cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

disasm.c (14691B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * several functions that help interpret ARC instructions
      4 * used for unaligned accesses, kprobes and kgdb
      5 *
      6 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
      7 */
      8
      9#include <linux/types.h>
     10#include <linux/kprobes.h>
     11#include <linux/slab.h>
     12#include <linux/uaccess.h>
     13#include <asm/disasm.h>
     14
     15#if defined(CONFIG_KGDB) || defined(CONFIG_ARC_EMUL_UNALIGNED) || \
     16	defined(CONFIG_KPROBES)
     17
     18/* disasm_instr: Analyses instruction at addr, stores
     19 * findings in *state
     20 */
     21void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state,
     22	int userspace, struct pt_regs *regs, struct callee_regs *cregs)
     23{
     24	int fieldA = 0;
     25	int fieldC = 0, fieldCisReg = 0;
     26	uint16_t word1 = 0, word0 = 0;
     27	int subopcode, is_linked, op_format;
     28	uint16_t *ins_ptr;
     29	uint16_t ins_buf[4];
     30	int bytes_not_copied = 0;
     31
     32	memset(state, 0, sizeof(struct disasm_state));
     33
     34	/* This fetches the upper part of the 32 bit instruction
     35	 * in both the cases of Little Endian or Big Endian configurations. */
     36	if (userspace) {
     37		bytes_not_copied = copy_from_user(ins_buf,
     38						(const void __user *) addr, 8);
     39		if (bytes_not_copied > 6)
     40			goto fault;
     41		ins_ptr = ins_buf;
     42	} else {
     43		ins_ptr = (uint16_t *) addr;
     44	}
     45
     46	word1 = *((uint16_t *)addr);
     47
     48	state->major_opcode = (word1 >> 11) & 0x1F;
     49
     50	/* Check if the instruction is 32 bit or 16 bit instruction */
     51	if (state->major_opcode < 0x0B) {
     52		if (bytes_not_copied > 4)
     53			goto fault;
     54		state->instr_len = 4;
     55		word0 = *((uint16_t *)(addr+2));
     56		state->words[0] = (word1 << 16) | word0;
     57	} else {
     58		state->instr_len = 2;
     59		state->words[0] = word1;
     60	}
     61
     62	/* Read the second word in case of limm */
     63	word1 = *((uint16_t *)(addr + state->instr_len));
     64	word0 = *((uint16_t *)(addr + state->instr_len + 2));
     65	state->words[1] = (word1 << 16) | word0;
     66
     67	switch (state->major_opcode) {
     68	case op_Bcc:
     69		state->is_branch = 1;
     70
     71		/* unconditional branch s25, conditional branch s21 */
     72		fieldA = (IS_BIT(state->words[0], 16)) ?
     73			FIELD_s25(state->words[0]) :
     74			FIELD_s21(state->words[0]);
     75
     76		state->delay_slot = IS_BIT(state->words[0], 5);
     77		state->target = fieldA + (addr & ~0x3);
     78		state->flow = direct_jump;
     79		break;
     80
     81	case op_BLcc:
     82		if (IS_BIT(state->words[0], 16)) {
     83			/* Branch and Link*/
     84			/* unconditional branch s25, conditional branch s21 */
     85			fieldA = (IS_BIT(state->words[0], 17)) ?
     86				(FIELD_s25(state->words[0]) & ~0x3) :
     87				FIELD_s21(state->words[0]);
     88
     89			state->flow = direct_call;
     90		} else {
     91			/*Branch On Compare */
     92			fieldA = FIELD_s9(state->words[0]) & ~0x3;
     93			state->flow = direct_jump;
     94		}
     95
     96		state->delay_slot = IS_BIT(state->words[0], 5);
     97		state->target = fieldA + (addr & ~0x3);
     98		state->is_branch = 1;
     99		break;
    100
    101	case op_LD:  /* LD<zz> a,[b,s9] */
    102		state->write = 0;
    103		state->di = BITS(state->words[0], 11, 11);
    104		if (state->di)
    105			break;
    106		state->x = BITS(state->words[0], 6, 6);
    107		state->zz = BITS(state->words[0], 7, 8);
    108		state->aa = BITS(state->words[0], 9, 10);
    109		state->wb_reg = FIELD_B(state->words[0]);
    110		if (state->wb_reg == REG_LIMM) {
    111			state->instr_len += 4;
    112			state->aa = 0;
    113			state->src1 = state->words[1];
    114		} else {
    115			state->src1 = get_reg(state->wb_reg, regs, cregs);
    116		}
    117		state->src2 = FIELD_s9(state->words[0]);
    118		state->dest = FIELD_A(state->words[0]);
    119		state->pref = (state->dest == REG_LIMM);
    120		break;
    121
    122	case op_ST:
    123		state->write = 1;
    124		state->di = BITS(state->words[0], 5, 5);
    125		if (state->di)
    126			break;
    127		state->aa = BITS(state->words[0], 3, 4);
    128		state->zz = BITS(state->words[0], 1, 2);
    129		state->src1 = FIELD_C(state->words[0]);
    130		if (state->src1 == REG_LIMM) {
    131			state->instr_len += 4;
    132			state->src1 = state->words[1];
    133		} else {
    134			state->src1 = get_reg(state->src1, regs, cregs);
    135		}
    136		state->wb_reg = FIELD_B(state->words[0]);
    137		if (state->wb_reg == REG_LIMM) {
    138			state->aa = 0;
    139			state->instr_len += 4;
    140			state->src2 = state->words[1];
    141		} else {
    142			state->src2 = get_reg(state->wb_reg, regs, cregs);
    143		}
    144		state->src3 = FIELD_s9(state->words[0]);
    145		break;
    146
    147	case op_MAJOR_4:
    148		subopcode = MINOR_OPCODE(state->words[0]);
    149		switch (subopcode) {
    150		case 32:	/* Jcc */
    151		case 33:	/* Jcc.D */
    152		case 34:	/* JLcc */
    153		case 35:	/* JLcc.D */
    154			is_linked = 0;
    155
    156			if (subopcode == 33 || subopcode == 35)
    157				state->delay_slot = 1;
    158
    159			if (subopcode == 34 || subopcode == 35)
    160				is_linked = 1;
    161
    162			fieldCisReg = 0;
    163			op_format = BITS(state->words[0], 22, 23);
    164			if (op_format == 0 || ((op_format == 3) &&
    165				(!IS_BIT(state->words[0], 5)))) {
    166				fieldC = FIELD_C(state->words[0]);
    167
    168				if (fieldC == REG_LIMM) {
    169					fieldC = state->words[1];
    170					state->instr_len += 4;
    171				} else {
    172					fieldCisReg = 1;
    173				}
    174			} else if (op_format == 1 || ((op_format == 3)
    175				&& (IS_BIT(state->words[0], 5)))) {
    176				fieldC = FIELD_C(state->words[0]);
    177			} else  {
    178				/* op_format == 2 */
    179				fieldC = FIELD_s12(state->words[0]);
    180			}
    181
    182			if (!fieldCisReg) {
    183				state->target = fieldC;
    184				state->flow = is_linked ?
    185					direct_call : direct_jump;
    186			} else {
    187				state->target = get_reg(fieldC, regs, cregs);
    188				state->flow = is_linked ?
    189					indirect_call : indirect_jump;
    190			}
    191			state->is_branch = 1;
    192			break;
    193
    194		case 40:	/* LPcc */
    195			if (BITS(state->words[0], 22, 23) == 3) {
    196				/* Conditional LPcc u7 */
    197				fieldC = FIELD_C(state->words[0]);
    198
    199				fieldC = fieldC << 1;
    200				fieldC += (addr & ~0x03);
    201				state->is_branch = 1;
    202				state->flow = direct_jump;
    203				state->target = fieldC;
    204			}
    205			/* For Unconditional lp, next pc is the fall through
    206			 * which is updated */
    207			break;
    208
    209		case 48 ... 55:	/* LD a,[b,c] */
    210			state->di = BITS(state->words[0], 15, 15);
    211			if (state->di)
    212				break;
    213			state->x = BITS(state->words[0], 16, 16);
    214			state->zz = BITS(state->words[0], 17, 18);
    215			state->aa = BITS(state->words[0], 22, 23);
    216			state->wb_reg = FIELD_B(state->words[0]);
    217			if (state->wb_reg == REG_LIMM) {
    218				state->instr_len += 4;
    219				state->src1 = state->words[1];
    220			} else {
    221				state->src1 = get_reg(state->wb_reg, regs,
    222						cregs);
    223			}
    224			state->src2 = FIELD_C(state->words[0]);
    225			if (state->src2 == REG_LIMM) {
    226				state->instr_len += 4;
    227				state->src2 = state->words[1];
    228			} else {
    229				state->src2 = get_reg(state->src2, regs,
    230					cregs);
    231			}
    232			state->dest = FIELD_A(state->words[0]);
    233			if (state->dest == REG_LIMM)
    234				state->pref = 1;
    235			break;
    236
    237		case 10:	/* MOV */
    238			/* still need to check for limm to extract instr len */
    239			/* MOV is special case because it only takes 2 args */
    240			switch (BITS(state->words[0], 22, 23)) {
    241			case 0: /* OP a,b,c */
    242				if (FIELD_C(state->words[0]) == REG_LIMM)
    243					state->instr_len += 4;
    244				break;
    245			case 1: /* OP a,b,u6 */
    246				break;
    247			case 2: /* OP b,b,s12 */
    248				break;
    249			case 3: /* OP.cc b,b,c/u6 */
    250				if ((!IS_BIT(state->words[0], 5)) &&
    251				    (FIELD_C(state->words[0]) == REG_LIMM))
    252					state->instr_len += 4;
    253				break;
    254			}
    255			break;
    256
    257
    258		default:
    259			/* Not a Load, Jump or Loop instruction */
    260			/* still need to check for limm to extract instr len */
    261			switch (BITS(state->words[0], 22, 23)) {
    262			case 0: /* OP a,b,c */
    263				if ((FIELD_B(state->words[0]) == REG_LIMM) ||
    264				    (FIELD_C(state->words[0]) == REG_LIMM))
    265					state->instr_len += 4;
    266				break;
    267			case 1: /* OP a,b,u6 */
    268				break;
    269			case 2: /* OP b,b,s12 */
    270				break;
    271			case 3: /* OP.cc b,b,c/u6 */
    272				if ((!IS_BIT(state->words[0], 5)) &&
    273				   ((FIELD_B(state->words[0]) == REG_LIMM) ||
    274				    (FIELD_C(state->words[0]) == REG_LIMM)))
    275					state->instr_len += 4;
    276				break;
    277			}
    278			break;
    279		}
    280		break;
    281
    282	/* 16 Bit Instructions */
    283	case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */
    284		state->zz = BITS(state->words[0], 3, 4);
    285		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
    286		state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
    287		state->dest = FIELD_S_A(state->words[0]);
    288		break;
    289
    290	case op_ADD_MOV_CMP:
    291		/* check for limm, ignore mov_s h,b (== mov_s 0,b) */
    292		if ((BITS(state->words[0], 3, 4) < 3) &&
    293		    (FIELD_S_H(state->words[0]) == REG_LIMM))
    294			state->instr_len += 4;
    295		break;
    296
    297	case op_S:
    298		subopcode = BITS(state->words[0], 5, 7);
    299		switch (subopcode) {
    300		case 0:	/* j_s */
    301		case 1:	/* j_s.d */
    302		case 2:	/* jl_s */
    303		case 3:	/* jl_s.d */
    304			state->target = get_reg(FIELD_S_B(state->words[0]),
    305						regs, cregs);
    306			state->delay_slot = subopcode & 1;
    307			state->flow = (subopcode >= 2) ?
    308				direct_call : indirect_jump;
    309			break;
    310		case 7:
    311			switch (BITS(state->words[0], 8, 10)) {
    312			case 4:	/* jeq_s [blink] */
    313			case 5:	/* jne_s [blink] */
    314			case 6:	/* j_s [blink] */
    315			case 7:	/* j_s.d [blink] */
    316				state->delay_slot = (subopcode == 7);
    317				state->flow = indirect_jump;
    318				state->target = get_reg(31, regs, cregs);
    319			default:
    320				break;
    321			}
    322		default:
    323			break;
    324		}
    325		break;
    326
    327	case op_LD_S:	/* LD_S c, [b, u7] */
    328		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
    329		state->src2 = FIELD_S_u7(state->words[0]);
    330		state->dest = FIELD_S_C(state->words[0]);
    331		break;
    332
    333	case op_LDB_S:
    334	case op_STB_S:
    335		/* no further handling required as byte accesses should not
    336		 * cause an unaligned access exception */
    337		state->zz = 1;
    338		break;
    339
    340	case op_LDWX_S:	/* LDWX_S c, [b, u6] */
    341		state->x = 1;
    342		fallthrough;
    343
    344	case op_LDW_S:	/* LDW_S c, [b, u6] */
    345		state->zz = 2;
    346		state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
    347		state->src2 = FIELD_S_u6(state->words[0]);
    348		state->dest = FIELD_S_C(state->words[0]);
    349		break;
    350
    351	case op_ST_S:	/* ST_S c, [b, u7] */
    352		state->write = 1;
    353		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
    354		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
    355		state->src3 = FIELD_S_u7(state->words[0]);
    356		break;
    357
    358	case op_STW_S:	/* STW_S c,[b,u6] */
    359		state->write = 1;
    360		state->zz = 2;
    361		state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs);
    362		state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs);
    363		state->src3 = FIELD_S_u6(state->words[0]);
    364		break;
    365
    366	case op_SP:	/* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */
    367		/* note: we are ignoring possibility of:
    368		 * ADD_S, SUB_S, PUSH_S, POP_S as these should not
    369		 * cause unaligned exception anyway */
    370		state->write = BITS(state->words[0], 6, 6);
    371		state->zz = BITS(state->words[0], 5, 5);
    372		if (state->zz)
    373			break;	/* byte accesses should not come here */
    374		if (!state->write) {
    375			state->src1 = get_reg(28, regs, cregs);
    376			state->src2 = FIELD_S_u7(state->words[0]);
    377			state->dest = FIELD_S_B(state->words[0]);
    378		} else {
    379			state->src1 = get_reg(FIELD_S_B(state->words[0]), regs,
    380					cregs);
    381			state->src2 = get_reg(28, regs, cregs);
    382			state->src3 = FIELD_S_u7(state->words[0]);
    383		}
    384		break;
    385
    386	case op_GP:	/* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */
    387		/* note: ADD_S r0, gp, s11 is ignored */
    388		state->zz = BITS(state->words[0], 9, 10);
    389		state->src1 = get_reg(26, regs, cregs);
    390		state->src2 = state->zz ? FIELD_S_s10(state->words[0]) :
    391			FIELD_S_s11(state->words[0]);
    392		state->dest = 0;
    393		break;
    394
    395	case op_Pcl:	/* LD_S b,[pcl,u10] */
    396		state->src1 = regs->ret & ~3;
    397		state->src2 = FIELD_S_u10(state->words[0]);
    398		state->dest = FIELD_S_B(state->words[0]);
    399		break;
    400
    401	case op_BR_S:
    402		state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03);
    403		state->flow = direct_jump;
    404		state->is_branch = 1;
    405		break;
    406
    407	case op_B_S:
    408		fieldA = (BITS(state->words[0], 9, 10) == 3) ?
    409			FIELD_S_s7(state->words[0]) :
    410			FIELD_S_s10(state->words[0]);
    411		state->target = fieldA + (addr & ~0x03);
    412		state->flow = direct_jump;
    413		state->is_branch = 1;
    414		break;
    415
    416	case op_BL_S:
    417		state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03);
    418		state->flow = direct_call;
    419		state->is_branch = 1;
    420		break;
    421
    422	default:
    423		break;
    424	}
    425
    426	if (bytes_not_copied <= (8 - state->instr_len))
    427		return;
    428
    429fault:	state->fault = 1;
    430}
    431
    432long __kprobes get_reg(int reg, struct pt_regs *regs,
    433		       struct callee_regs *cregs)
    434{
    435	long *p;
    436
    437#if defined(CONFIG_ISA_ARCOMPACT)
    438	if (reg <= 12) {
    439		p = &regs->r0;
    440		return p[-reg];
    441	}
    442#else /* CONFIG_ISA_ARCV2 */
    443	if (reg <= 11) {
    444		p = &regs->r0;
    445		return p[reg];
    446	}
    447
    448	if (reg == 12)
    449		return regs->r12;
    450	if (reg == 30)
    451		return regs->r30;
    452#ifdef CONFIG_ARC_HAS_ACCL_REGS
    453	if (reg == 58)
    454		return regs->r58;
    455	if (reg == 59)
    456		return regs->r59;
    457#endif
    458#endif
    459	if (cregs && (reg <= 25)) {
    460		p = &cregs->r13;
    461		return p[13 - reg];
    462	}
    463
    464	if (reg == 26)
    465		return regs->r26;
    466	if (reg == 27)
    467		return regs->fp;
    468	if (reg == 28)
    469		return regs->sp;
    470	if (reg == 31)
    471		return regs->blink;
    472
    473	return 0;
    474}
    475
    476void __kprobes set_reg(int reg, long val, struct pt_regs *regs,
    477		struct callee_regs *cregs)
    478{
    479	long *p;
    480
    481#if defined(CONFIG_ISA_ARCOMPACT)
    482	switch (reg) {
    483	case 0 ... 12:
    484		p = &regs->r0;
    485		p[-reg] = val;
    486		break;
    487	case 13 ... 25:
    488		if (cregs) {
    489			p = &cregs->r13;
    490			p[13 - reg] = val;
    491		}
    492		break;
    493	case 26:
    494		regs->r26 = val;
    495		break;
    496	case 27:
    497		regs->fp = val;
    498		break;
    499	case 28:
    500		regs->sp = val;
    501		break;
    502	case 31:
    503		regs->blink = val;
    504		break;
    505	default:
    506		break;
    507	}
    508#else /* CONFIG_ISA_ARCV2 */
    509	switch (reg) {
    510	case 0 ... 11:
    511		p = &regs->r0;
    512		p[reg] = val;
    513		break;
    514	case 12:
    515		regs->r12 = val;
    516		break;
    517	case 13 ... 25:
    518		if (cregs) {
    519			p = &cregs->r13;
    520			p[13 - reg] = val;
    521		}
    522		break;
    523	case 26:
    524		regs->r26 = val;
    525		break;
    526	case 27:
    527		regs->fp = val;
    528		break;
    529	case 28:
    530		regs->sp = val;
    531		break;
    532	case 30:
    533		regs->r30 = val;
    534		break;
    535	case 31:
    536		regs->blink = val;
    537		break;
    538#ifdef CONFIG_ARC_HAS_ACCL_REGS
    539	case 58:
    540		regs->r58 = val;
    541		break;
    542	case 59:
    543		regs->r59 = val;
    544		break;
    545#endif
    546	default:
    547		break;
    548	}
    549#endif
    550}
    551
    552/*
    553 * Disassembles the insn at @pc and sets @next_pc to next PC (which could be
    554 * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns).
    555 *
    556 * If @pc is a branch
    557 *	-@tgt_if_br is set to branch target.
    558 *	-If branch has delay slot, @next_pc updated with actual next PC.
    559 */
    560int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs,
    561			     struct callee_regs *cregs,
    562			     unsigned long *next_pc, unsigned long *tgt_if_br)
    563{
    564	struct disasm_state instr;
    565
    566	disasm_instr(pc, &instr, 0, regs, cregs);
    567
    568	*next_pc = pc + instr.instr_len;
    569
    570	/* Instruction with possible two targets branch, jump and loop */
    571	if (instr.is_branch)
    572		*tgt_if_br = instr.target;
    573
    574	/* For the instructions with delay slots, the fall through is the
    575	 * instruction following the instruction in delay slot.
    576	 */
    577	 if (instr.delay_slot) {
    578		struct disasm_state instr_d;
    579
    580		disasm_instr(*next_pc, &instr_d, 0, regs, cregs);
    581
    582		*next_pc += instr_d.instr_len;
    583	 }
    584
    585	 /* Zero Overhead Loop - end of the loop */
    586	if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end)
    587		&& (regs->lp_count > 1)) {
    588		*next_pc = regs->lp_start;
    589	}
    590
    591	return instr.is_branch;
    592}
    593
    594#endif /* CONFIG_KGDB || CONFIG_ARC_EMUL_UNALIGNED || CONFIG_KPROBES */