cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

time.c (12015B)


      1// SPDX-License-Identifier: GPL-2.0
      2/*
      3 *  linux/arch/alpha/kernel/time.c
      4 *
      5 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
      6 *
      7 * This file contains the clocksource time handling.
      8 * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
      9 *		"A Kernel Model for Precision Timekeeping" by Dave Mills
     10 * 1997-01-09    Adrian Sun
     11 *      use interval timer if CONFIG_RTC=y
     12 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
     13 *      fixed tick loss calculation in timer_interrupt
     14 *      (round system clock to nearest tick instead of truncating)
     15 *      fixed algorithm in time_init for getting time from CMOS clock
     16 * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
     17 *	fixed algorithm in do_gettimeofday() for calculating the precise time
     18 *	from processor cycle counter (now taking lost_ticks into account)
     19 * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
     20 *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
     21 */
     22#include <linux/errno.h>
     23#include <linux/module.h>
     24#include <linux/sched.h>
     25#include <linux/kernel.h>
     26#include <linux/param.h>
     27#include <linux/string.h>
     28#include <linux/mm.h>
     29#include <linux/delay.h>
     30#include <linux/ioport.h>
     31#include <linux/irq.h>
     32#include <linux/interrupt.h>
     33#include <linux/init.h>
     34#include <linux/bcd.h>
     35#include <linux/profile.h>
     36#include <linux/irq_work.h>
     37
     38#include <linux/uaccess.h>
     39#include <asm/io.h>
     40#include <asm/hwrpb.h>
     41
     42#include <linux/mc146818rtc.h>
     43#include <linux/time.h>
     44#include <linux/timex.h>
     45#include <linux/clocksource.h>
     46#include <linux/clockchips.h>
     47
     48#include "proto.h"
     49#include "irq_impl.h"
     50
     51DEFINE_SPINLOCK(rtc_lock);
     52EXPORT_SYMBOL(rtc_lock);
     53
     54unsigned long est_cycle_freq;
     55
     56#ifdef CONFIG_IRQ_WORK
     57
     58DEFINE_PER_CPU(u8, irq_work_pending);
     59
     60#define set_irq_work_pending_flag()  __this_cpu_write(irq_work_pending, 1)
     61#define test_irq_work_pending()      __this_cpu_read(irq_work_pending)
     62#define clear_irq_work_pending()     __this_cpu_write(irq_work_pending, 0)
     63
     64void arch_irq_work_raise(void)
     65{
     66	set_irq_work_pending_flag();
     67}
     68
     69#else  /* CONFIG_IRQ_WORK */
     70
     71#define test_irq_work_pending()      0
     72#define clear_irq_work_pending()
     73
     74#endif /* CONFIG_IRQ_WORK */
     75
     76
     77static inline __u32 rpcc(void)
     78{
     79	return __builtin_alpha_rpcc();
     80}
     81
     82
     83
     84/*
     85 * The RTC as a clock_event_device primitive.
     86 */
     87
     88static DEFINE_PER_CPU(struct clock_event_device, cpu_ce);
     89
     90irqreturn_t
     91rtc_timer_interrupt(int irq, void *dev)
     92{
     93	int cpu = smp_processor_id();
     94	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
     95
     96	/* Don't run the hook for UNUSED or SHUTDOWN.  */
     97	if (likely(clockevent_state_periodic(ce)))
     98		ce->event_handler(ce);
     99
    100	if (test_irq_work_pending()) {
    101		clear_irq_work_pending();
    102		irq_work_run();
    103	}
    104
    105	return IRQ_HANDLED;
    106}
    107
    108static int
    109rtc_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
    110{
    111	/* This hook is for oneshot mode, which we don't support.  */
    112	return -EINVAL;
    113}
    114
    115static void __init
    116init_rtc_clockevent(void)
    117{
    118	int cpu = smp_processor_id();
    119	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
    120
    121	*ce = (struct clock_event_device){
    122		.name = "rtc",
    123		.features = CLOCK_EVT_FEAT_PERIODIC,
    124		.rating = 100,
    125		.cpumask = cpumask_of(cpu),
    126		.set_next_event = rtc_ce_set_next_event,
    127	};
    128
    129	clockevents_config_and_register(ce, CONFIG_HZ, 0, 0);
    130}
    131
    132
    133/*
    134 * The QEMU clock as a clocksource primitive.
    135 */
    136
    137static u64
    138qemu_cs_read(struct clocksource *cs)
    139{
    140	return qemu_get_vmtime();
    141}
    142
    143static struct clocksource qemu_cs = {
    144	.name                   = "qemu",
    145	.rating                 = 400,
    146	.read                   = qemu_cs_read,
    147	.mask                   = CLOCKSOURCE_MASK(64),
    148	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS,
    149	.max_idle_ns		= LONG_MAX
    150};
    151
    152
    153/*
    154 * The QEMU alarm as a clock_event_device primitive.
    155 */
    156
    157static int qemu_ce_shutdown(struct clock_event_device *ce)
    158{
    159	/* The mode member of CE is updated for us in generic code.
    160	   Just make sure that the event is disabled.  */
    161	qemu_set_alarm_abs(0);
    162	return 0;
    163}
    164
    165static int
    166qemu_ce_set_next_event(unsigned long evt, struct clock_event_device *ce)
    167{
    168	qemu_set_alarm_rel(evt);
    169	return 0;
    170}
    171
    172static irqreturn_t
    173qemu_timer_interrupt(int irq, void *dev)
    174{
    175	int cpu = smp_processor_id();
    176	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
    177
    178	ce->event_handler(ce);
    179	return IRQ_HANDLED;
    180}
    181
    182static void __init
    183init_qemu_clockevent(void)
    184{
    185	int cpu = smp_processor_id();
    186	struct clock_event_device *ce = &per_cpu(cpu_ce, cpu);
    187
    188	*ce = (struct clock_event_device){
    189		.name = "qemu",
    190		.features = CLOCK_EVT_FEAT_ONESHOT,
    191		.rating = 400,
    192		.cpumask = cpumask_of(cpu),
    193		.set_state_shutdown = qemu_ce_shutdown,
    194		.set_state_oneshot = qemu_ce_shutdown,
    195		.tick_resume = qemu_ce_shutdown,
    196		.set_next_event = qemu_ce_set_next_event,
    197	};
    198
    199	clockevents_config_and_register(ce, NSEC_PER_SEC, 1000, LONG_MAX);
    200}
    201
    202
    203void __init
    204common_init_rtc(void)
    205{
    206	unsigned char x, sel = 0;
    207
    208	/* Reset periodic interrupt frequency.  */
    209#if CONFIG_HZ == 1024 || CONFIG_HZ == 1200
    210 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
    211	/* Test includes known working values on various platforms
    212	   where 0x26 is wrong; we refuse to change those. */
    213 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
    214		sel = RTC_REF_CLCK_32KHZ + 6;
    215	}
    216#elif CONFIG_HZ == 256 || CONFIG_HZ == 128 || CONFIG_HZ == 64 || CONFIG_HZ == 32
    217	sel = RTC_REF_CLCK_32KHZ + __builtin_ffs(32768 / CONFIG_HZ);
    218#else
    219# error "Unknown HZ from arch/alpha/Kconfig"
    220#endif
    221	if (sel) {
    222		printk(KERN_INFO "Setting RTC_FREQ to %d Hz (%x)\n",
    223		       CONFIG_HZ, sel);
    224		CMOS_WRITE(sel, RTC_FREQ_SELECT);
    225 	}
    226
    227	/* Turn on periodic interrupts.  */
    228	x = CMOS_READ(RTC_CONTROL);
    229	if (!(x & RTC_PIE)) {
    230		printk("Turning on RTC interrupts.\n");
    231		x |= RTC_PIE;
    232		x &= ~(RTC_AIE | RTC_UIE);
    233		CMOS_WRITE(x, RTC_CONTROL);
    234	}
    235	(void) CMOS_READ(RTC_INTR_FLAGS);
    236
    237	outb(0x36, 0x43);	/* pit counter 0: system timer */
    238	outb(0x00, 0x40);
    239	outb(0x00, 0x40);
    240
    241	outb(0xb6, 0x43);	/* pit counter 2: speaker */
    242	outb(0x31, 0x42);
    243	outb(0x13, 0x42);
    244
    245	init_rtc_irq(NULL);
    246}
    247
    248
    249#ifndef CONFIG_ALPHA_WTINT
    250/*
    251 * The RPCC as a clocksource primitive.
    252 *
    253 * While we have free-running timecounters running on all CPUs, and we make
    254 * a half-hearted attempt in init_rtc_rpcc_info to sync the timecounter
    255 * with the wall clock, that initialization isn't kept up-to-date across
    256 * different time counters in SMP mode.  Therefore we can only use this
    257 * method when there's only one CPU enabled.
    258 *
    259 * When using the WTINT PALcall, the RPCC may shift to a lower frequency,
    260 * or stop altogether, while waiting for the interrupt.  Therefore we cannot
    261 * use this method when WTINT is in use.
    262 */
    263
    264static u64 read_rpcc(struct clocksource *cs)
    265{
    266	return rpcc();
    267}
    268
    269static struct clocksource clocksource_rpcc = {
    270	.name                   = "rpcc",
    271	.rating                 = 300,
    272	.read                   = read_rpcc,
    273	.mask                   = CLOCKSOURCE_MASK(32),
    274	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS
    275};
    276#endif /* ALPHA_WTINT */
    277
    278
    279/* Validate a computed cycle counter result against the known bounds for
    280   the given processor core.  There's too much brokenness in the way of
    281   timing hardware for any one method to work everywhere.  :-(
    282
    283   Return 0 if the result cannot be trusted, otherwise return the argument.  */
    284
    285static unsigned long __init
    286validate_cc_value(unsigned long cc)
    287{
    288	static struct bounds {
    289		unsigned int min, max;
    290	} cpu_hz[] __initdata = {
    291		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
    292		[EV4_CPU]    = {  100000000,  300000000 },
    293		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
    294		[EV45_CPU]   = {  200000000,  300000000 },
    295		[EV5_CPU]    = {  250000000,  433000000 },
    296		[EV56_CPU]   = {  333000000,  667000000 },
    297		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
    298		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
    299		[EV6_CPU]    = {  466000000,  600000000 },
    300		[EV67_CPU]   = {  600000000,  750000000 },
    301		[EV68AL_CPU] = {  750000000,  940000000 },
    302		[EV68CB_CPU] = { 1000000000, 1333333333 },
    303		/* None of the following are shipping as of 2001-11-01.  */
    304		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
    305		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
    306		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
    307		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
    308	};
    309
    310	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
    311	const unsigned int deviation = 10000000;
    312
    313	struct percpu_struct *cpu;
    314	unsigned int index;
    315
    316	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
    317	index = cpu->type & 0xffffffff;
    318
    319	/* If index out of bounds, no way to validate.  */
    320	if (index >= ARRAY_SIZE(cpu_hz))
    321		return cc;
    322
    323	/* If index contains no data, no way to validate.  */
    324	if (cpu_hz[index].max == 0)
    325		return cc;
    326
    327	if (cc < cpu_hz[index].min - deviation
    328	    || cc > cpu_hz[index].max + deviation)
    329		return 0;
    330
    331	return cc;
    332}
    333
    334
    335/*
    336 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
    337 * arch/i386/time.c.
    338 */
    339
    340#define CALIBRATE_LATCH	0xffff
    341#define TIMEOUT_COUNT	0x100000
    342
    343static unsigned long __init
    344calibrate_cc_with_pit(void)
    345{
    346	int cc, count = 0;
    347
    348	/* Set the Gate high, disable speaker */
    349	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
    350
    351	/*
    352	 * Now let's take care of CTC channel 2
    353	 *
    354	 * Set the Gate high, program CTC channel 2 for mode 0,
    355	 * (interrupt on terminal count mode), binary count,
    356	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
    357	 */
    358	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
    359	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
    360	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
    361
    362	cc = rpcc();
    363	do {
    364		count++;
    365	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
    366	cc = rpcc() - cc;
    367
    368	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
    369	if (count <= 1 || count == TIMEOUT_COUNT)
    370		return 0;
    371
    372	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
    373}
    374
    375/* The Linux interpretation of the CMOS clock register contents:
    376   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
    377   RTC registers show the second which has precisely just started.
    378   Let's hope other operating systems interpret the RTC the same way.  */
    379
    380static unsigned long __init
    381rpcc_after_update_in_progress(void)
    382{
    383	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
    384	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
    385
    386	return rpcc();
    387}
    388
    389void __init
    390time_init(void)
    391{
    392	unsigned int cc1, cc2;
    393	unsigned long cycle_freq, tolerance;
    394	long diff;
    395
    396	if (alpha_using_qemu) {
    397		clocksource_register_hz(&qemu_cs, NSEC_PER_SEC);
    398		init_qemu_clockevent();
    399		init_rtc_irq(qemu_timer_interrupt);
    400		return;
    401	}
    402
    403	/* Calibrate CPU clock -- attempt #1.  */
    404	if (!est_cycle_freq)
    405		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
    406
    407	cc1 = rpcc();
    408
    409	/* Calibrate CPU clock -- attempt #2.  */
    410	if (!est_cycle_freq) {
    411		cc1 = rpcc_after_update_in_progress();
    412		cc2 = rpcc_after_update_in_progress();
    413		est_cycle_freq = validate_cc_value(cc2 - cc1);
    414		cc1 = cc2;
    415	}
    416
    417	cycle_freq = hwrpb->cycle_freq;
    418	if (est_cycle_freq) {
    419		/* If the given value is within 250 PPM of what we calculated,
    420		   accept it.  Otherwise, use what we found.  */
    421		tolerance = cycle_freq / 4000;
    422		diff = cycle_freq - est_cycle_freq;
    423		if (diff < 0)
    424			diff = -diff;
    425		if ((unsigned long)diff > tolerance) {
    426			cycle_freq = est_cycle_freq;
    427			printk("HWRPB cycle frequency bogus.  "
    428			       "Estimated %lu Hz\n", cycle_freq);
    429		} else {
    430			est_cycle_freq = 0;
    431		}
    432	} else if (! validate_cc_value (cycle_freq)) {
    433		printk("HWRPB cycle frequency bogus, "
    434		       "and unable to estimate a proper value!\n");
    435	}
    436
    437	/* See above for restrictions on using clocksource_rpcc.  */
    438#ifndef CONFIG_ALPHA_WTINT
    439	if (hwrpb->nr_processors == 1)
    440		clocksource_register_hz(&clocksource_rpcc, cycle_freq);
    441#endif
    442
    443	/* Startup the timer source. */
    444	alpha_mv.init_rtc();
    445	init_rtc_clockevent();
    446}
    447
    448/* Initialize the clock_event_device for secondary cpus.  */
    449#ifdef CONFIG_SMP
    450void __init
    451init_clockevent(void)
    452{
    453	if (alpha_using_qemu)
    454		init_qemu_clockevent();
    455	else
    456		init_rtc_clockevent();
    457}
    458#endif