISA DMA transfer on Alpha XL, due to an 86 hardware SIO limitation, is 64MB. 87*/ 88#define ALPHA_XL_MAX_ISA_DMA_ADDRESS 0x04000000UL 89 90/* The maximum address for ISA DMA transfer on RUFFIAN, 91 due to an hardware SIO limitation, is 16MB. 92*/ 93#define ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 0x01000000UL 94 95/* The maximum address for ISA DMA transfer on SABLE, and some ALCORs, 96 due to an hardware SIO chip limitation, is 2GB. 97*/ 98#define ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 0x80000000UL 99#define ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 0x80000000UL 100 101/* 102 Maximum address for all the others is the complete 32-bit bus 103 address space. 104*/ 105#define ALPHA_MAX_ISA_DMA_ADDRESS 0x100000000UL 106 107#ifdef CONFIG_ALPHA_GENERIC 108# define MAX_ISA_DMA_ADDRESS (alpha_mv.max_isa_dma_address) 109#else 110# if defined(CONFIG_ALPHA_XL) 111# define MAX_ISA_DMA_ADDRESS ALPHA_XL_MAX_ISA_DMA_ADDRESS 112# elif defined(CONFIG_ALPHA_RUFFIAN) 113# define MAX_ISA_DMA_ADDRESS ALPHA_RUFFIAN_MAX_ISA_DMA_ADDRESS 114# elif defined(CONFIG_ALPHA_SABLE) 115# define MAX_ISA_DMA_ADDRESS ALPHA_SABLE_MAX_ISA_DMA_ADDRESS 116# elif defined(CONFIG_ALPHA_ALCOR) 117# define MAX_ISA_DMA_ADDRESS ALPHA_ALCOR_MAX_ISA_DMA_ADDRESS 118# else 119# define MAX_ISA_DMA_ADDRESS ALPHA_MAX_ISA_DMA_ADDRESS 120# endif 121#endif 122 123/* If we have the iommu, we don't have any address limitations on DMA. 124 Otherwise (Nautilus, RX164), we have to have 0-16 Mb DMA zone 125 like i386. */ 126#define MAX_DMA_ADDRESS (alpha_mv.mv_pci_tbi ? \ 127 ~0UL : IDENT_ADDR + 0x01000000) 128 129/* 8237 DMA controllers */ 130#define IO_DMA1_BASE 0x00 /* 8 bit slave DMA, channels 0..3 */ 131#define IO_DMA2_BASE 0xC0 /* 16 bit master DMA, ch 4(=slave input)..7 */ 132 133/* DMA controller registers */ 134#define DMA1_CMD_REG 0x08 /* command register (w) */ 135#define DMA1_STAT_REG 0x08 /* status register (r) */ 136#define DMA1_REQ_REG 0x09 /* request register (w) */ 137#define DMA1_MASK_REG 0x0A /* single-channel mask (w) */ 138#define DMA1_MODE_REG 0x0B /* mode register (w) */ 139#define DMA1_CLEAR_FF_REG 0x0C /* clear pointer flip-flop (w) */ 140#define DMA1_TEMP_REG 0x0D /* Temporary Register (r) */ 141#define DMA1_RESET_REG 0x0D /* Master Clear (w) */ 142#define DMA1_CLR_MASK_REG 0x0E /* Clear Mask */ 143#define DMA1_MASK_ALL_REG 0x0F /* all-channels mask (w) */ 144#define DMA1_EXT_MODE_REG (0x400 | DMA1_MODE_REG) 145 146#define DMA2_CMD_REG 0xD0 /* command register (w) */ 147#define DMA2_STAT_REG 0xD0 /* status register (r) */ 148#define DMA2_REQ_REG 0xD2 /* request register (w) */ 149#define DMA2_MASK_REG 0xD4 /* single-channel mask (w) */ 150#define DMA2_MODE_REG 0xD6 /* mode register (w) */ 151#define DMA2_CLEAR_FF_REG 0xD8 /* clear pointer flip-flop (w) */ 152#define DMA2_TEMP_REG 0xDA /* Temporary Register (r) */ 153#define DMA2_RESET_REG 0xDA /* Master Clear (w) */ 154#define DMA2_CLR_MASK_REG 0xDC /* Clear Mask */ 155#define DMA2_MASK_ALL_REG 0xDE /* all-channels mask (w) */ 156#define DMA2_EXT_MODE_REG (0x400 | DMA2_MODE_REG) 157 158#define DMA_ADDR_0 0x00 /* DMA address registers */ 159#define DMA_ADDR_1 0x02 160#define DMA_ADDR_2 0x04 161#define DMA_ADDR_3 0x06 162#define DMA_ADDR_4 0xC0 163#define DMA_ADDR_5 0xC4 164#define DMA_ADDR_6 0xC8 165#define DMA_ADDR_7 0xCC 166 167#define DMA_CNT_0 0x01 /* DMA count registers */ 168#define DMA_CNT_1 0x03 169#define DMA_CNT_2 0x05 170#define DMA_CNT_3 0x07 171#define DMA_CNT_4 0xC2 172#define DMA_CNT_5 0xC6 173#define DMA_CNT_6 0xCA 174#define DMA_CNT_7 0xCE 175 176#define DMA_PAGE_0 0x87 /* DMA page registers */ 177#define DMA_PAGE_1 0x83 178#define DMA_PAGE_2 0x81 179#define DMA_PAGE_3 0x82 180#define DMA_PAGE_5 0x8B 181#define DMA_PAGE_6 0x89 182#define DMA_PAGE_7 0x8A 183 184#define DMA_HIPAGE_0 (0x400 | DMA_PAGE_0) 185#define DMA_HIPAGE_1 (0x400 | DMA_PAGE_1) 186#define DMA_HIPAGE_2 (0x400 | DMA_PAGE_2) 187#define DMA_HIPAGE_3 (0x400 | DMA_PAGE_3) 188#define DMA_HIPAGE_4 (0x400 | DMA_PAGE_4) 189#define DMA_HIPAGE_5 (0x400 | DMA_PAGE_5) 190#define DMA_HIPAGE_6 (0x400 | DMA_PAGE_6) 191#define DMA_HIPAGE_7 (0x400 | DMA_PAGE_7) 192 193#define DMA_MODE_READ 0x44 /* I/O to memory, no autoinit, increment, single mode */ 194#define DMA_MODE_WRITE 0x48 /* memory to I/O, no autoinit, increment, single mode */ 195#define DMA_MODE_CASCADE 0xC0 /* pass thru DREQ->HRQ, DACK<-HLDA only */ 196 197#define DMA_AUTOINIT 0x10 198 199extern spinlock_t dma_spin_lock; 200 201static __inline__ unsigned long claim_dma_lock(void) 202{ 203 unsigned long flags; 204 spin_lock_irqsave(&dma_spin_lock, flags); 205 return flags; 206} 207 208static __inline__ void release_dma_lock(unsigned long flags) 209{ 210 spin_unlock_irqrestore(&dma_spin_lock, flags); 211} 212 213/* enable/disable a specific DMA channel */ 214static __inline__ void enable_dma(unsigned int dmanr) 215{ 216 if (dmanr<=3) 217 dma_outb(dmanr, DMA1_MASK_REG); 218 else 219 dma_outb(dmanr & 3, DMA2_MASK_REG); 220} 221 222static __inline__ void disable_dma(unsigned int dmanr) 223{ 224 if (dmanr<=3) 225 dma_outb(dmanr | 4, DMA1_MASK_REG); 226 else 227 dma_outb((dmanr & 3) | 4, DMA2_MASK_REG); 228} 229 230/* Clear the 'DMA Pointer Flip Flop'. 231 * Write 0 for LSB/MSB, 1 for MSB/LSB access. 232 * Use this once to initialize the FF to a known state. 233 * After that, keep track of it. :-) 234 * --- In order to do that, the DMA routines below should --- 235 * --- only be used while interrupts are disabled! --- 236 */ 237static __inline__ void clear_dma_ff(unsigned int dmanr) 238{ 239 if (dmanr<=3) 240 dma_outb(0, DMA1_CLEAR_FF_REG); 241 else 242 dma_outb(0, DMA2_CLEAR_FF_REG); 243} 244 245/* set mode (above) for a specific DMA channel */ 246static __inline__ void set_dma_mode(unsigned int dmanr, char mode) 247{ 248 if (dmanr<=3) 249 dma_outb(mode | dmanr, DMA1_MODE_REG); 250 else 251 dma_outb(mode | (dmanr&3), DMA2_MODE_REG); 252} 253 254/* set extended mode for a specific DMA channel */ 255static __inline__ void set_dma_ext_mode(unsigned int dmanr, char ext_mode) 256{ 257 if (dmanr<=3) 258 dma_outb(ext_mode | dmanr, DMA1_EXT_MODE_REG); 259 else 260 dma_outb(ext_mode | (dmanr&3), DMA2_EXT_MODE_REG); 261} 262 263/* Set only the page register bits of the transfer address. 264 * This is used for successive transfers when we know the contents of 265 * the lower 16 bits of the DMA current address register. 266 */ 267static __inline__ void set_dma_page(unsigned int dmanr, unsigned int pagenr) 268{ 269 switch(dmanr) { 270 case 0: 271 dma_outb(pagenr, DMA_PAGE_0); 272 dma_outb((pagenr >> 8), DMA_HIPAGE_0); 273 break; 274 case 1: 275 dma_outb(pagenr, DMA_PAGE_1); 276 dma_outb((pagenr >> 8), DMA_HIPAGE_1); 277 break; 278 case 2: 279 dma_outb(pagenr, DMA_PAGE_2); 280 dma_outb((pagenr >> 8), DMA_HIPAGE_2); 281 break; 282 case 3: 283 dma_outb(pagenr, DMA_PAGE_3); 284 dma_outb((pagenr >> 8), DMA_HIPAGE_3); 285 break; 286 case 5: 287 dma_outb(pagenr & 0xfe, DMA_PAGE_5); 288 dma_outb((pagenr >> 8), DMA_HIPAGE_5); 289 break; 290 case 6: 291 dma_outb(pagenr & 0xfe, DMA_PAGE_6); 292 dma_outb((pagenr >> 8), DMA_HIPAGE_6); 293 break; 294 case 7: 295 dma_outb(pagenr & 0xfe, DMA_PAGE_7); 296 dma_outb((pagenr >> 8), DMA_HIPAGE_7); 297 break; 298 } 299} 300 301 302/* Set transfer address & page bits for specific DMA channel. 303 * Assumes dma flipflop is clear. 304 */ 305static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a) 306{ 307 if (dmanr <= 3) { 308 dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 309 dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE ); 310 } else { 311 dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 312 dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE ); 313 } 314 set_dma_page(dmanr, a>>16); /* set hipage last to enable 32-bit mode */ 315} 316 317 318/* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for 319 * a specific DMA channel. 320 * You must ensure the parameters are valid. 321 * NOTE: from a manual: "the number of transfers is one more 322 * than the initial word count"! This is taken into account. 323 * Assumes dma flip-flop is clear. 324 * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7. 325 */ 326static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count) 327{ 328 count--; 329 if (dmanr <= 3) { 330 dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 331 dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE ); 332 } else { 333 dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 334 dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE ); 335 } 336} 337 338 339/* Get DMA residue count. After a DMA transfer, this 340 * should return zero. Reading this while a DMA transfer is 341 * still in progress will return unpredictable results. 342 * If called before the channel has been used, it may return 1. 343 * Otherwise, it returns the number of _bytes_ left to transfer. 344 * 345 * Assumes DMA flip-flop is clear. 346 */ 347static __inline__ int get_dma_residue(unsigned int dmanr) 348{ 349 unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE 350 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE; 351 352 /* using short to get 16-bit wrap around */ 353 unsigned short count; 354 355 count = 1 + dma_inb(io_port); 356 count += dma_inb(io_port) << 8; 357 358 return (dmanr<=3)? count : (count<<1); 359} 360 361 362/* These are in kernel/dma.c: */ 363extern int request_dma(unsigned int dmanr, const char * device_id); /* reserve a DMA channel */ 364extern void free_dma(unsigned int dmanr); /* release it again */ 365#define KERNEL_HAVE_CHECK_DMA 366extern int check_dma(unsigned int dmanr); 367 368/* From PCI */ 369 370#ifdef CONFIG_PCI 371extern int isa_dma_bridge_buggy; 372#else 373#define isa_dma_bridge_buggy (0) 374#endif 375 376 377#endif /* _ASM_DMA_H */