blake2b-neon-core.S (10122B)
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * BLAKE2b digest algorithm, NEON accelerated 4 * 5 * Copyright 2020 Google LLC 6 * 7 * Author: Eric Biggers <ebiggers@google.com> 8 */ 9 10#include <linux/linkage.h> 11 12 .text 13 .fpu neon 14 15 // The arguments to blake2b_compress_neon() 16 STATE .req r0 17 BLOCK .req r1 18 NBLOCKS .req r2 19 INC .req r3 20 21 // Pointers to the rotation tables 22 ROR24_TABLE .req r4 23 ROR16_TABLE .req r5 24 25 // The original stack pointer 26 ORIG_SP .req r6 27 28 // NEON registers which contain the message words of the current block. 29 // M_0-M_3 are occasionally used for other purposes too. 30 M_0 .req d16 31 M_1 .req d17 32 M_2 .req d18 33 M_3 .req d19 34 M_4 .req d20 35 M_5 .req d21 36 M_6 .req d22 37 M_7 .req d23 38 M_8 .req d24 39 M_9 .req d25 40 M_10 .req d26 41 M_11 .req d27 42 M_12 .req d28 43 M_13 .req d29 44 M_14 .req d30 45 M_15 .req d31 46 47 .align 4 48 // Tables for computing ror64(x, 24) and ror64(x, 16) using the vtbl.8 49 // instruction. This is the most efficient way to implement these 50 // rotation amounts with NEON. (On Cortex-A53 it's the same speed as 51 // vshr.u64 + vsli.u64, while on Cortex-A7 it's faster.) 52.Lror24_table: 53 .byte 3, 4, 5, 6, 7, 0, 1, 2 54.Lror16_table: 55 .byte 2, 3, 4, 5, 6, 7, 0, 1 56 // The BLAKE2b initialization vector 57.Lblake2b_IV: 58 .quad 0x6a09e667f3bcc908, 0xbb67ae8584caa73b 59 .quad 0x3c6ef372fe94f82b, 0xa54ff53a5f1d36f1 60 .quad 0x510e527fade682d1, 0x9b05688c2b3e6c1f 61 .quad 0x1f83d9abfb41bd6b, 0x5be0cd19137e2179 62 63// Execute one round of BLAKE2b by updating the state matrix v[0..15] in the 64// NEON registers q0-q7. The message block is in q8..q15 (M_0-M_15). The stack 65// pointer points to a 32-byte aligned buffer containing a copy of q8 and q9 66// (M_0-M_3), so that they can be reloaded if they are used as temporary 67// registers. The macro arguments s0-s15 give the order in which the message 68// words are used in this round. 'final' is 1 if this is the final round. 69.macro _blake2b_round s0, s1, s2, s3, s4, s5, s6, s7, \ 70 s8, s9, s10, s11, s12, s13, s14, s15, final=0 71 72 // Mix the columns: 73 // (v[0], v[4], v[8], v[12]), (v[1], v[5], v[9], v[13]), 74 // (v[2], v[6], v[10], v[14]), and (v[3], v[7], v[11], v[15]). 75 76 // a += b + m[blake2b_sigma[r][2*i + 0]]; 77 vadd.u64 q0, q0, q2 78 vadd.u64 q1, q1, q3 79 vadd.u64 d0, d0, M_\s0 80 vadd.u64 d1, d1, M_\s2 81 vadd.u64 d2, d2, M_\s4 82 vadd.u64 d3, d3, M_\s6 83 84 // d = ror64(d ^ a, 32); 85 veor q6, q6, q0 86 veor q7, q7, q1 87 vrev64.32 q6, q6 88 vrev64.32 q7, q7 89 90 // c += d; 91 vadd.u64 q4, q4, q6 92 vadd.u64 q5, q5, q7 93 94 // b = ror64(b ^ c, 24); 95 vld1.8 {M_0}, [ROR24_TABLE, :64] 96 veor q2, q2, q4 97 veor q3, q3, q5 98 vtbl.8 d4, {d4}, M_0 99 vtbl.8 d5, {d5}, M_0 100 vtbl.8 d6, {d6}, M_0 101 vtbl.8 d7, {d7}, M_0 102 103 // a += b + m[blake2b_sigma[r][2*i + 1]]; 104 // 105 // M_0 got clobbered above, so we have to reload it if any of the four 106 // message words this step needs happens to be M_0. Otherwise we don't 107 // need to reload it here, as it will just get clobbered again below. 108.if \s1 == 0 || \s3 == 0 || \s5 == 0 || \s7 == 0 109 vld1.8 {M_0}, [sp, :64] 110.endif 111 vadd.u64 q0, q0, q2 112 vadd.u64 q1, q1, q3 113 vadd.u64 d0, d0, M_\s1 114 vadd.u64 d1, d1, M_\s3 115 vadd.u64 d2, d2, M_\s5 116 vadd.u64 d3, d3, M_\s7 117 118 // d = ror64(d ^ a, 16); 119 vld1.8 {M_0}, [ROR16_TABLE, :64] 120 veor q6, q6, q0 121 veor q7, q7, q1 122 vtbl.8 d12, {d12}, M_0 123 vtbl.8 d13, {d13}, M_0 124 vtbl.8 d14, {d14}, M_0 125 vtbl.8 d15, {d15}, M_0 126 127 // c += d; 128 vadd.u64 q4, q4, q6 129 vadd.u64 q5, q5, q7 130 131 // b = ror64(b ^ c, 63); 132 // 133 // This rotation amount isn't a multiple of 8, so it has to be 134 // implemented using a pair of shifts, which requires temporary 135 // registers. Use q8-q9 (M_0-M_3) for this, and reload them afterwards. 136 veor q8, q2, q4 137 veor q9, q3, q5 138 vshr.u64 q2, q8, #63 139 vshr.u64 q3, q9, #63 140 vsli.u64 q2, q8, #1 141 vsli.u64 q3, q9, #1 142 vld1.8 {q8-q9}, [sp, :256] 143 144 // Mix the diagonals: 145 // (v[0], v[5], v[10], v[15]), (v[1], v[6], v[11], v[12]), 146 // (v[2], v[7], v[8], v[13]), and (v[3], v[4], v[9], v[14]). 147 // 148 // There are two possible ways to do this: use 'vext' instructions to 149 // shift the rows of the matrix so that the diagonals become columns, 150 // and undo it afterwards; or just use 64-bit operations on 'd' 151 // registers instead of 128-bit operations on 'q' registers. We use the 152 // latter approach, as it performs much better on Cortex-A7. 153 154 // a += b + m[blake2b_sigma[r][2*i + 0]]; 155 vadd.u64 d0, d0, d5 156 vadd.u64 d1, d1, d6 157 vadd.u64 d2, d2, d7 158 vadd.u64 d3, d3, d4 159 vadd.u64 d0, d0, M_\s8 160 vadd.u64 d1, d1, M_\s10 161 vadd.u64 d2, d2, M_\s12 162 vadd.u64 d3, d3, M_\s14 163 164 // d = ror64(d ^ a, 32); 165 veor d15, d15, d0 166 veor d12, d12, d1 167 veor d13, d13, d2 168 veor d14, d14, d3 169 vrev64.32 d15, d15 170 vrev64.32 d12, d12 171 vrev64.32 d13, d13 172 vrev64.32 d14, d14 173 174 // c += d; 175 vadd.u64 d10, d10, d15 176 vadd.u64 d11, d11, d12 177 vadd.u64 d8, d8, d13 178 vadd.u64 d9, d9, d14 179 180 // b = ror64(b ^ c, 24); 181 vld1.8 {M_0}, [ROR24_TABLE, :64] 182 veor d5, d5, d10 183 veor d6, d6, d11 184 veor d7, d7, d8 185 veor d4, d4, d9 186 vtbl.8 d5, {d5}, M_0 187 vtbl.8 d6, {d6}, M_0 188 vtbl.8 d7, {d7}, M_0 189 vtbl.8 d4, {d4}, M_0 190 191 // a += b + m[blake2b_sigma[r][2*i + 1]]; 192.if \s9 == 0 || \s11 == 0 || \s13 == 0 || \s15 == 0 193 vld1.8 {M_0}, [sp, :64] 194.endif 195 vadd.u64 d0, d0, d5 196 vadd.u64 d1, d1, d6 197 vadd.u64 d2, d2, d7 198 vadd.u64 d3, d3, d4 199 vadd.u64 d0, d0, M_\s9 200 vadd.u64 d1, d1, M_\s11 201 vadd.u64 d2, d2, M_\s13 202 vadd.u64 d3, d3, M_\s15 203 204 // d = ror64(d ^ a, 16); 205 vld1.8 {M_0}, [ROR16_TABLE, :64] 206 veor d15, d15, d0 207 veor d12, d12, d1 208 veor d13, d13, d2 209 veor d14, d14, d3 210 vtbl.8 d12, {d12}, M_0 211 vtbl.8 d13, {d13}, M_0 212 vtbl.8 d14, {d14}, M_0 213 vtbl.8 d15, {d15}, M_0 214 215 // c += d; 216 vadd.u64 d10, d10, d15 217 vadd.u64 d11, d11, d12 218 vadd.u64 d8, d8, d13 219 vadd.u64 d9, d9, d14 220 221 // b = ror64(b ^ c, 63); 222 veor d16, d4, d9 223 veor d17, d5, d10 224 veor d18, d6, d11 225 veor d19, d7, d8 226 vshr.u64 q2, q8, #63 227 vshr.u64 q3, q9, #63 228 vsli.u64 q2, q8, #1 229 vsli.u64 q3, q9, #1 230 // Reloading q8-q9 can be skipped on the final round. 231.if ! \final 232 vld1.8 {q8-q9}, [sp, :256] 233.endif 234.endm 235 236// 237// void blake2b_compress_neon(struct blake2b_state *state, 238// const u8 *block, size_t nblocks, u32 inc); 239// 240// Only the first three fields of struct blake2b_state are used: 241// u64 h[8]; (inout) 242// u64 t[2]; (inout) 243// u64 f[2]; (in) 244// 245 .align 5 246ENTRY(blake2b_compress_neon) 247 push {r4-r10} 248 249 // Allocate a 32-byte stack buffer that is 32-byte aligned. 250 mov ORIG_SP, sp 251 sub ip, sp, #32 252 bic ip, ip, #31 253 mov sp, ip 254 255 adr ROR24_TABLE, .Lror24_table 256 adr ROR16_TABLE, .Lror16_table 257 258 mov ip, STATE 259 vld1.64 {q0-q1}, [ip]! // Load h[0..3] 260 vld1.64 {q2-q3}, [ip]! // Load h[4..7] 261.Lnext_block: 262 adr r10, .Lblake2b_IV 263 vld1.64 {q14-q15}, [ip] // Load t[0..1] and f[0..1] 264 vld1.64 {q4-q5}, [r10]! // Load IV[0..3] 265 vmov r7, r8, d28 // Copy t[0] to (r7, r8) 266 vld1.64 {q6-q7}, [r10] // Load IV[4..7] 267 adds r7, r7, INC // Increment counter 268 bcs .Lslow_inc_ctr 269 vmov.i32 d28[0], r7 270 vst1.64 {d28}, [ip] // Update t[0] 271.Linc_ctr_done: 272 273 // Load the next message block and finish initializing the state matrix 274 // 'v'. Fortunately, there are exactly enough NEON registers to fit the 275 // entire state matrix in q0-q7 and the entire message block in q8-15. 276 // 277 // However, _blake2b_round also needs some extra registers for rotates, 278 // so we have to spill some registers. It's better to spill the message 279 // registers than the state registers, as the message doesn't change. 280 // Therefore we store a copy of the first 32 bytes of the message block 281 // (q8-q9) in an aligned buffer on the stack so that they can be 282 // reloaded when needed. (We could just reload directly from the 283 // message buffer, but it's faster to use aligned loads.) 284 vld1.8 {q8-q9}, [BLOCK]! 285 veor q6, q6, q14 // v[12..13] = IV[4..5] ^ t[0..1] 286 vld1.8 {q10-q11}, [BLOCK]! 287 veor q7, q7, q15 // v[14..15] = IV[6..7] ^ f[0..1] 288 vld1.8 {q12-q13}, [BLOCK]! 289 vst1.8 {q8-q9}, [sp, :256] 290 mov ip, STATE 291 vld1.8 {q14-q15}, [BLOCK]! 292 293 // Execute the rounds. Each round is provided the order in which it 294 // needs to use the message words. 295 _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 296 _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 297 _blake2b_round 11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4 298 _blake2b_round 7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8 299 _blake2b_round 9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13 300 _blake2b_round 2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9 301 _blake2b_round 12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11 302 _blake2b_round 13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10 303 _blake2b_round 6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5 304 _blake2b_round 10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0 305 _blake2b_round 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 306 _blake2b_round 14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3 \ 307 final=1 308 309 // Fold the final state matrix into the hash chaining value: 310 // 311 // for (i = 0; i < 8; i++) 312 // h[i] ^= v[i] ^ v[i + 8]; 313 // 314 vld1.64 {q8-q9}, [ip]! // Load old h[0..3] 315 veor q0, q0, q4 // v[0..1] ^= v[8..9] 316 veor q1, q1, q5 // v[2..3] ^= v[10..11] 317 vld1.64 {q10-q11}, [ip] // Load old h[4..7] 318 veor q2, q2, q6 // v[4..5] ^= v[12..13] 319 veor q3, q3, q7 // v[6..7] ^= v[14..15] 320 veor q0, q0, q8 // v[0..1] ^= h[0..1] 321 veor q1, q1, q9 // v[2..3] ^= h[2..3] 322 mov ip, STATE 323 subs NBLOCKS, NBLOCKS, #1 // nblocks-- 324 vst1.64 {q0-q1}, [ip]! // Store new h[0..3] 325 veor q2, q2, q10 // v[4..5] ^= h[4..5] 326 veor q3, q3, q11 // v[6..7] ^= h[6..7] 327 vst1.64 {q2-q3}, [ip]! // Store new h[4..7] 328 329 // Advance to the next block, if there is one. 330 bne .Lnext_block // nblocks != 0? 331 332 mov sp, ORIG_SP 333 pop {r4-r10} 334 mov pc, lr 335 336.Lslow_inc_ctr: 337 // Handle the case where the counter overflowed its low 32 bits, by 338 // carrying the overflow bit into the full 128-bit counter. 339 vmov r9, r10, d29 340 adcs r8, r8, #0 341 adcs r9, r9, #0 342 adc r10, r10, #0 343 vmov d28, r7, r8 344 vmov d29, r9, r10 345 vst1.64 {q14}, [ip] // Update t[0] and t[1] 346 b .Linc_ctr_done 347ENDPROC(blake2b_compress_neon)