mcpm_entry.c (13021B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * arch/arm/common/mcpm_entry.c -- entry point for multi-cluster PM 4 * 5 * Created by: Nicolas Pitre, March 2012 6 * Copyright: (C) 2012-2013 Linaro Limited 7 */ 8 9#include <linux/export.h> 10#include <linux/kernel.h> 11#include <linux/init.h> 12#include <linux/irqflags.h> 13#include <linux/cpu_pm.h> 14 15#include <asm/mcpm.h> 16#include <asm/cacheflush.h> 17#include <asm/idmap.h> 18#include <asm/cputype.h> 19#include <asm/suspend.h> 20 21/* 22 * The public API for this code is documented in arch/arm/include/asm/mcpm.h. 23 * For a comprehensive description of the main algorithm used here, please 24 * see Documentation/arm/cluster-pm-race-avoidance.rst. 25 */ 26 27struct sync_struct mcpm_sync; 28 29/* 30 * __mcpm_cpu_going_down: Indicates that the cpu is being torn down. 31 * This must be called at the point of committing to teardown of a CPU. 32 * The CPU cache (SCTRL.C bit) is expected to still be active. 33 */ 34static void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster) 35{ 36 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_GOING_DOWN; 37 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); 38} 39 40/* 41 * __mcpm_cpu_down: Indicates that cpu teardown is complete and that the 42 * cluster can be torn down without disrupting this CPU. 43 * To avoid deadlocks, this must be called before a CPU is powered down. 44 * The CPU cache (SCTRL.C bit) is expected to be off. 45 * However L2 cache might or might not be active. 46 */ 47static void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster) 48{ 49 dmb(); 50 mcpm_sync.clusters[cluster].cpus[cpu].cpu = CPU_DOWN; 51 sync_cache_w(&mcpm_sync.clusters[cluster].cpus[cpu].cpu); 52 sev(); 53} 54 55/* 56 * __mcpm_outbound_leave_critical: Leave the cluster teardown critical section. 57 * @state: the final state of the cluster: 58 * CLUSTER_UP: no destructive teardown was done and the cluster has been 59 * restored to the previous state (CPU cache still active); or 60 * CLUSTER_DOWN: the cluster has been torn-down, ready for power-off 61 * (CPU cache disabled, L2 cache either enabled or disabled). 62 */ 63static void __mcpm_outbound_leave_critical(unsigned int cluster, int state) 64{ 65 dmb(); 66 mcpm_sync.clusters[cluster].cluster = state; 67 sync_cache_w(&mcpm_sync.clusters[cluster].cluster); 68 sev(); 69} 70 71/* 72 * __mcpm_outbound_enter_critical: Enter the cluster teardown critical section. 73 * This function should be called by the last man, after local CPU teardown 74 * is complete. CPU cache expected to be active. 75 * 76 * Returns: 77 * false: the critical section was not entered because an inbound CPU was 78 * observed, or the cluster is already being set up; 79 * true: the critical section was entered: it is now safe to tear down the 80 * cluster. 81 */ 82static bool __mcpm_outbound_enter_critical(unsigned int cpu, unsigned int cluster) 83{ 84 unsigned int i; 85 struct mcpm_sync_struct *c = &mcpm_sync.clusters[cluster]; 86 87 /* Warn inbound CPUs that the cluster is being torn down: */ 88 c->cluster = CLUSTER_GOING_DOWN; 89 sync_cache_w(&c->cluster); 90 91 /* Back out if the inbound cluster is already in the critical region: */ 92 sync_cache_r(&c->inbound); 93 if (c->inbound == INBOUND_COMING_UP) 94 goto abort; 95 96 /* 97 * Wait for all CPUs to get out of the GOING_DOWN state, so that local 98 * teardown is complete on each CPU before tearing down the cluster. 99 * 100 * If any CPU has been woken up again from the DOWN state, then we 101 * shouldn't be taking the cluster down at all: abort in that case. 102 */ 103 sync_cache_r(&c->cpus); 104 for (i = 0; i < MAX_CPUS_PER_CLUSTER; i++) { 105 int cpustate; 106 107 if (i == cpu) 108 continue; 109 110 while (1) { 111 cpustate = c->cpus[i].cpu; 112 if (cpustate != CPU_GOING_DOWN) 113 break; 114 115 wfe(); 116 sync_cache_r(&c->cpus[i].cpu); 117 } 118 119 switch (cpustate) { 120 case CPU_DOWN: 121 continue; 122 123 default: 124 goto abort; 125 } 126 } 127 128 return true; 129 130abort: 131 __mcpm_outbound_leave_critical(cluster, CLUSTER_UP); 132 return false; 133} 134 135static int __mcpm_cluster_state(unsigned int cluster) 136{ 137 sync_cache_r(&mcpm_sync.clusters[cluster].cluster); 138 return mcpm_sync.clusters[cluster].cluster; 139} 140 141extern unsigned long mcpm_entry_vectors[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; 142 143void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr) 144{ 145 unsigned long val = ptr ? __pa_symbol(ptr) : 0; 146 mcpm_entry_vectors[cluster][cpu] = val; 147 sync_cache_w(&mcpm_entry_vectors[cluster][cpu]); 148} 149 150extern unsigned long mcpm_entry_early_pokes[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER][2]; 151 152void mcpm_set_early_poke(unsigned cpu, unsigned cluster, 153 unsigned long poke_phys_addr, unsigned long poke_val) 154{ 155 unsigned long *poke = &mcpm_entry_early_pokes[cluster][cpu][0]; 156 poke[0] = poke_phys_addr; 157 poke[1] = poke_val; 158 __sync_cache_range_w(poke, 2 * sizeof(*poke)); 159} 160 161static const struct mcpm_platform_ops *platform_ops; 162 163int __init mcpm_platform_register(const struct mcpm_platform_ops *ops) 164{ 165 if (platform_ops) 166 return -EBUSY; 167 platform_ops = ops; 168 return 0; 169} 170 171bool mcpm_is_available(void) 172{ 173 return (platform_ops) ? true : false; 174} 175EXPORT_SYMBOL_GPL(mcpm_is_available); 176 177/* 178 * We can't use regular spinlocks. In the switcher case, it is possible 179 * for an outbound CPU to call power_down() after its inbound counterpart 180 * is already live using the same logical CPU number which trips lockdep 181 * debugging. 182 */ 183static arch_spinlock_t mcpm_lock = __ARCH_SPIN_LOCK_UNLOCKED; 184 185static int mcpm_cpu_use_count[MAX_NR_CLUSTERS][MAX_CPUS_PER_CLUSTER]; 186 187static inline bool mcpm_cluster_unused(unsigned int cluster) 188{ 189 int i, cnt; 190 for (i = 0, cnt = 0; i < MAX_CPUS_PER_CLUSTER; i++) 191 cnt |= mcpm_cpu_use_count[cluster][i]; 192 return !cnt; 193} 194 195int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster) 196{ 197 bool cpu_is_down, cluster_is_down; 198 int ret = 0; 199 200 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); 201 if (!platform_ops) 202 return -EUNATCH; /* try not to shadow power_up errors */ 203 might_sleep(); 204 205 /* 206 * Since this is called with IRQs enabled, and no arch_spin_lock_irq 207 * variant exists, we need to disable IRQs manually here. 208 */ 209 local_irq_disable(); 210 arch_spin_lock(&mcpm_lock); 211 212 cpu_is_down = !mcpm_cpu_use_count[cluster][cpu]; 213 cluster_is_down = mcpm_cluster_unused(cluster); 214 215 mcpm_cpu_use_count[cluster][cpu]++; 216 /* 217 * The only possible values are: 218 * 0 = CPU down 219 * 1 = CPU (still) up 220 * 2 = CPU requested to be up before it had a chance 221 * to actually make itself down. 222 * Any other value is a bug. 223 */ 224 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 1 && 225 mcpm_cpu_use_count[cluster][cpu] != 2); 226 227 if (cluster_is_down) 228 ret = platform_ops->cluster_powerup(cluster); 229 if (cpu_is_down && !ret) 230 ret = platform_ops->cpu_powerup(cpu, cluster); 231 232 arch_spin_unlock(&mcpm_lock); 233 local_irq_enable(); 234 return ret; 235} 236 237typedef typeof(cpu_reset) phys_reset_t; 238 239void mcpm_cpu_power_down(void) 240{ 241 unsigned int mpidr, cpu, cluster; 242 bool cpu_going_down, last_man; 243 phys_reset_t phys_reset; 244 245 mpidr = read_cpuid_mpidr(); 246 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 247 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 248 pr_debug("%s: cpu %u cluster %u\n", __func__, cpu, cluster); 249 if (WARN_ON_ONCE(!platform_ops)) 250 return; 251 BUG_ON(!irqs_disabled()); 252 253 setup_mm_for_reboot(); 254 255 __mcpm_cpu_going_down(cpu, cluster); 256 arch_spin_lock(&mcpm_lock); 257 BUG_ON(__mcpm_cluster_state(cluster) != CLUSTER_UP); 258 259 mcpm_cpu_use_count[cluster][cpu]--; 260 BUG_ON(mcpm_cpu_use_count[cluster][cpu] != 0 && 261 mcpm_cpu_use_count[cluster][cpu] != 1); 262 cpu_going_down = !mcpm_cpu_use_count[cluster][cpu]; 263 last_man = mcpm_cluster_unused(cluster); 264 265 if (last_man && __mcpm_outbound_enter_critical(cpu, cluster)) { 266 platform_ops->cpu_powerdown_prepare(cpu, cluster); 267 platform_ops->cluster_powerdown_prepare(cluster); 268 arch_spin_unlock(&mcpm_lock); 269 platform_ops->cluster_cache_disable(); 270 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); 271 } else { 272 if (cpu_going_down) 273 platform_ops->cpu_powerdown_prepare(cpu, cluster); 274 arch_spin_unlock(&mcpm_lock); 275 /* 276 * If cpu_going_down is false here, that means a power_up 277 * request raced ahead of us. Even if we do not want to 278 * shut this CPU down, the caller still expects execution 279 * to return through the system resume entry path, like 280 * when the WFI is aborted due to a new IRQ or the like.. 281 * So let's continue with cache cleaning in all cases. 282 */ 283 platform_ops->cpu_cache_disable(); 284 } 285 286 __mcpm_cpu_down(cpu, cluster); 287 288 /* Now we are prepared for power-down, do it: */ 289 if (cpu_going_down) 290 wfi(); 291 292 /* 293 * It is possible for a power_up request to happen concurrently 294 * with a power_down request for the same CPU. In this case the 295 * CPU might not be able to actually enter a powered down state 296 * with the WFI instruction if the power_up request has removed 297 * the required reset condition. We must perform a re-entry in 298 * the kernel as if the power_up method just had deasserted reset 299 * on the CPU. 300 */ 301 phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); 302 phys_reset(__pa_symbol(mcpm_entry_point), false); 303 304 /* should never get here */ 305 BUG(); 306} 307 308int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster) 309{ 310 int ret; 311 312 if (WARN_ON_ONCE(!platform_ops || !platform_ops->wait_for_powerdown)) 313 return -EUNATCH; 314 315 ret = platform_ops->wait_for_powerdown(cpu, cluster); 316 if (ret) 317 pr_warn("%s: cpu %u, cluster %u failed to power down (%d)\n", 318 __func__, cpu, cluster, ret); 319 320 return ret; 321} 322 323void mcpm_cpu_suspend(void) 324{ 325 if (WARN_ON_ONCE(!platform_ops)) 326 return; 327 328 /* Some platforms might have to enable special resume modes, etc. */ 329 if (platform_ops->cpu_suspend_prepare) { 330 unsigned int mpidr = read_cpuid_mpidr(); 331 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 332 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 333 arch_spin_lock(&mcpm_lock); 334 platform_ops->cpu_suspend_prepare(cpu, cluster); 335 arch_spin_unlock(&mcpm_lock); 336 } 337 mcpm_cpu_power_down(); 338} 339 340int mcpm_cpu_powered_up(void) 341{ 342 unsigned int mpidr, cpu, cluster; 343 bool cpu_was_down, first_man; 344 unsigned long flags; 345 346 if (!platform_ops) 347 return -EUNATCH; 348 349 mpidr = read_cpuid_mpidr(); 350 cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 351 cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 352 local_irq_save(flags); 353 arch_spin_lock(&mcpm_lock); 354 355 cpu_was_down = !mcpm_cpu_use_count[cluster][cpu]; 356 first_man = mcpm_cluster_unused(cluster); 357 358 if (first_man && platform_ops->cluster_is_up) 359 platform_ops->cluster_is_up(cluster); 360 if (cpu_was_down) 361 mcpm_cpu_use_count[cluster][cpu] = 1; 362 if (platform_ops->cpu_is_up) 363 platform_ops->cpu_is_up(cpu, cluster); 364 365 arch_spin_unlock(&mcpm_lock); 366 local_irq_restore(flags); 367 368 return 0; 369} 370 371#ifdef CONFIG_ARM_CPU_SUSPEND 372 373static int __init nocache_trampoline(unsigned long _arg) 374{ 375 void (*cache_disable)(void) = (void *)_arg; 376 unsigned int mpidr = read_cpuid_mpidr(); 377 unsigned int cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0); 378 unsigned int cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 379 phys_reset_t phys_reset; 380 381 mcpm_set_entry_vector(cpu, cluster, cpu_resume_no_hyp); 382 setup_mm_for_reboot(); 383 384 __mcpm_cpu_going_down(cpu, cluster); 385 BUG_ON(!__mcpm_outbound_enter_critical(cpu, cluster)); 386 cache_disable(); 387 __mcpm_outbound_leave_critical(cluster, CLUSTER_DOWN); 388 __mcpm_cpu_down(cpu, cluster); 389 390 phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset); 391 phys_reset(__pa_symbol(mcpm_entry_point), false); 392 BUG(); 393} 394 395int __init mcpm_loopback(void (*cache_disable)(void)) 396{ 397 int ret; 398 399 /* 400 * We're going to soft-restart the current CPU through the 401 * low-level MCPM code by leveraging the suspend/resume 402 * infrastructure. Let's play it safe by using cpu_pm_enter() 403 * in case the CPU init code path resets the VFP or similar. 404 */ 405 local_irq_disable(); 406 local_fiq_disable(); 407 ret = cpu_pm_enter(); 408 if (!ret) { 409 ret = cpu_suspend((unsigned long)cache_disable, nocache_trampoline); 410 cpu_pm_exit(); 411 } 412 local_fiq_enable(); 413 local_irq_enable(); 414 if (ret) 415 pr_err("%s returned %d\n", __func__, ret); 416 return ret; 417} 418 419#endif 420 421extern unsigned long mcpm_power_up_setup_phys; 422 423int __init mcpm_sync_init( 424 void (*power_up_setup)(unsigned int affinity_level)) 425{ 426 unsigned int i, j, mpidr, this_cluster; 427 428 BUILD_BUG_ON(MCPM_SYNC_CLUSTER_SIZE * MAX_NR_CLUSTERS != sizeof mcpm_sync); 429 BUG_ON((unsigned long)&mcpm_sync & (__CACHE_WRITEBACK_GRANULE - 1)); 430 431 /* 432 * Set initial CPU and cluster states. 433 * Only one cluster is assumed to be active at this point. 434 */ 435 for (i = 0; i < MAX_NR_CLUSTERS; i++) { 436 mcpm_sync.clusters[i].cluster = CLUSTER_DOWN; 437 mcpm_sync.clusters[i].inbound = INBOUND_NOT_COMING_UP; 438 for (j = 0; j < MAX_CPUS_PER_CLUSTER; j++) 439 mcpm_sync.clusters[i].cpus[j].cpu = CPU_DOWN; 440 } 441 mpidr = read_cpuid_mpidr(); 442 this_cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1); 443 for_each_online_cpu(i) { 444 mcpm_cpu_use_count[this_cluster][i] = 1; 445 mcpm_sync.clusters[this_cluster].cpus[i].cpu = CPU_UP; 446 } 447 mcpm_sync.clusters[this_cluster].cluster = CLUSTER_UP; 448 sync_cache_w(&mcpm_sync); 449 450 if (power_up_setup) { 451 mcpm_power_up_setup_phys = __pa_symbol(power_up_setup); 452 sync_cache_w(&mcpm_power_up_setup_phys); 453 } 454 455 return 0; 456}