cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ev6-clear_user.S (7189B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * arch/alpha/lib/ev6-clear_user.S
      4 * 21264 version contributed by Rick Gorton <rick.gorton@alpha-processor.com>
      5 *
      6 * Zero user space, handling exceptions as we go.
      7 *
      8 * We have to make sure that $0 is always up-to-date and contains the
      9 * right "bytes left to zero" value (and that it is updated only _after_
     10 * a successful copy).  There is also some rather minor exception setup
     11 * stuff.
     12 *
     13 * Much of the information about 21264 scheduling/coding comes from:
     14 *	Compiler Writer's Guide for the Alpha 21264
     15 *	abbreviated as 'CWG' in other comments here
     16 *	ftp.digital.com/pub/Digital/info/semiconductor/literature/dsc-library.html
     17 * Scheduling notation:
     18 *	E	- either cluster
     19 *	U	- upper subcluster; U0 - subcluster U0; U1 - subcluster U1
     20 *	L	- lower subcluster; L0 - subcluster L0; L1 - subcluster L1
     21 * Try not to change the actual algorithm if possible for consistency.
     22 * Determining actual stalls (other than slotting) doesn't appear to be easy to do.
     23 * From perusing the source code context where this routine is called, it is
     24 * a fair assumption that significant fractions of entire pages are zeroed, so
     25 * it's going to be worth the effort to hand-unroll a big loop, and use wh64.
     26 * ASSUMPTION:
     27 *	The believed purpose of only updating $0 after a store is that a signal
     28 *	may come along during the execution of this chunk of code, and we don't
     29 *	want to leave a hole (and we also want to avoid repeating lots of work)
     30 */
     31
     32#include <asm/export.h>
     33/* Allow an exception for an insn; exit if we get one.  */
     34#define EX(x,y...)			\
     35	99: x,##y;			\
     36	.section __ex_table,"a";	\
     37	.long 99b - .;			\
     38	lda $31, $exception-99b($31); 	\
     39	.previous
     40
     41	.set noat
     42	.set noreorder
     43	.align 4
     44
     45	.globl __clear_user
     46	.ent __clear_user
     47	.frame	$30, 0, $26
     48	.prologue 0
     49
     50				# Pipeline info : Slotting & Comments
     51__clear_user:
     52	and	$17, $17, $0
     53	and	$16, 7, $4	# .. E  .. ..	: find dest head misalignment
     54	beq	$0, $zerolength # U  .. .. ..	:  U L U L
     55
     56	addq	$0, $4, $1	# .. .. .. E	: bias counter
     57	and	$1, 7, $2	# .. .. E  ..	: number of misaligned bytes in tail
     58# Note - we never actually use $2, so this is a moot computation
     59# and we can rewrite this later...
     60	srl	$1, 3, $1	# .. E  .. ..	: number of quadwords to clear
     61	beq	$4, $headalign	# U  .. .. ..	: U L U L
     62
     63/*
     64 * Head is not aligned.  Write (8 - $4) bytes to head of destination
     65 * This means $16 is known to be misaligned
     66 */
     67	EX( ldq_u $5, 0($16) )	# .. .. .. L	: load dst word to mask back in
     68	beq	$1, $onebyte	# .. .. U  ..	: sub-word store?
     69	mskql	$5, $16, $5	# .. U  .. ..	: take care of misaligned head
     70	addq	$16, 8, $16	# E  .. .. .. 	: L U U L
     71
     72	EX( stq_u $5, -8($16) )	# .. .. .. L	:
     73	subq	$1, 1, $1	# .. .. E  ..	:
     74	addq	$0, $4, $0	# .. E  .. ..	: bytes left -= 8 - misalignment
     75	subq	$0, 8, $0	# E  .. .. ..	: U L U L
     76
     77	.align	4
     78/*
     79 * (The .align directive ought to be a moot point)
     80 * values upon initial entry to the loop
     81 * $1 is number of quadwords to clear (zero is a valid value)
     82 * $2 is number of trailing bytes (0..7) ($2 never used...)
     83 * $16 is known to be aligned 0mod8
     84 */
     85$headalign:
     86	subq	$1, 16, $4	# .. .. .. E	: If < 16, we can not use the huge loop
     87	and	$16, 0x3f, $2	# .. .. E  ..	: Forward work for huge loop
     88	subq	$2, 0x40, $3	# .. E  .. ..	: bias counter (huge loop)
     89	blt	$4, $trailquad	# U  .. .. ..	: U L U L
     90
     91/*
     92 * We know that we're going to do at least 16 quads, which means we are
     93 * going to be able to use the large block clear loop at least once.
     94 * Figure out how many quads we need to clear before we are 0mod64 aligned
     95 * so we can use the wh64 instruction.
     96 */
     97
     98	nop			# .. .. .. E
     99	nop			# .. .. E  ..
    100	nop			# .. E  .. ..
    101	beq	$3, $bigalign	# U  .. .. ..	: U L U L : Aligned 0mod64
    102
    103$alignmod64:
    104	EX( stq_u $31, 0($16) )	# .. .. .. L
    105	addq	$3, 8, $3	# .. .. E  ..
    106	subq	$0, 8, $0	# .. E  .. ..
    107	nop			# E  .. .. ..	: U L U L
    108
    109	nop			# .. .. .. E
    110	subq	$1, 1, $1	# .. .. E  ..
    111	addq	$16, 8, $16	# .. E  .. ..
    112	blt	$3, $alignmod64	# U  .. .. ..	: U L U L
    113
    114$bigalign:
    115/*
    116 * $0 is the number of bytes left
    117 * $1 is the number of quads left
    118 * $16 is aligned 0mod64
    119 * we know that we'll be taking a minimum of one trip through
    120 * CWG Section 3.7.6: do not expect a sustained store rate of > 1/cycle
    121 * We are _not_ going to update $0 after every single store.  That
    122 * would be silly, because there will be cross-cluster dependencies
    123 * no matter how the code is scheduled.  By doing it in slightly
    124 * staggered fashion, we can still do this loop in 5 fetches
    125 * The worse case will be doing two extra quads in some future execution,
    126 * in the event of an interrupted clear.
    127 * Assumes the wh64 needs to be for 2 trips through the loop in the future
    128 * The wh64 is issued on for the starting destination address for trip +2
    129 * through the loop, and if there are less than two trips left, the target
    130 * address will be for the current trip.
    131 */
    132	nop			# E :
    133	nop			# E :
    134	nop			# E :
    135	bis	$16,$16,$3	# E : U L U L : Initial wh64 address is dest
    136	/* This might actually help for the current trip... */
    137
    138$do_wh64:
    139	wh64	($3)		# .. .. .. L1	: memory subsystem hint
    140	subq	$1, 16, $4	# .. .. E  ..	: Forward calculation - repeat the loop?
    141	EX( stq_u $31, 0($16) )	# .. L  .. ..
    142	subq	$0, 8, $0	# E  .. .. ..	: U L U L
    143
    144	addq	$16, 128, $3	# E : Target address of wh64
    145	EX( stq_u $31, 8($16) )	# L :
    146	EX( stq_u $31, 16($16) )	# L :
    147	subq	$0, 16, $0	# E : U L L U
    148
    149	nop			# E :
    150	EX( stq_u $31, 24($16) )	# L :
    151	EX( stq_u $31, 32($16) )	# L :
    152	subq	$0, 168, $5	# E : U L L U : two trips through the loop left?
    153	/* 168 = 192 - 24, since we've already completed some stores */
    154
    155	subq	$0, 16, $0	# E :
    156	EX( stq_u $31, 40($16) )	# L :
    157	EX( stq_u $31, 48($16) )	# L :
    158	cmovlt	$5, $16, $3	# E : U L L U : Latency 2, extra mapping cycle
    159
    160	subq	$1, 8, $1	# E :
    161	subq	$0, 16, $0	# E :
    162	EX( stq_u $31, 56($16) )	# L :
    163	nop			# E : U L U L
    164
    165	nop			# E :
    166	subq	$0, 8, $0	# E :
    167	addq	$16, 64, $16	# E :
    168	bge	$4, $do_wh64	# U : U L U L
    169
    170$trailquad:
    171	# zero to 16 quadwords left to store, plus any trailing bytes
    172	# $1 is the number of quadwords left to go.
    173	# 
    174	nop			# .. .. .. E
    175	nop			# .. .. E  ..
    176	nop			# .. E  .. ..
    177	beq	$1, $trailbytes	# U  .. .. ..	: U L U L : Only 0..7 bytes to go
    178
    179$onequad:
    180	EX( stq_u $31, 0($16) )	# .. .. .. L
    181	subq	$1, 1, $1	# .. .. E  ..
    182	subq	$0, 8, $0	# .. E  .. ..
    183	nop			# E  .. .. ..	: U L U L
    184
    185	nop			# .. .. .. E
    186	nop			# .. .. E  ..
    187	addq	$16, 8, $16	# .. E  .. ..
    188	bgt	$1, $onequad	# U  .. .. ..	: U L U L
    189
    190	# We have an unknown number of bytes left to go.
    191$trailbytes:
    192	nop			# .. .. .. E
    193	nop			# .. .. E  ..
    194	nop			# .. E  .. ..
    195	beq	$0, $zerolength	# U  .. .. ..	: U L U L
    196
    197	# $0 contains the number of bytes left to copy (0..31)
    198	# so we will use $0 as the loop counter
    199	# We know for a fact that $0 > 0 zero due to previous context
    200$onebyte:
    201	EX( stb $31, 0($16) )	# .. .. .. L
    202	subq	$0, 1, $0	# .. .. E  ..	:
    203	addq	$16, 1, $16	# .. E  .. ..	:
    204	bgt	$0, $onebyte	# U  .. .. ..	: U L U L
    205
    206$zerolength:
    207$exception:			# Destination for exception recovery(?)
    208	nop			# .. .. .. E	:
    209	nop			# .. .. E  ..	:
    210	nop			# .. E  .. ..	:
    211	ret	$31, ($26), 1	# L0 .. .. ..	: L U L U
    212	.end __clear_user
    213	EXPORT_SYMBOL(__clear_user)