sa1111.c (37746B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/arch/arm/common/sa1111.c 4 * 5 * SA1111 support 6 * 7 * Original code by John Dorsey 8 * 9 * This file contains all generic SA1111 support. 10 * 11 * All initialization functions provided here are intended to be called 12 * from machine specific code with proper arguments when required. 13 */ 14#include <linux/module.h> 15#include <linux/gpio/driver.h> 16#include <linux/init.h> 17#include <linux/irq.h> 18#include <linux/kernel.h> 19#include <linux/delay.h> 20#include <linux/errno.h> 21#include <linux/ioport.h> 22#include <linux/platform_device.h> 23#include <linux/slab.h> 24#include <linux/spinlock.h> 25#include <linux/dma-map-ops.h> 26#include <linux/clk.h> 27#include <linux/io.h> 28 29#include <asm/mach/irq.h> 30#include <asm/mach-types.h> 31#include <linux/sizes.h> 32 33#include <asm/hardware/sa1111.h> 34 35#ifdef CONFIG_ARCH_SA1100 36#include <mach/hardware.h> 37#endif 38 39/* SA1111 IRQs */ 40#define IRQ_GPAIN0 (0) 41#define IRQ_GPAIN1 (1) 42#define IRQ_GPAIN2 (2) 43#define IRQ_GPAIN3 (3) 44#define IRQ_GPBIN0 (4) 45#define IRQ_GPBIN1 (5) 46#define IRQ_GPBIN2 (6) 47#define IRQ_GPBIN3 (7) 48#define IRQ_GPBIN4 (8) 49#define IRQ_GPBIN5 (9) 50#define IRQ_GPCIN0 (10) 51#define IRQ_GPCIN1 (11) 52#define IRQ_GPCIN2 (12) 53#define IRQ_GPCIN3 (13) 54#define IRQ_GPCIN4 (14) 55#define IRQ_GPCIN5 (15) 56#define IRQ_GPCIN6 (16) 57#define IRQ_GPCIN7 (17) 58#define IRQ_MSTXINT (18) 59#define IRQ_MSRXINT (19) 60#define IRQ_MSSTOPERRINT (20) 61#define IRQ_TPTXINT (21) 62#define IRQ_TPRXINT (22) 63#define IRQ_TPSTOPERRINT (23) 64#define SSPXMTINT (24) 65#define SSPRCVINT (25) 66#define SSPROR (26) 67#define AUDXMTDMADONEA (32) 68#define AUDRCVDMADONEA (33) 69#define AUDXMTDMADONEB (34) 70#define AUDRCVDMADONEB (35) 71#define AUDTFSR (36) 72#define AUDRFSR (37) 73#define AUDTUR (38) 74#define AUDROR (39) 75#define AUDDTS (40) 76#define AUDRDD (41) 77#define AUDSTO (42) 78#define IRQ_USBPWR (43) 79#define IRQ_HCIM (44) 80#define IRQ_HCIBUFFACC (45) 81#define IRQ_HCIRMTWKP (46) 82#define IRQ_NHCIMFCIR (47) 83#define IRQ_USB_PORT_RESUME (48) 84#define IRQ_S0_READY_NINT (49) 85#define IRQ_S1_READY_NINT (50) 86#define IRQ_S0_CD_VALID (51) 87#define IRQ_S1_CD_VALID (52) 88#define IRQ_S0_BVD1_STSCHG (53) 89#define IRQ_S1_BVD1_STSCHG (54) 90#define SA1111_IRQ_NR (55) 91 92extern void sa1110_mb_enable(void); 93extern void sa1110_mb_disable(void); 94 95/* 96 * We keep the following data for the overall SA1111. Note that the 97 * struct device and struct resource are "fake"; they should be supplied 98 * by the bus above us. However, in the interests of getting all SA1111 99 * drivers converted over to the device model, we provide this as an 100 * anchor point for all the other drivers. 101 */ 102struct sa1111 { 103 struct device *dev; 104 struct clk *clk; 105 unsigned long phys; 106 int irq; 107 int irq_base; /* base for cascaded on-chip IRQs */ 108 spinlock_t lock; 109 void __iomem *base; 110 struct sa1111_platform_data *pdata; 111 struct irq_domain *irqdomain; 112 struct gpio_chip gc; 113#ifdef CONFIG_PM 114 void *saved_state; 115#endif 116}; 117 118/* 119 * We _really_ need to eliminate this. Its only users 120 * are the PWM and DMA checking code. 121 */ 122static struct sa1111 *g_sa1111; 123 124struct sa1111_dev_info { 125 unsigned long offset; 126 unsigned long skpcr_mask; 127 bool dma; 128 unsigned int devid; 129 unsigned int hwirq[6]; 130}; 131 132static struct sa1111_dev_info sa1111_devices[] = { 133 { 134 .offset = SA1111_USB, 135 .skpcr_mask = SKPCR_UCLKEN, 136 .dma = true, 137 .devid = SA1111_DEVID_USB, 138 .hwirq = { 139 IRQ_USBPWR, 140 IRQ_HCIM, 141 IRQ_HCIBUFFACC, 142 IRQ_HCIRMTWKP, 143 IRQ_NHCIMFCIR, 144 IRQ_USB_PORT_RESUME 145 }, 146 }, 147 { 148 .offset = 0x0600, 149 .skpcr_mask = SKPCR_I2SCLKEN | SKPCR_L3CLKEN, 150 .dma = true, 151 .devid = SA1111_DEVID_SAC, 152 .hwirq = { 153 AUDXMTDMADONEA, 154 AUDXMTDMADONEB, 155 AUDRCVDMADONEA, 156 AUDRCVDMADONEB 157 }, 158 }, 159 { 160 .offset = 0x0800, 161 .skpcr_mask = SKPCR_SCLKEN, 162 .devid = SA1111_DEVID_SSP, 163 }, 164 { 165 .offset = SA1111_KBD, 166 .skpcr_mask = SKPCR_PTCLKEN, 167 .devid = SA1111_DEVID_PS2_KBD, 168 .hwirq = { 169 IRQ_TPRXINT, 170 IRQ_TPTXINT 171 }, 172 }, 173 { 174 .offset = SA1111_MSE, 175 .skpcr_mask = SKPCR_PMCLKEN, 176 .devid = SA1111_DEVID_PS2_MSE, 177 .hwirq = { 178 IRQ_MSRXINT, 179 IRQ_MSTXINT 180 }, 181 }, 182 { 183 .offset = 0x1800, 184 .skpcr_mask = 0, 185 .devid = SA1111_DEVID_PCMCIA, 186 .hwirq = { 187 IRQ_S0_READY_NINT, 188 IRQ_S0_CD_VALID, 189 IRQ_S0_BVD1_STSCHG, 190 IRQ_S1_READY_NINT, 191 IRQ_S1_CD_VALID, 192 IRQ_S1_BVD1_STSCHG, 193 }, 194 }, 195}; 196 197static int sa1111_map_irq(struct sa1111 *sachip, irq_hw_number_t hwirq) 198{ 199 return irq_create_mapping(sachip->irqdomain, hwirq); 200} 201 202/* 203 * SA1111 interrupt support. Since clearing an IRQ while there are 204 * active IRQs causes the interrupt output to pulse, the upper levels 205 * will call us again if there are more interrupts to process. 206 */ 207static void sa1111_irq_handler(struct irq_desc *desc) 208{ 209 unsigned int stat0, stat1, i; 210 struct sa1111 *sachip = irq_desc_get_handler_data(desc); 211 struct irq_domain *irqdomain; 212 void __iomem *mapbase = sachip->base + SA1111_INTC; 213 214 stat0 = readl_relaxed(mapbase + SA1111_INTSTATCLR0); 215 stat1 = readl_relaxed(mapbase + SA1111_INTSTATCLR1); 216 217 writel_relaxed(stat0, mapbase + SA1111_INTSTATCLR0); 218 219 desc->irq_data.chip->irq_ack(&desc->irq_data); 220 221 writel_relaxed(stat1, mapbase + SA1111_INTSTATCLR1); 222 223 if (stat0 == 0 && stat1 == 0) { 224 do_bad_IRQ(desc); 225 return; 226 } 227 228 irqdomain = sachip->irqdomain; 229 230 for (i = 0; stat0; i++, stat0 >>= 1) 231 if (stat0 & 1) 232 generic_handle_domain_irq(irqdomain, i); 233 234 for (i = 32; stat1; i++, stat1 >>= 1) 235 if (stat1 & 1) 236 generic_handle_domain_irq(irqdomain, i); 237 238 /* For level-based interrupts */ 239 desc->irq_data.chip->irq_unmask(&desc->irq_data); 240} 241 242static u32 sa1111_irqmask(struct irq_data *d) 243{ 244 return BIT(irqd_to_hwirq(d) & 31); 245} 246 247static int sa1111_irqbank(struct irq_data *d) 248{ 249 return (irqd_to_hwirq(d) / 32) * 4; 250} 251 252static void sa1111_ack_irq(struct irq_data *d) 253{ 254} 255 256static void sa1111_mask_irq(struct irq_data *d) 257{ 258 struct sa1111 *sachip = irq_data_get_irq_chip_data(d); 259 void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d); 260 u32 ie; 261 262 ie = readl_relaxed(mapbase + SA1111_INTEN0); 263 ie &= ~sa1111_irqmask(d); 264 writel(ie, mapbase + SA1111_INTEN0); 265} 266 267static void sa1111_unmask_irq(struct irq_data *d) 268{ 269 struct sa1111 *sachip = irq_data_get_irq_chip_data(d); 270 void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d); 271 u32 ie; 272 273 ie = readl_relaxed(mapbase + SA1111_INTEN0); 274 ie |= sa1111_irqmask(d); 275 writel_relaxed(ie, mapbase + SA1111_INTEN0); 276} 277 278/* 279 * Attempt to re-trigger the interrupt. The SA1111 contains a register 280 * (INTSET) which claims to do this. However, in practice no amount of 281 * manipulation of INTEN and INTSET guarantees that the interrupt will 282 * be triggered. In fact, its very difficult, if not impossible to get 283 * INTSET to re-trigger the interrupt. 284 */ 285static int sa1111_retrigger_irq(struct irq_data *d) 286{ 287 struct sa1111 *sachip = irq_data_get_irq_chip_data(d); 288 void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d); 289 u32 ip, mask = sa1111_irqmask(d); 290 int i; 291 292 ip = readl_relaxed(mapbase + SA1111_INTPOL0); 293 for (i = 0; i < 8; i++) { 294 writel_relaxed(ip ^ mask, mapbase + SA1111_INTPOL0); 295 writel_relaxed(ip, mapbase + SA1111_INTPOL0); 296 if (readl_relaxed(mapbase + SA1111_INTSTATCLR0) & mask) 297 break; 298 } 299 300 if (i == 8) { 301 pr_err("Danger Will Robinson: failed to re-trigger IRQ%d\n", 302 d->irq); 303 return 0; 304 } 305 306 return 1; 307} 308 309static int sa1111_type_irq(struct irq_data *d, unsigned int flags) 310{ 311 struct sa1111 *sachip = irq_data_get_irq_chip_data(d); 312 void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d); 313 u32 ip, mask = sa1111_irqmask(d); 314 315 if (flags == IRQ_TYPE_PROBE) 316 return 0; 317 318 if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0) 319 return -EINVAL; 320 321 ip = readl_relaxed(mapbase + SA1111_INTPOL0); 322 if (flags & IRQ_TYPE_EDGE_RISING) 323 ip &= ~mask; 324 else 325 ip |= mask; 326 writel_relaxed(ip, mapbase + SA1111_INTPOL0); 327 writel_relaxed(ip, mapbase + SA1111_WAKEPOL0); 328 329 return 0; 330} 331 332static int sa1111_wake_irq(struct irq_data *d, unsigned int on) 333{ 334 struct sa1111 *sachip = irq_data_get_irq_chip_data(d); 335 void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d); 336 u32 we, mask = sa1111_irqmask(d); 337 338 we = readl_relaxed(mapbase + SA1111_WAKEEN0); 339 if (on) 340 we |= mask; 341 else 342 we &= ~mask; 343 writel_relaxed(we, mapbase + SA1111_WAKEEN0); 344 345 return 0; 346} 347 348static struct irq_chip sa1111_irq_chip = { 349 .name = "SA1111", 350 .irq_ack = sa1111_ack_irq, 351 .irq_mask = sa1111_mask_irq, 352 .irq_unmask = sa1111_unmask_irq, 353 .irq_retrigger = sa1111_retrigger_irq, 354 .irq_set_type = sa1111_type_irq, 355 .irq_set_wake = sa1111_wake_irq, 356}; 357 358static int sa1111_irqdomain_map(struct irq_domain *d, unsigned int irq, 359 irq_hw_number_t hwirq) 360{ 361 struct sa1111 *sachip = d->host_data; 362 363 /* Disallow unavailable interrupts */ 364 if (hwirq > SSPROR && hwirq < AUDXMTDMADONEA) 365 return -EINVAL; 366 367 irq_set_chip_data(irq, sachip); 368 irq_set_chip_and_handler(irq, &sa1111_irq_chip, handle_edge_irq); 369 irq_clear_status_flags(irq, IRQ_NOREQUEST | IRQ_NOPROBE); 370 371 return 0; 372} 373 374static const struct irq_domain_ops sa1111_irqdomain_ops = { 375 .map = sa1111_irqdomain_map, 376 .xlate = irq_domain_xlate_twocell, 377}; 378 379static int sa1111_setup_irq(struct sa1111 *sachip, unsigned irq_base) 380{ 381 void __iomem *irqbase = sachip->base + SA1111_INTC; 382 int ret; 383 384 /* 385 * We're guaranteed that this region hasn't been taken. 386 */ 387 request_mem_region(sachip->phys + SA1111_INTC, 512, "irq"); 388 389 ret = irq_alloc_descs(-1, irq_base, SA1111_IRQ_NR, -1); 390 if (ret <= 0) { 391 dev_err(sachip->dev, "unable to allocate %u irqs: %d\n", 392 SA1111_IRQ_NR, ret); 393 if (ret == 0) 394 ret = -EINVAL; 395 return ret; 396 } 397 398 sachip->irq_base = ret; 399 400 /* disable all IRQs */ 401 writel_relaxed(0, irqbase + SA1111_INTEN0); 402 writel_relaxed(0, irqbase + SA1111_INTEN1); 403 writel_relaxed(0, irqbase + SA1111_WAKEEN0); 404 writel_relaxed(0, irqbase + SA1111_WAKEEN1); 405 406 /* 407 * detect on rising edge. Note: Feb 2001 Errata for SA1111 408 * specifies that S0ReadyInt and S1ReadyInt should be '1'. 409 */ 410 writel_relaxed(0, irqbase + SA1111_INTPOL0); 411 writel_relaxed(BIT(IRQ_S0_READY_NINT & 31) | 412 BIT(IRQ_S1_READY_NINT & 31), 413 irqbase + SA1111_INTPOL1); 414 415 /* clear all IRQs */ 416 writel_relaxed(~0, irqbase + SA1111_INTSTATCLR0); 417 writel_relaxed(~0, irqbase + SA1111_INTSTATCLR1); 418 419 sachip->irqdomain = irq_domain_add_linear(NULL, SA1111_IRQ_NR, 420 &sa1111_irqdomain_ops, 421 sachip); 422 if (!sachip->irqdomain) { 423 irq_free_descs(sachip->irq_base, SA1111_IRQ_NR); 424 return -ENOMEM; 425 } 426 427 irq_domain_associate_many(sachip->irqdomain, 428 sachip->irq_base + IRQ_GPAIN0, 429 IRQ_GPAIN0, SSPROR + 1 - IRQ_GPAIN0); 430 irq_domain_associate_many(sachip->irqdomain, 431 sachip->irq_base + AUDXMTDMADONEA, 432 AUDXMTDMADONEA, 433 IRQ_S1_BVD1_STSCHG + 1 - AUDXMTDMADONEA); 434 435 /* 436 * Register SA1111 interrupt 437 */ 438 irq_set_irq_type(sachip->irq, IRQ_TYPE_EDGE_RISING); 439 irq_set_chained_handler_and_data(sachip->irq, sa1111_irq_handler, 440 sachip); 441 442 dev_info(sachip->dev, "Providing IRQ%u-%u\n", 443 sachip->irq_base, sachip->irq_base + SA1111_IRQ_NR - 1); 444 445 return 0; 446} 447 448static void sa1111_remove_irq(struct sa1111 *sachip) 449{ 450 struct irq_domain *domain = sachip->irqdomain; 451 void __iomem *irqbase = sachip->base + SA1111_INTC; 452 int i; 453 454 /* disable all IRQs */ 455 writel_relaxed(0, irqbase + SA1111_INTEN0); 456 writel_relaxed(0, irqbase + SA1111_INTEN1); 457 writel_relaxed(0, irqbase + SA1111_WAKEEN0); 458 writel_relaxed(0, irqbase + SA1111_WAKEEN1); 459 460 irq_set_chained_handler_and_data(sachip->irq, NULL, NULL); 461 for (i = 0; i < SA1111_IRQ_NR; i++) 462 irq_dispose_mapping(irq_find_mapping(domain, i)); 463 irq_domain_remove(domain); 464 465 release_mem_region(sachip->phys + SA1111_INTC, 512); 466} 467 468enum { 469 SA1111_GPIO_PXDDR = (SA1111_GPIO_PADDR - SA1111_GPIO_PADDR), 470 SA1111_GPIO_PXDRR = (SA1111_GPIO_PADRR - SA1111_GPIO_PADDR), 471 SA1111_GPIO_PXDWR = (SA1111_GPIO_PADWR - SA1111_GPIO_PADDR), 472 SA1111_GPIO_PXSDR = (SA1111_GPIO_PASDR - SA1111_GPIO_PADDR), 473 SA1111_GPIO_PXSSR = (SA1111_GPIO_PASSR - SA1111_GPIO_PADDR), 474}; 475 476static struct sa1111 *gc_to_sa1111(struct gpio_chip *gc) 477{ 478 return container_of(gc, struct sa1111, gc); 479} 480 481static void __iomem *sa1111_gpio_map_reg(struct sa1111 *sachip, unsigned offset) 482{ 483 void __iomem *reg = sachip->base + SA1111_GPIO; 484 485 if (offset < 4) 486 return reg + SA1111_GPIO_PADDR; 487 if (offset < 10) 488 return reg + SA1111_GPIO_PBDDR; 489 if (offset < 18) 490 return reg + SA1111_GPIO_PCDDR; 491 return NULL; 492} 493 494static u32 sa1111_gpio_map_bit(unsigned offset) 495{ 496 if (offset < 4) 497 return BIT(offset); 498 if (offset < 10) 499 return BIT(offset - 4); 500 if (offset < 18) 501 return BIT(offset - 10); 502 return 0; 503} 504 505static void sa1111_gpio_modify(void __iomem *reg, u32 mask, u32 set) 506{ 507 u32 val; 508 509 val = readl_relaxed(reg); 510 val &= ~mask; 511 val |= mask & set; 512 writel_relaxed(val, reg); 513} 514 515static int sa1111_gpio_get_direction(struct gpio_chip *gc, unsigned offset) 516{ 517 struct sa1111 *sachip = gc_to_sa1111(gc); 518 void __iomem *reg = sa1111_gpio_map_reg(sachip, offset); 519 u32 mask = sa1111_gpio_map_bit(offset); 520 521 return !!(readl_relaxed(reg + SA1111_GPIO_PXDDR) & mask); 522} 523 524static int sa1111_gpio_direction_input(struct gpio_chip *gc, unsigned offset) 525{ 526 struct sa1111 *sachip = gc_to_sa1111(gc); 527 unsigned long flags; 528 void __iomem *reg = sa1111_gpio_map_reg(sachip, offset); 529 u32 mask = sa1111_gpio_map_bit(offset); 530 531 spin_lock_irqsave(&sachip->lock, flags); 532 sa1111_gpio_modify(reg + SA1111_GPIO_PXDDR, mask, mask); 533 sa1111_gpio_modify(reg + SA1111_GPIO_PXSDR, mask, mask); 534 spin_unlock_irqrestore(&sachip->lock, flags); 535 536 return 0; 537} 538 539static int sa1111_gpio_direction_output(struct gpio_chip *gc, unsigned offset, 540 int value) 541{ 542 struct sa1111 *sachip = gc_to_sa1111(gc); 543 unsigned long flags; 544 void __iomem *reg = sa1111_gpio_map_reg(sachip, offset); 545 u32 mask = sa1111_gpio_map_bit(offset); 546 547 spin_lock_irqsave(&sachip->lock, flags); 548 sa1111_gpio_modify(reg + SA1111_GPIO_PXDWR, mask, value ? mask : 0); 549 sa1111_gpio_modify(reg + SA1111_GPIO_PXSSR, mask, value ? mask : 0); 550 sa1111_gpio_modify(reg + SA1111_GPIO_PXDDR, mask, 0); 551 sa1111_gpio_modify(reg + SA1111_GPIO_PXSDR, mask, 0); 552 spin_unlock_irqrestore(&sachip->lock, flags); 553 554 return 0; 555} 556 557static int sa1111_gpio_get(struct gpio_chip *gc, unsigned offset) 558{ 559 struct sa1111 *sachip = gc_to_sa1111(gc); 560 void __iomem *reg = sa1111_gpio_map_reg(sachip, offset); 561 u32 mask = sa1111_gpio_map_bit(offset); 562 563 return !!(readl_relaxed(reg + SA1111_GPIO_PXDRR) & mask); 564} 565 566static void sa1111_gpio_set(struct gpio_chip *gc, unsigned offset, int value) 567{ 568 struct sa1111 *sachip = gc_to_sa1111(gc); 569 unsigned long flags; 570 void __iomem *reg = sa1111_gpio_map_reg(sachip, offset); 571 u32 mask = sa1111_gpio_map_bit(offset); 572 573 spin_lock_irqsave(&sachip->lock, flags); 574 sa1111_gpio_modify(reg + SA1111_GPIO_PXDWR, mask, value ? mask : 0); 575 sa1111_gpio_modify(reg + SA1111_GPIO_PXSSR, mask, value ? mask : 0); 576 spin_unlock_irqrestore(&sachip->lock, flags); 577} 578 579static void sa1111_gpio_set_multiple(struct gpio_chip *gc, unsigned long *mask, 580 unsigned long *bits) 581{ 582 struct sa1111 *sachip = gc_to_sa1111(gc); 583 unsigned long flags; 584 void __iomem *reg = sachip->base + SA1111_GPIO; 585 u32 msk, val; 586 587 msk = *mask; 588 val = *bits; 589 590 spin_lock_irqsave(&sachip->lock, flags); 591 sa1111_gpio_modify(reg + SA1111_GPIO_PADWR, msk & 15, val); 592 sa1111_gpio_modify(reg + SA1111_GPIO_PASSR, msk & 15, val); 593 sa1111_gpio_modify(reg + SA1111_GPIO_PBDWR, (msk >> 4) & 255, val >> 4); 594 sa1111_gpio_modify(reg + SA1111_GPIO_PBSSR, (msk >> 4) & 255, val >> 4); 595 sa1111_gpio_modify(reg + SA1111_GPIO_PCDWR, (msk >> 12) & 255, val >> 12); 596 sa1111_gpio_modify(reg + SA1111_GPIO_PCSSR, (msk >> 12) & 255, val >> 12); 597 spin_unlock_irqrestore(&sachip->lock, flags); 598} 599 600static int sa1111_gpio_to_irq(struct gpio_chip *gc, unsigned offset) 601{ 602 struct sa1111 *sachip = gc_to_sa1111(gc); 603 604 return sa1111_map_irq(sachip, offset); 605} 606 607static int sa1111_setup_gpios(struct sa1111 *sachip) 608{ 609 sachip->gc.label = "sa1111"; 610 sachip->gc.parent = sachip->dev; 611 sachip->gc.owner = THIS_MODULE; 612 sachip->gc.get_direction = sa1111_gpio_get_direction; 613 sachip->gc.direction_input = sa1111_gpio_direction_input; 614 sachip->gc.direction_output = sa1111_gpio_direction_output; 615 sachip->gc.get = sa1111_gpio_get; 616 sachip->gc.set = sa1111_gpio_set; 617 sachip->gc.set_multiple = sa1111_gpio_set_multiple; 618 sachip->gc.to_irq = sa1111_gpio_to_irq; 619 sachip->gc.base = -1; 620 sachip->gc.ngpio = 18; 621 622 return devm_gpiochip_add_data(sachip->dev, &sachip->gc, sachip); 623} 624 625/* 626 * Bring the SA1111 out of reset. This requires a set procedure: 627 * 1. nRESET asserted (by hardware) 628 * 2. CLK turned on from SA1110 629 * 3. nRESET deasserted 630 * 4. VCO turned on, PLL_BYPASS turned off 631 * 5. Wait lock time, then assert RCLKEn 632 * 7. PCR set to allow clocking of individual functions 633 * 634 * Until we've done this, the only registers we can access are: 635 * SBI_SKCR 636 * SBI_SMCR 637 * SBI_SKID 638 */ 639static void sa1111_wake(struct sa1111 *sachip) 640{ 641 unsigned long flags, r; 642 643 spin_lock_irqsave(&sachip->lock, flags); 644 645 clk_enable(sachip->clk); 646 647 /* 648 * Turn VCO on, and disable PLL Bypass. 649 */ 650 r = readl_relaxed(sachip->base + SA1111_SKCR); 651 r &= ~SKCR_VCO_OFF; 652 writel_relaxed(r, sachip->base + SA1111_SKCR); 653 r |= SKCR_PLL_BYPASS | SKCR_OE_EN; 654 writel_relaxed(r, sachip->base + SA1111_SKCR); 655 656 /* 657 * Wait lock time. SA1111 manual _doesn't_ 658 * specify a figure for this! We choose 100us. 659 */ 660 udelay(100); 661 662 /* 663 * Enable RCLK. We also ensure that RDYEN is set. 664 */ 665 r |= SKCR_RCLKEN | SKCR_RDYEN; 666 writel_relaxed(r, sachip->base + SA1111_SKCR); 667 668 /* 669 * Wait 14 RCLK cycles for the chip to finish coming out 670 * of reset. (RCLK=24MHz). This is 590ns. 671 */ 672 udelay(1); 673 674 /* 675 * Ensure all clocks are initially off. 676 */ 677 writel_relaxed(0, sachip->base + SA1111_SKPCR); 678 679 spin_unlock_irqrestore(&sachip->lock, flags); 680} 681 682#ifdef CONFIG_ARCH_SA1100 683 684static u32 sa1111_dma_mask[] = { 685 ~0, 686 ~(1 << 20), 687 ~(1 << 23), 688 ~(1 << 24), 689 ~(1 << 25), 690 ~(1 << 20), 691 ~(1 << 20), 692 0, 693}; 694 695/* 696 * Configure the SA1111 shared memory controller. 697 */ 698void 699sa1111_configure_smc(struct sa1111 *sachip, int sdram, unsigned int drac, 700 unsigned int cas_latency) 701{ 702 unsigned int smcr = SMCR_DTIM | SMCR_MBGE | FInsrt(drac, SMCR_DRAC); 703 704 if (cas_latency == 3) 705 smcr |= SMCR_CLAT; 706 707 writel_relaxed(smcr, sachip->base + SA1111_SMCR); 708 709 /* 710 * Now clear the bits in the DMA mask to work around the SA1111 711 * DMA erratum (Intel StrongARM SA-1111 Microprocessor Companion 712 * Chip Specification Update, June 2000, Erratum #7). 713 */ 714 if (sachip->dev->dma_mask) 715 *sachip->dev->dma_mask &= sa1111_dma_mask[drac >> 2]; 716 717 sachip->dev->coherent_dma_mask &= sa1111_dma_mask[drac >> 2]; 718} 719#endif 720 721static void sa1111_dev_release(struct device *_dev) 722{ 723 struct sa1111_dev *dev = to_sa1111_device(_dev); 724 725 kfree(dev); 726} 727 728static int 729sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent, 730 struct sa1111_dev_info *info) 731{ 732 struct sa1111_dev *dev; 733 unsigned i; 734 int ret; 735 736 dev = kzalloc(sizeof(struct sa1111_dev), GFP_KERNEL); 737 if (!dev) { 738 ret = -ENOMEM; 739 goto err_alloc; 740 } 741 742 device_initialize(&dev->dev); 743 dev_set_name(&dev->dev, "%4.4lx", info->offset); 744 dev->devid = info->devid; 745 dev->dev.parent = sachip->dev; 746 dev->dev.bus = &sa1111_bus_type; 747 dev->dev.release = sa1111_dev_release; 748 dev->res.start = sachip->phys + info->offset; 749 dev->res.end = dev->res.start + 511; 750 dev->res.name = dev_name(&dev->dev); 751 dev->res.flags = IORESOURCE_MEM; 752 dev->mapbase = sachip->base + info->offset; 753 dev->skpcr_mask = info->skpcr_mask; 754 755 for (i = 0; i < ARRAY_SIZE(info->hwirq); i++) 756 dev->hwirq[i] = info->hwirq[i]; 757 758 /* 759 * If the parent device has a DMA mask associated with it, and 760 * this child supports DMA, propagate it down to the children. 761 */ 762 if (info->dma && sachip->dev->dma_mask) { 763 dev->dma_mask = *sachip->dev->dma_mask; 764 dev->dev.dma_mask = &dev->dma_mask; 765 dev->dev.coherent_dma_mask = sachip->dev->coherent_dma_mask; 766 } 767 768 ret = request_resource(parent, &dev->res); 769 if (ret) { 770 dev_err(sachip->dev, "failed to allocate resource for %s\n", 771 dev->res.name); 772 goto err_resource; 773 } 774 775 ret = device_add(&dev->dev); 776 if (ret) 777 goto err_add; 778 return 0; 779 780 err_add: 781 release_resource(&dev->res); 782 err_resource: 783 put_device(&dev->dev); 784 err_alloc: 785 return ret; 786} 787 788/** 789 * sa1111_probe - probe for a single SA1111 chip. 790 * @phys_addr: physical address of device. 791 * 792 * Probe for a SA1111 chip. This must be called 793 * before any other SA1111-specific code. 794 * 795 * Returns: 796 * %-ENODEV device not found. 797 * %-EBUSY physical address already marked in-use. 798 * %-EINVAL no platform data passed 799 * %0 successful. 800 */ 801static int __sa1111_probe(struct device *me, struct resource *mem, int irq) 802{ 803 struct sa1111_platform_data *pd = me->platform_data; 804 struct sa1111 *sachip; 805 unsigned long id; 806 unsigned int has_devs; 807 int i, ret = -ENODEV; 808 809 if (!pd) 810 return -EINVAL; 811 812 sachip = devm_kzalloc(me, sizeof(struct sa1111), GFP_KERNEL); 813 if (!sachip) 814 return -ENOMEM; 815 816 sachip->clk = devm_clk_get(me, "SA1111_CLK"); 817 if (IS_ERR(sachip->clk)) 818 return PTR_ERR(sachip->clk); 819 820 ret = clk_prepare(sachip->clk); 821 if (ret) 822 return ret; 823 824 spin_lock_init(&sachip->lock); 825 826 sachip->dev = me; 827 dev_set_drvdata(sachip->dev, sachip); 828 829 sachip->pdata = pd; 830 sachip->phys = mem->start; 831 sachip->irq = irq; 832 833 /* 834 * Map the whole region. This also maps the 835 * registers for our children. 836 */ 837 sachip->base = ioremap(mem->start, PAGE_SIZE * 2); 838 if (!sachip->base) { 839 ret = -ENOMEM; 840 goto err_clk_unprep; 841 } 842 843 /* 844 * Probe for the chip. Only touch the SBI registers. 845 */ 846 id = readl_relaxed(sachip->base + SA1111_SKID); 847 if ((id & SKID_ID_MASK) != SKID_SA1111_ID) { 848 printk(KERN_DEBUG "SA1111 not detected: ID = %08lx\n", id); 849 ret = -ENODEV; 850 goto err_unmap; 851 } 852 853 pr_info("SA1111 Microprocessor Companion Chip: silicon revision %lx, metal revision %lx\n", 854 (id & SKID_SIREV_MASK) >> 4, id & SKID_MTREV_MASK); 855 856 /* 857 * We found it. Wake the chip up, and initialise. 858 */ 859 sa1111_wake(sachip); 860 861 /* 862 * The interrupt controller must be initialised before any 863 * other device to ensure that the interrupts are available. 864 */ 865 ret = sa1111_setup_irq(sachip, pd->irq_base); 866 if (ret) 867 goto err_clk; 868 869 /* Setup the GPIOs - should really be done after the IRQ setup */ 870 ret = sa1111_setup_gpios(sachip); 871 if (ret) 872 goto err_irq; 873 874#ifdef CONFIG_ARCH_SA1100 875 { 876 unsigned int val; 877 878 /* 879 * The SDRAM configuration of the SA1110 and the SA1111 must 880 * match. This is very important to ensure that SA1111 accesses 881 * don't corrupt the SDRAM. Note that this ungates the SA1111's 882 * MBGNT signal, so we must have called sa1110_mb_disable() 883 * beforehand. 884 */ 885 sa1111_configure_smc(sachip, 1, 886 FExtr(MDCNFG, MDCNFG_SA1110_DRAC0), 887 FExtr(MDCNFG, MDCNFG_SA1110_TDL0)); 888 889 /* 890 * We only need to turn on DCLK whenever we want to use the 891 * DMA. It can otherwise be held firmly in the off position. 892 * (currently, we always enable it.) 893 */ 894 val = readl_relaxed(sachip->base + SA1111_SKPCR); 895 writel_relaxed(val | SKPCR_DCLKEN, sachip->base + SA1111_SKPCR); 896 897 /* 898 * Enable the SA1110 memory bus request and grant signals. 899 */ 900 sa1110_mb_enable(); 901 } 902#endif 903 904 g_sa1111 = sachip; 905 906 has_devs = ~0; 907 if (pd) 908 has_devs &= ~pd->disable_devs; 909 910 for (i = 0; i < ARRAY_SIZE(sa1111_devices); i++) 911 if (sa1111_devices[i].devid & has_devs) 912 sa1111_init_one_child(sachip, mem, &sa1111_devices[i]); 913 914 return 0; 915 916 err_irq: 917 sa1111_remove_irq(sachip); 918 err_clk: 919 clk_disable(sachip->clk); 920 err_unmap: 921 iounmap(sachip->base); 922 err_clk_unprep: 923 clk_unprepare(sachip->clk); 924 return ret; 925} 926 927static int sa1111_remove_one(struct device *dev, void *data) 928{ 929 struct sa1111_dev *sadev = to_sa1111_device(dev); 930 if (dev->bus != &sa1111_bus_type) 931 return 0; 932 device_del(&sadev->dev); 933 release_resource(&sadev->res); 934 put_device(&sadev->dev); 935 return 0; 936} 937 938static void __sa1111_remove(struct sa1111 *sachip) 939{ 940 device_for_each_child(sachip->dev, NULL, sa1111_remove_one); 941 942 sa1111_remove_irq(sachip); 943 944 clk_disable(sachip->clk); 945 clk_unprepare(sachip->clk); 946 947 iounmap(sachip->base); 948} 949 950struct sa1111_save_data { 951 unsigned int skcr; 952 unsigned int skpcr; 953 unsigned int skcdr; 954 unsigned char skaud; 955 unsigned char skpwm0; 956 unsigned char skpwm1; 957 958 /* 959 * Interrupt controller 960 */ 961 unsigned int intpol0; 962 unsigned int intpol1; 963 unsigned int inten0; 964 unsigned int inten1; 965 unsigned int wakepol0; 966 unsigned int wakepol1; 967 unsigned int wakeen0; 968 unsigned int wakeen1; 969}; 970 971#ifdef CONFIG_PM 972 973static int sa1111_suspend_noirq(struct device *dev) 974{ 975 struct sa1111 *sachip = dev_get_drvdata(dev); 976 struct sa1111_save_data *save; 977 unsigned long flags; 978 unsigned int val; 979 void __iomem *base; 980 981 save = kmalloc(sizeof(struct sa1111_save_data), GFP_KERNEL); 982 if (!save) 983 return -ENOMEM; 984 sachip->saved_state = save; 985 986 spin_lock_irqsave(&sachip->lock, flags); 987 988 /* 989 * Save state. 990 */ 991 base = sachip->base; 992 save->skcr = readl_relaxed(base + SA1111_SKCR); 993 save->skpcr = readl_relaxed(base + SA1111_SKPCR); 994 save->skcdr = readl_relaxed(base + SA1111_SKCDR); 995 save->skaud = readl_relaxed(base + SA1111_SKAUD); 996 save->skpwm0 = readl_relaxed(base + SA1111_SKPWM0); 997 save->skpwm1 = readl_relaxed(base + SA1111_SKPWM1); 998 999 writel_relaxed(0, sachip->base + SA1111_SKPWM0); 1000 writel_relaxed(0, sachip->base + SA1111_SKPWM1); 1001 1002 base = sachip->base + SA1111_INTC; 1003 save->intpol0 = readl_relaxed(base + SA1111_INTPOL0); 1004 save->intpol1 = readl_relaxed(base + SA1111_INTPOL1); 1005 save->inten0 = readl_relaxed(base + SA1111_INTEN0); 1006 save->inten1 = readl_relaxed(base + SA1111_INTEN1); 1007 save->wakepol0 = readl_relaxed(base + SA1111_WAKEPOL0); 1008 save->wakepol1 = readl_relaxed(base + SA1111_WAKEPOL1); 1009 save->wakeen0 = readl_relaxed(base + SA1111_WAKEEN0); 1010 save->wakeen1 = readl_relaxed(base + SA1111_WAKEEN1); 1011 1012 /* 1013 * Disable. 1014 */ 1015 val = readl_relaxed(sachip->base + SA1111_SKCR); 1016 writel_relaxed(val | SKCR_SLEEP, sachip->base + SA1111_SKCR); 1017 1018 clk_disable(sachip->clk); 1019 1020 spin_unlock_irqrestore(&sachip->lock, flags); 1021 1022#ifdef CONFIG_ARCH_SA1100 1023 sa1110_mb_disable(); 1024#endif 1025 1026 return 0; 1027} 1028 1029/* 1030 * sa1111_resume - Restore the SA1111 device state. 1031 * @dev: device to restore 1032 * 1033 * Restore the general state of the SA1111; clock control and 1034 * interrupt controller. Other parts of the SA1111 must be 1035 * restored by their respective drivers, and must be called 1036 * via LDM after this function. 1037 */ 1038static int sa1111_resume_noirq(struct device *dev) 1039{ 1040 struct sa1111 *sachip = dev_get_drvdata(dev); 1041 struct sa1111_save_data *save; 1042 unsigned long flags, id; 1043 void __iomem *base; 1044 1045 save = sachip->saved_state; 1046 if (!save) 1047 return 0; 1048 1049 /* 1050 * Ensure that the SA1111 is still here. 1051 * FIXME: shouldn't do this here. 1052 */ 1053 id = readl_relaxed(sachip->base + SA1111_SKID); 1054 if ((id & SKID_ID_MASK) != SKID_SA1111_ID) { 1055 __sa1111_remove(sachip); 1056 dev_set_drvdata(dev, NULL); 1057 kfree(save); 1058 return 0; 1059 } 1060 1061 /* 1062 * First of all, wake up the chip. 1063 */ 1064 sa1111_wake(sachip); 1065 1066#ifdef CONFIG_ARCH_SA1100 1067 /* Enable the memory bus request/grant signals */ 1068 sa1110_mb_enable(); 1069#endif 1070 1071 /* 1072 * Only lock for write ops. Also, sa1111_wake must be called with 1073 * released spinlock! 1074 */ 1075 spin_lock_irqsave(&sachip->lock, flags); 1076 1077 writel_relaxed(0, sachip->base + SA1111_INTC + SA1111_INTEN0); 1078 writel_relaxed(0, sachip->base + SA1111_INTC + SA1111_INTEN1); 1079 1080 base = sachip->base; 1081 writel_relaxed(save->skcr, base + SA1111_SKCR); 1082 writel_relaxed(save->skpcr, base + SA1111_SKPCR); 1083 writel_relaxed(save->skcdr, base + SA1111_SKCDR); 1084 writel_relaxed(save->skaud, base + SA1111_SKAUD); 1085 writel_relaxed(save->skpwm0, base + SA1111_SKPWM0); 1086 writel_relaxed(save->skpwm1, base + SA1111_SKPWM1); 1087 1088 base = sachip->base + SA1111_INTC; 1089 writel_relaxed(save->intpol0, base + SA1111_INTPOL0); 1090 writel_relaxed(save->intpol1, base + SA1111_INTPOL1); 1091 writel_relaxed(save->inten0, base + SA1111_INTEN0); 1092 writel_relaxed(save->inten1, base + SA1111_INTEN1); 1093 writel_relaxed(save->wakepol0, base + SA1111_WAKEPOL0); 1094 writel_relaxed(save->wakepol1, base + SA1111_WAKEPOL1); 1095 writel_relaxed(save->wakeen0, base + SA1111_WAKEEN0); 1096 writel_relaxed(save->wakeen1, base + SA1111_WAKEEN1); 1097 1098 spin_unlock_irqrestore(&sachip->lock, flags); 1099 1100 sachip->saved_state = NULL; 1101 kfree(save); 1102 1103 return 0; 1104} 1105 1106#else 1107#define sa1111_suspend_noirq NULL 1108#define sa1111_resume_noirq NULL 1109#endif 1110 1111static int sa1111_probe(struct platform_device *pdev) 1112{ 1113 struct resource *mem; 1114 int irq; 1115 1116 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1117 if (!mem) 1118 return -EINVAL; 1119 irq = platform_get_irq(pdev, 0); 1120 if (irq < 0) 1121 return irq; 1122 1123 return __sa1111_probe(&pdev->dev, mem, irq); 1124} 1125 1126static int sa1111_remove(struct platform_device *pdev) 1127{ 1128 struct sa1111 *sachip = platform_get_drvdata(pdev); 1129 1130 if (sachip) { 1131#ifdef CONFIG_PM 1132 kfree(sachip->saved_state); 1133 sachip->saved_state = NULL; 1134#endif 1135 __sa1111_remove(sachip); 1136 platform_set_drvdata(pdev, NULL); 1137 } 1138 1139 return 0; 1140} 1141 1142static struct dev_pm_ops sa1111_pm_ops = { 1143 .suspend_noirq = sa1111_suspend_noirq, 1144 .resume_noirq = sa1111_resume_noirq, 1145}; 1146 1147/* 1148 * Not sure if this should be on the system bus or not yet. 1149 * We really want some way to register a system device at 1150 * the per-machine level, and then have this driver pick 1151 * up the registered devices. 1152 * 1153 * We also need to handle the SDRAM configuration for 1154 * PXA250/SA1110 machine classes. 1155 */ 1156static struct platform_driver sa1111_device_driver = { 1157 .probe = sa1111_probe, 1158 .remove = sa1111_remove, 1159 .driver = { 1160 .name = "sa1111", 1161 .pm = &sa1111_pm_ops, 1162 }, 1163}; 1164 1165/* 1166 * Get the parent device driver (us) structure 1167 * from a child function device 1168 */ 1169static inline struct sa1111 *sa1111_chip_driver(struct sa1111_dev *sadev) 1170{ 1171 return (struct sa1111 *)dev_get_drvdata(sadev->dev.parent); 1172} 1173 1174/* 1175 * The bits in the opdiv field are non-linear. 1176 */ 1177static unsigned char opdiv_table[] = { 1, 4, 2, 8 }; 1178 1179static unsigned int __sa1111_pll_clock(struct sa1111 *sachip) 1180{ 1181 unsigned int skcdr, fbdiv, ipdiv, opdiv; 1182 1183 skcdr = readl_relaxed(sachip->base + SA1111_SKCDR); 1184 1185 fbdiv = (skcdr & 0x007f) + 2; 1186 ipdiv = ((skcdr & 0x0f80) >> 7) + 2; 1187 opdiv = opdiv_table[(skcdr & 0x3000) >> 12]; 1188 1189 return 3686400 * fbdiv / (ipdiv * opdiv); 1190} 1191 1192/** 1193 * sa1111_pll_clock - return the current PLL clock frequency. 1194 * @sadev: SA1111 function block 1195 * 1196 * BUG: we should look at SKCR. We also blindly believe that 1197 * the chip is being fed with the 3.6864MHz clock. 1198 * 1199 * Returns the PLL clock in Hz. 1200 */ 1201unsigned int sa1111_pll_clock(struct sa1111_dev *sadev) 1202{ 1203 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1204 1205 return __sa1111_pll_clock(sachip); 1206} 1207EXPORT_SYMBOL(sa1111_pll_clock); 1208 1209/** 1210 * sa1111_select_audio_mode - select I2S or AC link mode 1211 * @sadev: SA1111 function block 1212 * @mode: One of %SA1111_AUDIO_ACLINK or %SA1111_AUDIO_I2S 1213 * 1214 * Frob the SKCR to select AC Link mode or I2S mode for 1215 * the audio block. 1216 */ 1217void sa1111_select_audio_mode(struct sa1111_dev *sadev, int mode) 1218{ 1219 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1220 unsigned long flags; 1221 unsigned int val; 1222 1223 spin_lock_irqsave(&sachip->lock, flags); 1224 1225 val = readl_relaxed(sachip->base + SA1111_SKCR); 1226 if (mode == SA1111_AUDIO_I2S) { 1227 val &= ~SKCR_SELAC; 1228 } else { 1229 val |= SKCR_SELAC; 1230 } 1231 writel_relaxed(val, sachip->base + SA1111_SKCR); 1232 1233 spin_unlock_irqrestore(&sachip->lock, flags); 1234} 1235EXPORT_SYMBOL(sa1111_select_audio_mode); 1236 1237/** 1238 * sa1111_set_audio_rate - set the audio sample rate 1239 * @sadev: SA1111 SAC function block 1240 * @rate: sample rate to select 1241 */ 1242int sa1111_set_audio_rate(struct sa1111_dev *sadev, int rate) 1243{ 1244 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1245 unsigned int div; 1246 1247 if (sadev->devid != SA1111_DEVID_SAC) 1248 return -EINVAL; 1249 1250 div = (__sa1111_pll_clock(sachip) / 256 + rate / 2) / rate; 1251 if (div == 0) 1252 div = 1; 1253 if (div > 128) 1254 div = 128; 1255 1256 writel_relaxed(div - 1, sachip->base + SA1111_SKAUD); 1257 1258 return 0; 1259} 1260EXPORT_SYMBOL(sa1111_set_audio_rate); 1261 1262/** 1263 * sa1111_get_audio_rate - get the audio sample rate 1264 * @sadev: SA1111 SAC function block device 1265 */ 1266int sa1111_get_audio_rate(struct sa1111_dev *sadev) 1267{ 1268 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1269 unsigned long div; 1270 1271 if (sadev->devid != SA1111_DEVID_SAC) 1272 return -EINVAL; 1273 1274 div = readl_relaxed(sachip->base + SA1111_SKAUD) + 1; 1275 1276 return __sa1111_pll_clock(sachip) / (256 * div); 1277} 1278EXPORT_SYMBOL(sa1111_get_audio_rate); 1279 1280/* 1281 * Individual device operations. 1282 */ 1283 1284/** 1285 * sa1111_enable_device - enable an on-chip SA1111 function block 1286 * @sadev: SA1111 function block device to enable 1287 */ 1288int sa1111_enable_device(struct sa1111_dev *sadev) 1289{ 1290 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1291 unsigned long flags; 1292 unsigned int val; 1293 int ret = 0; 1294 1295 if (sachip->pdata && sachip->pdata->enable) 1296 ret = sachip->pdata->enable(sachip->pdata->data, sadev->devid); 1297 1298 if (ret == 0) { 1299 spin_lock_irqsave(&sachip->lock, flags); 1300 val = readl_relaxed(sachip->base + SA1111_SKPCR); 1301 writel_relaxed(val | sadev->skpcr_mask, sachip->base + SA1111_SKPCR); 1302 spin_unlock_irqrestore(&sachip->lock, flags); 1303 } 1304 return ret; 1305} 1306EXPORT_SYMBOL(sa1111_enable_device); 1307 1308/** 1309 * sa1111_disable_device - disable an on-chip SA1111 function block 1310 * @sadev: SA1111 function block device to disable 1311 */ 1312void sa1111_disable_device(struct sa1111_dev *sadev) 1313{ 1314 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1315 unsigned long flags; 1316 unsigned int val; 1317 1318 spin_lock_irqsave(&sachip->lock, flags); 1319 val = readl_relaxed(sachip->base + SA1111_SKPCR); 1320 writel_relaxed(val & ~sadev->skpcr_mask, sachip->base + SA1111_SKPCR); 1321 spin_unlock_irqrestore(&sachip->lock, flags); 1322 1323 if (sachip->pdata && sachip->pdata->disable) 1324 sachip->pdata->disable(sachip->pdata->data, sadev->devid); 1325} 1326EXPORT_SYMBOL(sa1111_disable_device); 1327 1328int sa1111_get_irq(struct sa1111_dev *sadev, unsigned num) 1329{ 1330 struct sa1111 *sachip = sa1111_chip_driver(sadev); 1331 if (num >= ARRAY_SIZE(sadev->hwirq)) 1332 return -EINVAL; 1333 return sa1111_map_irq(sachip, sadev->hwirq[num]); 1334} 1335EXPORT_SYMBOL_GPL(sa1111_get_irq); 1336 1337/* 1338 * SA1111 "Register Access Bus." 1339 * 1340 * We model this as a regular bus type, and hang devices directly 1341 * off this. 1342 */ 1343static int sa1111_match(struct device *_dev, struct device_driver *_drv) 1344{ 1345 struct sa1111_dev *dev = to_sa1111_device(_dev); 1346 struct sa1111_driver *drv = SA1111_DRV(_drv); 1347 1348 return !!(dev->devid & drv->devid); 1349} 1350 1351static int sa1111_bus_probe(struct device *dev) 1352{ 1353 struct sa1111_dev *sadev = to_sa1111_device(dev); 1354 struct sa1111_driver *drv = SA1111_DRV(dev->driver); 1355 int ret = -ENODEV; 1356 1357 if (drv->probe) 1358 ret = drv->probe(sadev); 1359 return ret; 1360} 1361 1362static void sa1111_bus_remove(struct device *dev) 1363{ 1364 struct sa1111_dev *sadev = to_sa1111_device(dev); 1365 struct sa1111_driver *drv = SA1111_DRV(dev->driver); 1366 1367 if (drv->remove) 1368 drv->remove(sadev); 1369} 1370 1371struct bus_type sa1111_bus_type = { 1372 .name = "sa1111-rab", 1373 .match = sa1111_match, 1374 .probe = sa1111_bus_probe, 1375 .remove = sa1111_bus_remove, 1376}; 1377EXPORT_SYMBOL(sa1111_bus_type); 1378 1379int sa1111_driver_register(struct sa1111_driver *driver) 1380{ 1381 driver->drv.bus = &sa1111_bus_type; 1382 return driver_register(&driver->drv); 1383} 1384EXPORT_SYMBOL(sa1111_driver_register); 1385 1386void sa1111_driver_unregister(struct sa1111_driver *driver) 1387{ 1388 driver_unregister(&driver->drv); 1389} 1390EXPORT_SYMBOL(sa1111_driver_unregister); 1391 1392#ifdef CONFIG_DMABOUNCE 1393/* 1394 * According to the "Intel StrongARM SA-1111 Microprocessor Companion 1395 * Chip Specification Update" (June 2000), erratum #7, there is a 1396 * significant bug in the SA1111 SDRAM shared memory controller. If 1397 * an access to a region of memory above 1MB relative to the bank base, 1398 * it is important that address bit 10 _NOT_ be asserted. Depending 1399 * on the configuration of the RAM, bit 10 may correspond to one 1400 * of several different (processor-relative) address bits. 1401 * 1402 * This routine only identifies whether or not a given DMA address 1403 * is susceptible to the bug. 1404 * 1405 * This should only get called for sa1111_device types due to the 1406 * way we configure our device dma_masks. 1407 */ 1408static int sa1111_needs_bounce(struct device *dev, dma_addr_t addr, size_t size) 1409{ 1410 /* 1411 * Section 4.6 of the "Intel StrongARM SA-1111 Development Module 1412 * User's Guide" mentions that jumpers R51 and R52 control the 1413 * target of SA-1111 DMA (either SDRAM bank 0 on Assabet, or 1414 * SDRAM bank 1 on Neponset). The default configuration selects 1415 * Assabet, so any address in bank 1 is necessarily invalid. 1416 */ 1417 return (machine_is_assabet() || machine_is_pfs168()) && 1418 (addr >= 0xc8000000 || (addr + size) >= 0xc8000000); 1419} 1420 1421static int sa1111_notifier_call(struct notifier_block *n, unsigned long action, 1422 void *data) 1423{ 1424 struct sa1111_dev *dev = to_sa1111_device(data); 1425 1426 switch (action) { 1427 case BUS_NOTIFY_ADD_DEVICE: 1428 if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL) { 1429 int ret = dmabounce_register_dev(&dev->dev, 1024, 4096, 1430 sa1111_needs_bounce); 1431 if (ret) 1432 dev_err(&dev->dev, "failed to register with dmabounce: %d\n", ret); 1433 } 1434 break; 1435 1436 case BUS_NOTIFY_DEL_DEVICE: 1437 if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL) 1438 dmabounce_unregister_dev(&dev->dev); 1439 break; 1440 } 1441 return NOTIFY_OK; 1442} 1443 1444static struct notifier_block sa1111_bus_notifier = { 1445 .notifier_call = sa1111_notifier_call, 1446}; 1447#endif 1448 1449static int __init sa1111_init(void) 1450{ 1451 int ret = bus_register(&sa1111_bus_type); 1452#ifdef CONFIG_DMABOUNCE 1453 if (ret == 0) 1454 bus_register_notifier(&sa1111_bus_type, &sa1111_bus_notifier); 1455#endif 1456 if (ret == 0) 1457 platform_driver_register(&sa1111_device_driver); 1458 return ret; 1459} 1460 1461static void __exit sa1111_exit(void) 1462{ 1463 platform_driver_unregister(&sa1111_device_driver); 1464#ifdef CONFIG_DMABOUNCE 1465 bus_unregister_notifier(&sa1111_bus_type, &sa1111_bus_notifier); 1466#endif 1467 bus_unregister(&sa1111_bus_type); 1468} 1469 1470subsys_initcall(sa1111_init); 1471module_exit(sa1111_exit); 1472 1473MODULE_DESCRIPTION("Intel Corporation SA1111 core driver"); 1474MODULE_LICENSE("GPL");