cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

process.c (10031B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/arch/alpha/kernel/process.c
      4 *
      5 *  Copyright (C) 1995  Linus Torvalds
      6 */
      7
      8/*
      9 * This file handles the architecture-dependent parts of process handling.
     10 */
     11
     12#include <linux/errno.h>
     13#include <linux/module.h>
     14#include <linux/sched.h>
     15#include <linux/sched/debug.h>
     16#include <linux/sched/task.h>
     17#include <linux/sched/task_stack.h>
     18#include <linux/kernel.h>
     19#include <linux/mm.h>
     20#include <linux/smp.h>
     21#include <linux/stddef.h>
     22#include <linux/unistd.h>
     23#include <linux/ptrace.h>
     24#include <linux/user.h>
     25#include <linux/time.h>
     26#include <linux/major.h>
     27#include <linux/stat.h>
     28#include <linux/vt.h>
     29#include <linux/mman.h>
     30#include <linux/elfcore.h>
     31#include <linux/reboot.h>
     32#include <linux/tty.h>
     33#include <linux/console.h>
     34#include <linux/slab.h>
     35#include <linux/rcupdate.h>
     36
     37#include <asm/reg.h>
     38#include <linux/uaccess.h>
     39#include <asm/io.h>
     40#include <asm/hwrpb.h>
     41#include <asm/fpu.h>
     42
     43#include "proto.h"
     44#include "pci_impl.h"
     45
     46/*
     47 * Power off function, if any
     48 */
     49void (*pm_power_off)(void) = machine_power_off;
     50EXPORT_SYMBOL(pm_power_off);
     51
     52#ifdef CONFIG_ALPHA_WTINT
     53/*
     54 * Sleep the CPU.
     55 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
     56 */
     57void arch_cpu_idle(void)
     58{
     59	wtint(0);
     60	raw_local_irq_enable();
     61}
     62
     63void arch_cpu_idle_dead(void)
     64{
     65	wtint(INT_MAX);
     66}
     67#endif /* ALPHA_WTINT */
     68
     69struct halt_info {
     70	int mode;
     71	char *restart_cmd;
     72};
     73
     74static void
     75common_shutdown_1(void *generic_ptr)
     76{
     77	struct halt_info *how = (struct halt_info *)generic_ptr;
     78	struct percpu_struct *cpup;
     79	unsigned long *pflags, flags;
     80	int cpuid = smp_processor_id();
     81
     82	/* No point in taking interrupts anymore. */
     83	local_irq_disable();
     84
     85	cpup = (struct percpu_struct *)
     86			((unsigned long)hwrpb + hwrpb->processor_offset
     87			 + hwrpb->processor_size * cpuid);
     88	pflags = &cpup->flags;
     89	flags = *pflags;
     90
     91	/* Clear reason to "default"; clear "bootstrap in progress". */
     92	flags &= ~0x00ff0001UL;
     93
     94#ifdef CONFIG_SMP
     95	/* Secondaries halt here. */
     96	if (cpuid != boot_cpuid) {
     97		flags |= 0x00040000UL; /* "remain halted" */
     98		*pflags = flags;
     99		set_cpu_present(cpuid, false);
    100		set_cpu_possible(cpuid, false);
    101		halt();
    102	}
    103#endif
    104
    105	if (how->mode == LINUX_REBOOT_CMD_RESTART) {
    106		if (!how->restart_cmd) {
    107			flags |= 0x00020000UL; /* "cold bootstrap" */
    108		} else {
    109			/* For SRM, we could probably set environment
    110			   variables to get this to work.  We'd have to
    111			   delay this until after srm_paging_stop unless
    112			   we ever got srm_fixup working.
    113
    114			   At the moment, SRM will use the last boot device,
    115			   but the file and flags will be the defaults, when
    116			   doing a "warm" bootstrap.  */
    117			flags |= 0x00030000UL; /* "warm bootstrap" */
    118		}
    119	} else {
    120		flags |= 0x00040000UL; /* "remain halted" */
    121	}
    122	*pflags = flags;
    123
    124#ifdef CONFIG_SMP
    125	/* Wait for the secondaries to halt. */
    126	set_cpu_present(boot_cpuid, false);
    127	set_cpu_possible(boot_cpuid, false);
    128	while (!cpumask_empty(cpu_present_mask))
    129		barrier();
    130#endif
    131
    132	/* If booted from SRM, reset some of the original environment. */
    133	if (alpha_using_srm) {
    134#ifdef CONFIG_DUMMY_CONSOLE
    135		/* If we've gotten here after SysRq-b, leave interrupt
    136		   context before taking over the console. */
    137		if (in_irq())
    138			irq_exit();
    139		/* This has the effect of resetting the VGA video origin.  */
    140		console_lock();
    141		do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
    142		console_unlock();
    143#endif
    144		pci_restore_srm_config();
    145		set_hae(srm_hae);
    146	}
    147
    148	if (alpha_mv.kill_arch)
    149		alpha_mv.kill_arch(how->mode);
    150
    151	if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
    152		/* Unfortunately, since MILO doesn't currently understand
    153		   the hwrpb bits above, we can't reliably halt the 
    154		   processor and keep it halted.  So just loop.  */
    155		return;
    156	}
    157
    158	if (alpha_using_srm)
    159		srm_paging_stop();
    160
    161	halt();
    162}
    163
    164static void
    165common_shutdown(int mode, char *restart_cmd)
    166{
    167	struct halt_info args;
    168	args.mode = mode;
    169	args.restart_cmd = restart_cmd;
    170	on_each_cpu(common_shutdown_1, &args, 0);
    171}
    172
    173void
    174machine_restart(char *restart_cmd)
    175{
    176	common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
    177}
    178
    179
    180void
    181machine_halt(void)
    182{
    183	common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
    184}
    185
    186
    187void
    188machine_power_off(void)
    189{
    190	common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
    191}
    192
    193
    194/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
    195   saved in the context it's used.  */
    196
    197void
    198show_regs(struct pt_regs *regs)
    199{
    200	show_regs_print_info(KERN_DEFAULT);
    201	dik_show_regs(regs, NULL);
    202}
    203
    204/*
    205 * Re-start a thread when doing execve()
    206 */
    207void
    208start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
    209{
    210	regs->pc = pc;
    211	regs->ps = 8;
    212	wrusp(sp);
    213}
    214EXPORT_SYMBOL(start_thread);
    215
    216void
    217flush_thread(void)
    218{
    219	/* Arrange for each exec'ed process to start off with a clean slate
    220	   with respect to the FPU.  This is all exceptions disabled.  */
    221	current_thread_info()->ieee_state = 0;
    222	wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
    223
    224	/* Clean slate for TLS.  */
    225	current_thread_info()->pcb.unique = 0;
    226}
    227
    228void
    229release_thread(struct task_struct *dead_task)
    230{
    231}
    232
    233/*
    234 * Copy architecture-specific thread state
    235 */
    236int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
    237{
    238	unsigned long clone_flags = args->flags;
    239	unsigned long usp = args->stack;
    240	unsigned long tls = args->tls;
    241	extern void ret_from_fork(void);
    242	extern void ret_from_kernel_thread(void);
    243
    244	struct thread_info *childti = task_thread_info(p);
    245	struct pt_regs *childregs = task_pt_regs(p);
    246	struct pt_regs *regs = current_pt_regs();
    247	struct switch_stack *childstack, *stack;
    248
    249	childstack = ((struct switch_stack *) childregs) - 1;
    250	childti->pcb.ksp = (unsigned long) childstack;
    251	childti->pcb.flags = 1;	/* set FEN, clear everything else */
    252
    253	if (unlikely(args->fn)) {
    254		/* kernel thread */
    255		memset(childstack, 0,
    256			sizeof(struct switch_stack) + sizeof(struct pt_regs));
    257		childstack->r26 = (unsigned long) ret_from_kernel_thread;
    258		childstack->r9 = (unsigned long) args->fn;
    259		childstack->r10 = (unsigned long) args->fn_arg;
    260		childregs->hae = alpha_mv.hae_cache;
    261		childti->pcb.usp = 0;
    262		return 0;
    263	}
    264	/* Note: if CLONE_SETTLS is not set, then we must inherit the
    265	   value from the parent, which will have been set by the block
    266	   copy in dup_task_struct.  This is non-intuitive, but is
    267	   required for proper operation in the case of a threaded
    268	   application calling fork.  */
    269	if (clone_flags & CLONE_SETTLS)
    270		childti->pcb.unique = tls;
    271	else
    272		regs->r20 = 0;	/* OSF/1 has some strange fork() semantics.  */
    273	childti->pcb.usp = usp ?: rdusp();
    274	*childregs = *regs;
    275	childregs->r0 = 0;
    276	childregs->r19 = 0;
    277	childregs->r20 = 1;	/* OSF/1 has some strange fork() semantics.  */
    278	stack = ((struct switch_stack *) regs) - 1;
    279	*childstack = *stack;
    280	childstack->r26 = (unsigned long) ret_from_fork;
    281	return 0;
    282}
    283
    284/*
    285 * Fill in the user structure for a ELF core dump.
    286 */
    287void
    288dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
    289{
    290	/* switch stack follows right below pt_regs: */
    291	struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
    292
    293	dest[ 0] = pt->r0;
    294	dest[ 1] = pt->r1;
    295	dest[ 2] = pt->r2;
    296	dest[ 3] = pt->r3;
    297	dest[ 4] = pt->r4;
    298	dest[ 5] = pt->r5;
    299	dest[ 6] = pt->r6;
    300	dest[ 7] = pt->r7;
    301	dest[ 8] = pt->r8;
    302	dest[ 9] = sw->r9;
    303	dest[10] = sw->r10;
    304	dest[11] = sw->r11;
    305	dest[12] = sw->r12;
    306	dest[13] = sw->r13;
    307	dest[14] = sw->r14;
    308	dest[15] = sw->r15;
    309	dest[16] = pt->r16;
    310	dest[17] = pt->r17;
    311	dest[18] = pt->r18;
    312	dest[19] = pt->r19;
    313	dest[20] = pt->r20;
    314	dest[21] = pt->r21;
    315	dest[22] = pt->r22;
    316	dest[23] = pt->r23;
    317	dest[24] = pt->r24;
    318	dest[25] = pt->r25;
    319	dest[26] = pt->r26;
    320	dest[27] = pt->r27;
    321	dest[28] = pt->r28;
    322	dest[29] = pt->gp;
    323	dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
    324	dest[31] = pt->pc;
    325
    326	/* Once upon a time this was the PS value.  Which is stupid
    327	   since that is always 8 for usermode.  Usurped for the more
    328	   useful value of the thread's UNIQUE field.  */
    329	dest[32] = ti->pcb.unique;
    330}
    331EXPORT_SYMBOL(dump_elf_thread);
    332
    333int
    334dump_elf_task(elf_greg_t *dest, struct task_struct *task)
    335{
    336	dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
    337	return 1;
    338}
    339EXPORT_SYMBOL(dump_elf_task);
    340
    341int
    342dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
    343{
    344	struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
    345	memcpy(dest, sw->fp, 32 * 8);
    346	return 1;
    347}
    348EXPORT_SYMBOL(dump_elf_task_fp);
    349
    350/*
    351 * Return saved PC of a blocked thread.  This assumes the frame
    352 * pointer is the 6th saved long on the kernel stack and that the
    353 * saved return address is the first long in the frame.  This all
    354 * holds provided the thread blocked through a call to schedule() ($15
    355 * is the frame pointer in schedule() and $15 is saved at offset 48 by
    356 * entry.S:do_switch_stack).
    357 *
    358 * Under heavy swap load I've seen this lose in an ugly way.  So do
    359 * some extra sanity checking on the ranges we expect these pointers
    360 * to be in so that we can fail gracefully.  This is just for ps after
    361 * all.  -- r~
    362 */
    363
    364static unsigned long
    365thread_saved_pc(struct task_struct *t)
    366{
    367	unsigned long base = (unsigned long)task_stack_page(t);
    368	unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
    369
    370	if (sp > base && sp+6*8 < base + 16*1024) {
    371		fp = ((unsigned long*)sp)[6];
    372		if (fp > sp && fp < base + 16*1024)
    373			return *(unsigned long *)fp;
    374	}
    375
    376	return 0;
    377}
    378
    379unsigned long
    380__get_wchan(struct task_struct *p)
    381{
    382	unsigned long schedule_frame;
    383	unsigned long pc;
    384
    385	/*
    386	 * This one depends on the frame size of schedule().  Do a
    387	 * "disass schedule" in gdb to find the frame size.  Also, the
    388	 * code assumes that sleep_on() follows immediately after
    389	 * interruptible_sleep_on() and that add_timer() follows
    390	 * immediately after interruptible_sleep().  Ugly, isn't it?
    391	 * Maybe adding a wchan field to task_struct would be better,
    392	 * after all...
    393	 */
    394
    395	pc = thread_saved_pc(p);
    396	if (in_sched_functions(pc)) {
    397		schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
    398		return ((unsigned long *)schedule_frame)[12];
    399	}
    400	return pc;
    401}