perf_event.c (22472B)
1// SPDX-License-Identifier: GPL-2.0+ 2// 3// Linux performance counter support for ARC CPUs. 4// This code is inspired by the perf support of various other architectures. 5// 6// Copyright (C) 2013-2018 Synopsys, Inc. (www.synopsys.com) 7 8#include <linux/errno.h> 9#include <linux/interrupt.h> 10#include <linux/module.h> 11#include <linux/of.h> 12#include <linux/perf_event.h> 13#include <linux/platform_device.h> 14#include <asm/arcregs.h> 15#include <asm/stacktrace.h> 16 17/* HW holds 8 symbols + one for null terminator */ 18#define ARCPMU_EVENT_NAME_LEN 9 19 20/* 21 * Some ARC pct quirks: 22 * 23 * PERF_COUNT_HW_STALLED_CYCLES_BACKEND 24 * PERF_COUNT_HW_STALLED_CYCLES_FRONTEND 25 * The ARC 700 can either measure stalls per pipeline stage, or all stalls 26 * combined; for now we assign all stalls to STALLED_CYCLES_BACKEND 27 * and all pipeline flushes (e.g. caused by mispredicts, etc.) to 28 * STALLED_CYCLES_FRONTEND. 29 * 30 * We could start multiple performance counters and combine everything 31 * afterwards, but that makes it complicated. 32 * 33 * Note that I$ cache misses aren't counted by either of the two! 34 */ 35 36/* 37 * ARC PCT has hardware conditions with fixed "names" but variable "indexes" 38 * (based on a specific RTL build) 39 * Below is the static map between perf generic/arc specific event_id and 40 * h/w condition names. 41 * At the time of probe, we loop thru each index and find it's name to 42 * complete the mapping of perf event_id to h/w index as latter is needed 43 * to program the counter really 44 */ 45static const char * const arc_pmu_ev_hw_map[] = { 46 /* count cycles */ 47 [PERF_COUNT_HW_CPU_CYCLES] = "crun", 48 [PERF_COUNT_HW_REF_CPU_CYCLES] = "crun", 49 [PERF_COUNT_HW_BUS_CYCLES] = "crun", 50 51 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = "bflush", 52 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = "bstall", 53 54 /* counts condition */ 55 [PERF_COUNT_HW_INSTRUCTIONS] = "iall", 56 /* All jump instructions that are taken */ 57 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = "ijmptak", 58#ifdef CONFIG_ISA_ARCV2 59 [PERF_COUNT_HW_BRANCH_MISSES] = "bpmp", 60#else 61 [PERF_COUNT_ARC_BPOK] = "bpok", /* NP-NT, PT-T, PNT-NT */ 62 [PERF_COUNT_HW_BRANCH_MISSES] = "bpfail", /* NP-T, PT-NT, PNT-T */ 63#endif 64 [PERF_COUNT_ARC_LDC] = "imemrdc", /* Instr: mem read cached */ 65 [PERF_COUNT_ARC_STC] = "imemwrc", /* Instr: mem write cached */ 66 67 [PERF_COUNT_ARC_DCLM] = "dclm", /* D-cache Load Miss */ 68 [PERF_COUNT_ARC_DCSM] = "dcsm", /* D-cache Store Miss */ 69 [PERF_COUNT_ARC_ICM] = "icm", /* I-cache Miss */ 70 [PERF_COUNT_ARC_EDTLB] = "edtlb", /* D-TLB Miss */ 71 [PERF_COUNT_ARC_EITLB] = "eitlb", /* I-TLB Miss */ 72 73 [PERF_COUNT_HW_CACHE_REFERENCES] = "imemrdc", /* Instr: mem read cached */ 74 [PERF_COUNT_HW_CACHE_MISSES] = "dclm", /* D-cache Load Miss */ 75}; 76 77#define C(_x) PERF_COUNT_HW_CACHE_##_x 78#define CACHE_OP_UNSUPPORTED 0xffff 79 80static const unsigned int arc_pmu_cache_map[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = { 81 [C(L1D)] = { 82 [C(OP_READ)] = { 83 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC, 84 [C(RESULT_MISS)] = PERF_COUNT_ARC_DCLM, 85 }, 86 [C(OP_WRITE)] = { 87 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_STC, 88 [C(RESULT_MISS)] = PERF_COUNT_ARC_DCSM, 89 }, 90 [C(OP_PREFETCH)] = { 91 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 92 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 93 }, 94 }, 95 [C(L1I)] = { 96 [C(OP_READ)] = { 97 [C(RESULT_ACCESS)] = PERF_COUNT_HW_INSTRUCTIONS, 98 [C(RESULT_MISS)] = PERF_COUNT_ARC_ICM, 99 }, 100 [C(OP_WRITE)] = { 101 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 102 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 103 }, 104 [C(OP_PREFETCH)] = { 105 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 106 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 107 }, 108 }, 109 [C(LL)] = { 110 [C(OP_READ)] = { 111 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 112 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 113 }, 114 [C(OP_WRITE)] = { 115 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 116 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 117 }, 118 [C(OP_PREFETCH)] = { 119 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 120 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 121 }, 122 }, 123 [C(DTLB)] = { 124 [C(OP_READ)] = { 125 [C(RESULT_ACCESS)] = PERF_COUNT_ARC_LDC, 126 [C(RESULT_MISS)] = PERF_COUNT_ARC_EDTLB, 127 }, 128 /* DTLB LD/ST Miss not segregated by h/w*/ 129 [C(OP_WRITE)] = { 130 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 131 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 132 }, 133 [C(OP_PREFETCH)] = { 134 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 135 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 136 }, 137 }, 138 [C(ITLB)] = { 139 [C(OP_READ)] = { 140 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 141 [C(RESULT_MISS)] = PERF_COUNT_ARC_EITLB, 142 }, 143 [C(OP_WRITE)] = { 144 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 145 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 146 }, 147 [C(OP_PREFETCH)] = { 148 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 149 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 150 }, 151 }, 152 [C(BPU)] = { 153 [C(OP_READ)] = { 154 [C(RESULT_ACCESS)] = PERF_COUNT_HW_BRANCH_INSTRUCTIONS, 155 [C(RESULT_MISS)] = PERF_COUNT_HW_BRANCH_MISSES, 156 }, 157 [C(OP_WRITE)] = { 158 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 159 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 160 }, 161 [C(OP_PREFETCH)] = { 162 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 163 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 164 }, 165 }, 166 [C(NODE)] = { 167 [C(OP_READ)] = { 168 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 169 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 170 }, 171 [C(OP_WRITE)] = { 172 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 173 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 174 }, 175 [C(OP_PREFETCH)] = { 176 [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED, 177 [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED, 178 }, 179 }, 180}; 181 182enum arc_pmu_attr_groups { 183 ARCPMU_ATTR_GR_EVENTS, 184 ARCPMU_ATTR_GR_FORMATS, 185 ARCPMU_NR_ATTR_GR 186}; 187 188struct arc_pmu_raw_event_entry { 189 char name[ARCPMU_EVENT_NAME_LEN]; 190}; 191 192struct arc_pmu { 193 struct pmu pmu; 194 unsigned int irq; 195 int n_counters; 196 int n_events; 197 u64 max_period; 198 int ev_hw_idx[PERF_COUNT_ARC_HW_MAX]; 199 200 struct arc_pmu_raw_event_entry *raw_entry; 201 struct attribute **attrs; 202 struct perf_pmu_events_attr *attr; 203 const struct attribute_group *attr_groups[ARCPMU_NR_ATTR_GR + 1]; 204}; 205 206struct arc_pmu_cpu { 207 /* 208 * A 1 bit for an index indicates that the counter is being used for 209 * an event. A 0 means that the counter can be used. 210 */ 211 unsigned long used_mask[BITS_TO_LONGS(ARC_PERF_MAX_COUNTERS)]; 212 213 /* 214 * The events that are active on the PMU for the given index. 215 */ 216 struct perf_event *act_counter[ARC_PERF_MAX_COUNTERS]; 217}; 218 219struct arc_callchain_trace { 220 int depth; 221 void *perf_stuff; 222}; 223 224static int callchain_trace(unsigned int addr, void *data) 225{ 226 struct arc_callchain_trace *ctrl = data; 227 struct perf_callchain_entry_ctx *entry = ctrl->perf_stuff; 228 229 perf_callchain_store(entry, addr); 230 231 if (ctrl->depth++ < 3) 232 return 0; 233 234 return -1; 235} 236 237void perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, 238 struct pt_regs *regs) 239{ 240 struct arc_callchain_trace ctrl = { 241 .depth = 0, 242 .perf_stuff = entry, 243 }; 244 245 arc_unwind_core(NULL, regs, callchain_trace, &ctrl); 246} 247 248void perf_callchain_user(struct perf_callchain_entry_ctx *entry, 249 struct pt_regs *regs) 250{ 251 /* 252 * User stack can't be unwound trivially with kernel dwarf unwinder 253 * So for now just record the user PC 254 */ 255 perf_callchain_store(entry, instruction_pointer(regs)); 256} 257 258static struct arc_pmu *arc_pmu; 259static DEFINE_PER_CPU(struct arc_pmu_cpu, arc_pmu_cpu); 260 261/* read counter #idx; note that counter# != event# on ARC! */ 262static u64 arc_pmu_read_counter(int idx) 263{ 264 u32 tmp; 265 u64 result; 266 267 /* 268 * ARC supports making 'snapshots' of the counters, so we don't 269 * need to care about counters wrapping to 0 underneath our feet 270 */ 271 write_aux_reg(ARC_REG_PCT_INDEX, idx); 272 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 273 write_aux_reg(ARC_REG_PCT_CONTROL, tmp | ARC_REG_PCT_CONTROL_SN); 274 result = (u64) (read_aux_reg(ARC_REG_PCT_SNAPH)) << 32; 275 result |= read_aux_reg(ARC_REG_PCT_SNAPL); 276 277 return result; 278} 279 280static void arc_perf_event_update(struct perf_event *event, 281 struct hw_perf_event *hwc, int idx) 282{ 283 u64 prev_raw_count = local64_read(&hwc->prev_count); 284 u64 new_raw_count = arc_pmu_read_counter(idx); 285 s64 delta = new_raw_count - prev_raw_count; 286 287 /* 288 * We aren't afraid of hwc->prev_count changing beneath our feet 289 * because there's no way for us to re-enter this function anytime. 290 */ 291 local64_set(&hwc->prev_count, new_raw_count); 292 local64_add(delta, &event->count); 293 local64_sub(delta, &hwc->period_left); 294} 295 296static void arc_pmu_read(struct perf_event *event) 297{ 298 arc_perf_event_update(event, &event->hw, event->hw.idx); 299} 300 301static int arc_pmu_cache_event(u64 config) 302{ 303 unsigned int cache_type, cache_op, cache_result; 304 int ret; 305 306 cache_type = (config >> 0) & 0xff; 307 cache_op = (config >> 8) & 0xff; 308 cache_result = (config >> 16) & 0xff; 309 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 310 return -EINVAL; 311 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 312 return -EINVAL; 313 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 314 return -EINVAL; 315 316 ret = arc_pmu_cache_map[cache_type][cache_op][cache_result]; 317 318 if (ret == CACHE_OP_UNSUPPORTED) 319 return -ENOENT; 320 321 pr_debug("init cache event: type/op/result %d/%d/%d with h/w %d \'%s\'\n", 322 cache_type, cache_op, cache_result, ret, 323 arc_pmu_ev_hw_map[ret]); 324 325 return ret; 326} 327 328/* initializes hw_perf_event structure if event is supported */ 329static int arc_pmu_event_init(struct perf_event *event) 330{ 331 struct hw_perf_event *hwc = &event->hw; 332 int ret; 333 334 if (!is_sampling_event(event)) { 335 hwc->sample_period = arc_pmu->max_period; 336 hwc->last_period = hwc->sample_period; 337 local64_set(&hwc->period_left, hwc->sample_period); 338 } 339 340 hwc->config = 0; 341 342 if (is_isa_arcv2()) { 343 /* "exclude user" means "count only kernel" */ 344 if (event->attr.exclude_user) 345 hwc->config |= ARC_REG_PCT_CONFIG_KERN; 346 347 /* "exclude kernel" means "count only user" */ 348 if (event->attr.exclude_kernel) 349 hwc->config |= ARC_REG_PCT_CONFIG_USER; 350 } 351 352 switch (event->attr.type) { 353 case PERF_TYPE_HARDWARE: 354 if (event->attr.config >= PERF_COUNT_HW_MAX) 355 return -ENOENT; 356 if (arc_pmu->ev_hw_idx[event->attr.config] < 0) 357 return -ENOENT; 358 hwc->config |= arc_pmu->ev_hw_idx[event->attr.config]; 359 pr_debug("init event %d with h/w %08x \'%s\'\n", 360 (int)event->attr.config, (int)hwc->config, 361 arc_pmu_ev_hw_map[event->attr.config]); 362 return 0; 363 364 case PERF_TYPE_HW_CACHE: 365 ret = arc_pmu_cache_event(event->attr.config); 366 if (ret < 0) 367 return ret; 368 hwc->config |= arc_pmu->ev_hw_idx[ret]; 369 pr_debug("init cache event with h/w %08x \'%s\'\n", 370 (int)hwc->config, arc_pmu_ev_hw_map[ret]); 371 return 0; 372 373 case PERF_TYPE_RAW: 374 if (event->attr.config >= arc_pmu->n_events) 375 return -ENOENT; 376 377 hwc->config |= event->attr.config; 378 pr_debug("init raw event with idx %lld \'%s\'\n", 379 event->attr.config, 380 arc_pmu->raw_entry[event->attr.config].name); 381 382 return 0; 383 384 default: 385 return -ENOENT; 386 } 387} 388 389/* starts all counters */ 390static void arc_pmu_enable(struct pmu *pmu) 391{ 392 u32 tmp; 393 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 394 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x1); 395} 396 397/* stops all counters */ 398static void arc_pmu_disable(struct pmu *pmu) 399{ 400 u32 tmp; 401 tmp = read_aux_reg(ARC_REG_PCT_CONTROL); 402 write_aux_reg(ARC_REG_PCT_CONTROL, (tmp & 0xffff0000) | 0x0); 403} 404 405static int arc_pmu_event_set_period(struct perf_event *event) 406{ 407 struct hw_perf_event *hwc = &event->hw; 408 s64 left = local64_read(&hwc->period_left); 409 s64 period = hwc->sample_period; 410 int idx = hwc->idx; 411 int overflow = 0; 412 u64 value; 413 414 if (unlikely(left <= -period)) { 415 /* left underflowed by more than period. */ 416 left = period; 417 local64_set(&hwc->period_left, left); 418 hwc->last_period = period; 419 overflow = 1; 420 } else if (unlikely(left <= 0)) { 421 /* left underflowed by less than period. */ 422 left += period; 423 local64_set(&hwc->period_left, left); 424 hwc->last_period = period; 425 overflow = 1; 426 } 427 428 if (left > arc_pmu->max_period) 429 left = arc_pmu->max_period; 430 431 value = arc_pmu->max_period - left; 432 local64_set(&hwc->prev_count, value); 433 434 /* Select counter */ 435 write_aux_reg(ARC_REG_PCT_INDEX, idx); 436 437 /* Write value */ 438 write_aux_reg(ARC_REG_PCT_COUNTL, lower_32_bits(value)); 439 write_aux_reg(ARC_REG_PCT_COUNTH, upper_32_bits(value)); 440 441 perf_event_update_userpage(event); 442 443 return overflow; 444} 445 446/* 447 * Assigns hardware counter to hardware condition. 448 * Note that there is no separate start/stop mechanism; 449 * stopping is achieved by assigning the 'never' condition 450 */ 451static void arc_pmu_start(struct perf_event *event, int flags) 452{ 453 struct hw_perf_event *hwc = &event->hw; 454 int idx = hwc->idx; 455 456 if (WARN_ON_ONCE(idx == -1)) 457 return; 458 459 if (flags & PERF_EF_RELOAD) 460 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 461 462 hwc->state = 0; 463 464 arc_pmu_event_set_period(event); 465 466 /* Enable interrupt for this counter */ 467 if (is_sampling_event(event)) 468 write_aux_reg(ARC_REG_PCT_INT_CTRL, 469 read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx)); 470 471 /* enable ARC pmu here */ 472 write_aux_reg(ARC_REG_PCT_INDEX, idx); /* counter # */ 473 write_aux_reg(ARC_REG_PCT_CONFIG, hwc->config); /* condition */ 474} 475 476static void arc_pmu_stop(struct perf_event *event, int flags) 477{ 478 struct hw_perf_event *hwc = &event->hw; 479 int idx = hwc->idx; 480 481 /* Disable interrupt for this counter */ 482 if (is_sampling_event(event)) { 483 /* 484 * Reset interrupt flag by writing of 1. This is required 485 * to make sure pending interrupt was not left. 486 */ 487 write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx)); 488 write_aux_reg(ARC_REG_PCT_INT_CTRL, 489 read_aux_reg(ARC_REG_PCT_INT_CTRL) & ~BIT(idx)); 490 } 491 492 if (!(event->hw.state & PERF_HES_STOPPED)) { 493 /* stop hw counter here */ 494 write_aux_reg(ARC_REG_PCT_INDEX, idx); 495 496 /* condition code #0 is always "never" */ 497 write_aux_reg(ARC_REG_PCT_CONFIG, 0); 498 499 event->hw.state |= PERF_HES_STOPPED; 500 } 501 502 if ((flags & PERF_EF_UPDATE) && 503 !(event->hw.state & PERF_HES_UPTODATE)) { 504 arc_perf_event_update(event, &event->hw, idx); 505 event->hw.state |= PERF_HES_UPTODATE; 506 } 507} 508 509static void arc_pmu_del(struct perf_event *event, int flags) 510{ 511 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 512 513 arc_pmu_stop(event, PERF_EF_UPDATE); 514 __clear_bit(event->hw.idx, pmu_cpu->used_mask); 515 516 pmu_cpu->act_counter[event->hw.idx] = 0; 517 518 perf_event_update_userpage(event); 519} 520 521/* allocate hardware counter and optionally start counting */ 522static int arc_pmu_add(struct perf_event *event, int flags) 523{ 524 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 525 struct hw_perf_event *hwc = &event->hw; 526 int idx; 527 528 idx = ffz(pmu_cpu->used_mask[0]); 529 if (idx == arc_pmu->n_counters) 530 return -EAGAIN; 531 532 __set_bit(idx, pmu_cpu->used_mask); 533 hwc->idx = idx; 534 535 write_aux_reg(ARC_REG_PCT_INDEX, idx); 536 537 pmu_cpu->act_counter[idx] = event; 538 539 if (is_sampling_event(event)) { 540 /* Mimic full counter overflow as other arches do */ 541 write_aux_reg(ARC_REG_PCT_INT_CNTL, 542 lower_32_bits(arc_pmu->max_period)); 543 write_aux_reg(ARC_REG_PCT_INT_CNTH, 544 upper_32_bits(arc_pmu->max_period)); 545 } 546 547 write_aux_reg(ARC_REG_PCT_CONFIG, 0); 548 write_aux_reg(ARC_REG_PCT_COUNTL, 0); 549 write_aux_reg(ARC_REG_PCT_COUNTH, 0); 550 local64_set(&hwc->prev_count, 0); 551 552 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 553 if (flags & PERF_EF_START) 554 arc_pmu_start(event, PERF_EF_RELOAD); 555 556 perf_event_update_userpage(event); 557 558 return 0; 559} 560 561#ifdef CONFIG_ISA_ARCV2 562static irqreturn_t arc_pmu_intr(int irq, void *dev) 563{ 564 struct perf_sample_data data; 565 struct arc_pmu_cpu *pmu_cpu = this_cpu_ptr(&arc_pmu_cpu); 566 struct pt_regs *regs; 567 unsigned int active_ints; 568 int idx; 569 570 arc_pmu_disable(&arc_pmu->pmu); 571 572 active_ints = read_aux_reg(ARC_REG_PCT_INT_ACT); 573 if (!active_ints) 574 goto done; 575 576 regs = get_irq_regs(); 577 578 do { 579 struct perf_event *event; 580 struct hw_perf_event *hwc; 581 582 idx = __ffs(active_ints); 583 584 /* Reset interrupt flag by writing of 1 */ 585 write_aux_reg(ARC_REG_PCT_INT_ACT, BIT(idx)); 586 587 /* 588 * On reset of "interrupt active" bit corresponding 589 * "interrupt enable" bit gets automatically reset as well. 590 * Now we need to re-enable interrupt for the counter. 591 */ 592 write_aux_reg(ARC_REG_PCT_INT_CTRL, 593 read_aux_reg(ARC_REG_PCT_INT_CTRL) | BIT(idx)); 594 595 event = pmu_cpu->act_counter[idx]; 596 hwc = &event->hw; 597 598 WARN_ON_ONCE(hwc->idx != idx); 599 600 arc_perf_event_update(event, &event->hw, event->hw.idx); 601 perf_sample_data_init(&data, 0, hwc->last_period); 602 if (arc_pmu_event_set_period(event)) { 603 if (perf_event_overflow(event, &data, regs)) 604 arc_pmu_stop(event, 0); 605 } 606 607 active_ints &= ~BIT(idx); 608 } while (active_ints); 609 610done: 611 arc_pmu_enable(&arc_pmu->pmu); 612 613 return IRQ_HANDLED; 614} 615#else 616 617static irqreturn_t arc_pmu_intr(int irq, void *dev) 618{ 619 return IRQ_NONE; 620} 621 622#endif /* CONFIG_ISA_ARCV2 */ 623 624static void arc_cpu_pmu_irq_init(void *data) 625{ 626 int irq = *(int *)data; 627 628 enable_percpu_irq(irq, IRQ_TYPE_NONE); 629 630 /* Clear all pending interrupt flags */ 631 write_aux_reg(ARC_REG_PCT_INT_ACT, 0xffffffff); 632} 633 634/* Event field occupies the bottom 15 bits of our config field */ 635PMU_FORMAT_ATTR(event, "config:0-14"); 636static struct attribute *arc_pmu_format_attrs[] = { 637 &format_attr_event.attr, 638 NULL, 639}; 640 641static struct attribute_group arc_pmu_format_attr_gr = { 642 .name = "format", 643 .attrs = arc_pmu_format_attrs, 644}; 645 646static ssize_t arc_pmu_events_sysfs_show(struct device *dev, 647 struct device_attribute *attr, 648 char *page) 649{ 650 struct perf_pmu_events_attr *pmu_attr; 651 652 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr); 653 return sprintf(page, "event=0x%04llx\n", pmu_attr->id); 654} 655 656/* 657 * We don't add attrs here as we don't have pre-defined list of perf events. 658 * We will generate and add attrs dynamically in probe() after we read HW 659 * configuration. 660 */ 661static struct attribute_group arc_pmu_events_attr_gr = { 662 .name = "events", 663}; 664 665static void arc_pmu_add_raw_event_attr(int j, char *str) 666{ 667 memmove(arc_pmu->raw_entry[j].name, str, ARCPMU_EVENT_NAME_LEN - 1); 668 arc_pmu->attr[j].attr.attr.name = arc_pmu->raw_entry[j].name; 669 arc_pmu->attr[j].attr.attr.mode = VERIFY_OCTAL_PERMISSIONS(0444); 670 arc_pmu->attr[j].attr.show = arc_pmu_events_sysfs_show; 671 arc_pmu->attr[j].id = j; 672 arc_pmu->attrs[j] = &(arc_pmu->attr[j].attr.attr); 673} 674 675static int arc_pmu_raw_alloc(struct device *dev) 676{ 677 arc_pmu->attr = devm_kmalloc_array(dev, arc_pmu->n_events + 1, 678 sizeof(*arc_pmu->attr), GFP_KERNEL | __GFP_ZERO); 679 if (!arc_pmu->attr) 680 return -ENOMEM; 681 682 arc_pmu->attrs = devm_kmalloc_array(dev, arc_pmu->n_events + 1, 683 sizeof(*arc_pmu->attrs), GFP_KERNEL | __GFP_ZERO); 684 if (!arc_pmu->attrs) 685 return -ENOMEM; 686 687 arc_pmu->raw_entry = devm_kmalloc_array(dev, arc_pmu->n_events, 688 sizeof(*arc_pmu->raw_entry), GFP_KERNEL | __GFP_ZERO); 689 if (!arc_pmu->raw_entry) 690 return -ENOMEM; 691 692 return 0; 693} 694 695static inline bool event_in_hw_event_map(int i, char *name) 696{ 697 if (!arc_pmu_ev_hw_map[i]) 698 return false; 699 700 if (!strlen(arc_pmu_ev_hw_map[i])) 701 return false; 702 703 if (strcmp(arc_pmu_ev_hw_map[i], name)) 704 return false; 705 706 return true; 707} 708 709static void arc_pmu_map_hw_event(int j, char *str) 710{ 711 int i; 712 713 /* See if HW condition has been mapped to a perf event_id */ 714 for (i = 0; i < ARRAY_SIZE(arc_pmu_ev_hw_map); i++) { 715 if (event_in_hw_event_map(i, str)) { 716 pr_debug("mapping perf event %2d to h/w event \'%8s\' (idx %d)\n", 717 i, str, j); 718 arc_pmu->ev_hw_idx[i] = j; 719 } 720 } 721} 722 723static int arc_pmu_device_probe(struct platform_device *pdev) 724{ 725 struct arc_reg_pct_build pct_bcr; 726 struct arc_reg_cc_build cc_bcr; 727 int i, has_interrupts, irq = -1; 728 int counter_size; /* in bits */ 729 730 union cc_name { 731 struct { 732 u32 word0, word1; 733 char sentinel; 734 } indiv; 735 char str[ARCPMU_EVENT_NAME_LEN]; 736 } cc_name; 737 738 739 READ_BCR(ARC_REG_PCT_BUILD, pct_bcr); 740 if (!pct_bcr.v) { 741 pr_err("This core does not have performance counters!\n"); 742 return -ENODEV; 743 } 744 BUILD_BUG_ON(ARC_PERF_MAX_COUNTERS > 32); 745 if (WARN_ON(pct_bcr.c > ARC_PERF_MAX_COUNTERS)) 746 return -EINVAL; 747 748 READ_BCR(ARC_REG_CC_BUILD, cc_bcr); 749 if (WARN(!cc_bcr.v, "Counters exist but No countable conditions?")) 750 return -EINVAL; 751 752 arc_pmu = devm_kzalloc(&pdev->dev, sizeof(struct arc_pmu), GFP_KERNEL); 753 if (!arc_pmu) 754 return -ENOMEM; 755 756 arc_pmu->n_events = cc_bcr.c; 757 758 if (arc_pmu_raw_alloc(&pdev->dev)) 759 return -ENOMEM; 760 761 has_interrupts = is_isa_arcv2() ? pct_bcr.i : 0; 762 763 arc_pmu->n_counters = pct_bcr.c; 764 counter_size = 32 + (pct_bcr.s << 4); 765 766 arc_pmu->max_period = (1ULL << counter_size) / 2 - 1ULL; 767 768 pr_info("ARC perf\t: %d counters (%d bits), %d conditions%s\n", 769 arc_pmu->n_counters, counter_size, cc_bcr.c, 770 has_interrupts ? ", [overflow IRQ support]" : ""); 771 772 cc_name.str[ARCPMU_EVENT_NAME_LEN - 1] = 0; 773 for (i = 0; i < PERF_COUNT_ARC_HW_MAX; i++) 774 arc_pmu->ev_hw_idx[i] = -1; 775 776 /* loop thru all available h/w condition indexes */ 777 for (i = 0; i < cc_bcr.c; i++) { 778 write_aux_reg(ARC_REG_CC_INDEX, i); 779 cc_name.indiv.word0 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME0)); 780 cc_name.indiv.word1 = le32_to_cpu(read_aux_reg(ARC_REG_CC_NAME1)); 781 782 arc_pmu_map_hw_event(i, cc_name.str); 783 arc_pmu_add_raw_event_attr(i, cc_name.str); 784 } 785 786 arc_pmu_events_attr_gr.attrs = arc_pmu->attrs; 787 arc_pmu->attr_groups[ARCPMU_ATTR_GR_EVENTS] = &arc_pmu_events_attr_gr; 788 arc_pmu->attr_groups[ARCPMU_ATTR_GR_FORMATS] = &arc_pmu_format_attr_gr; 789 790 arc_pmu->pmu = (struct pmu) { 791 .pmu_enable = arc_pmu_enable, 792 .pmu_disable = arc_pmu_disable, 793 .event_init = arc_pmu_event_init, 794 .add = arc_pmu_add, 795 .del = arc_pmu_del, 796 .start = arc_pmu_start, 797 .stop = arc_pmu_stop, 798 .read = arc_pmu_read, 799 .attr_groups = arc_pmu->attr_groups, 800 }; 801 802 if (has_interrupts) { 803 irq = platform_get_irq(pdev, 0); 804 if (irq >= 0) { 805 int ret; 806 807 arc_pmu->irq = irq; 808 809 /* intc map function ensures irq_set_percpu_devid() called */ 810 ret = request_percpu_irq(irq, arc_pmu_intr, "ARC perf counters", 811 this_cpu_ptr(&arc_pmu_cpu)); 812 813 if (!ret) 814 on_each_cpu(arc_cpu_pmu_irq_init, &irq, 1); 815 else 816 irq = -1; 817 } 818 819 } 820 821 if (irq == -1) 822 arc_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT; 823 824 /* 825 * perf parser doesn't really like '-' symbol in events name, so let's 826 * use '_' in arc pct name as it goes to kernel PMU event prefix. 827 */ 828 return perf_pmu_register(&arc_pmu->pmu, "arc_pct", PERF_TYPE_RAW); 829} 830 831static const struct of_device_id arc_pmu_match[] = { 832 { .compatible = "snps,arc700-pct" }, 833 { .compatible = "snps,archs-pct" }, 834 {}, 835}; 836MODULE_DEVICE_TABLE(of, arc_pmu_match); 837 838static struct platform_driver arc_pmu_driver = { 839 .driver = { 840 .name = "arc-pct", 841 .of_match_table = of_match_ptr(arc_pmu_match), 842 }, 843 .probe = arc_pmu_device_probe, 844}; 845 846module_platform_driver(arc_pmu_driver); 847 848MODULE_LICENSE("GPL"); 849MODULE_AUTHOR("Mischa Jonker <mjonker@synopsys.com>"); 850MODULE_DESCRIPTION("ARC PMU driver");