cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crct10dif-ce-core.S (12047B)


      1//
      2// Accelerated CRC-T10DIF using ARM NEON and Crypto Extensions instructions
      3//
      4// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
      5// Copyright (C) 2019 Google LLC <ebiggers@google.com>
      6//
      7// This program is free software; you can redistribute it and/or modify
      8// it under the terms of the GNU General Public License version 2 as
      9// published by the Free Software Foundation.
     10//
     11
     12// Derived from the x86 version:
     13//
     14// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
     15//
     16// Copyright (c) 2013, Intel Corporation
     17//
     18// Authors:
     19//     Erdinc Ozturk <erdinc.ozturk@intel.com>
     20//     Vinodh Gopal <vinodh.gopal@intel.com>
     21//     James Guilford <james.guilford@intel.com>
     22//     Tim Chen <tim.c.chen@linux.intel.com>
     23//
     24// This software is available to you under a choice of one of two
     25// licenses.  You may choose to be licensed under the terms of the GNU
     26// General Public License (GPL) Version 2, available from the file
     27// COPYING in the main directory of this source tree, or the
     28// OpenIB.org BSD license below:
     29//
     30// Redistribution and use in source and binary forms, with or without
     31// modification, are permitted provided that the following conditions are
     32// met:
     33//
     34// * Redistributions of source code must retain the above copyright
     35//   notice, this list of conditions and the following disclaimer.
     36//
     37// * Redistributions in binary form must reproduce the above copyright
     38//   notice, this list of conditions and the following disclaimer in the
     39//   documentation and/or other materials provided with the
     40//   distribution.
     41//
     42// * Neither the name of the Intel Corporation nor the names of its
     43//   contributors may be used to endorse or promote products derived from
     44//   this software without specific prior written permission.
     45//
     46//
     47// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
     48// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     50// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
     51// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     52// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     53// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     54// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     55// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     56// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     57// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     58//
     59//       Reference paper titled "Fast CRC Computation for Generic
     60//	Polynomials Using PCLMULQDQ Instruction"
     61//       URL: http://www.intel.com/content/dam/www/public/us/en/documents
     62//  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
     63//
     64
     65#include <linux/linkage.h>
     66#include <asm/assembler.h>
     67
     68#ifdef CONFIG_CPU_ENDIAN_BE8
     69#define CPU_LE(code...)
     70#else
     71#define CPU_LE(code...)		code
     72#endif
     73
     74	.text
     75	.arch		armv8-a
     76	.fpu		crypto-neon-fp-armv8
     77
     78	init_crc	.req	r0
     79	buf		.req	r1
     80	len		.req	r2
     81
     82	fold_consts_ptr	.req	ip
     83
     84	q0l		.req	d0
     85	q0h		.req	d1
     86	q1l		.req	d2
     87	q1h		.req	d3
     88	q2l		.req	d4
     89	q2h		.req	d5
     90	q3l		.req	d6
     91	q3h		.req	d7
     92	q4l		.req	d8
     93	q4h		.req	d9
     94	q5l		.req	d10
     95	q5h		.req	d11
     96	q6l		.req	d12
     97	q6h		.req	d13
     98	q7l		.req	d14
     99	q7h		.req	d15
    100	q8l		.req	d16
    101	q8h		.req	d17
    102	q9l		.req	d18
    103	q9h		.req	d19
    104	q10l		.req	d20
    105	q10h		.req	d21
    106	q11l		.req	d22
    107	q11h		.req	d23
    108	q12l		.req	d24
    109	q12h		.req	d25
    110
    111	FOLD_CONSTS	.req	q10
    112	FOLD_CONST_L	.req	q10l
    113	FOLD_CONST_H	.req	q10h
    114
    115	// Fold reg1, reg2 into the next 32 data bytes, storing the result back
    116	// into reg1, reg2.
    117	.macro		fold_32_bytes, reg1, reg2
    118	vld1.64		{q11-q12}, [buf]!
    119
    120	vmull.p64	q8, \reg1\()h, FOLD_CONST_H
    121	vmull.p64	\reg1, \reg1\()l, FOLD_CONST_L
    122	vmull.p64	q9, \reg2\()h, FOLD_CONST_H
    123	vmull.p64	\reg2, \reg2\()l, FOLD_CONST_L
    124
    125CPU_LE(	vrev64.8	q11, q11	)
    126CPU_LE(	vrev64.8	q12, q12	)
    127	vswp		q11l, q11h
    128	vswp		q12l, q12h
    129
    130	veor.8		\reg1, \reg1, q8
    131	veor.8		\reg2, \reg2, q9
    132	veor.8		\reg1, \reg1, q11
    133	veor.8		\reg2, \reg2, q12
    134	.endm
    135
    136	// Fold src_reg into dst_reg, optionally loading the next fold constants
    137	.macro		fold_16_bytes, src_reg, dst_reg, load_next_consts
    138	vmull.p64	q8, \src_reg\()l, FOLD_CONST_L
    139	vmull.p64	\src_reg, \src_reg\()h, FOLD_CONST_H
    140	.ifnb		\load_next_consts
    141	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
    142	.endif
    143	veor.8		\dst_reg, \dst_reg, q8
    144	veor.8		\dst_reg, \dst_reg, \src_reg
    145	.endm
    146
    147	.macro		__adrl, out, sym
    148	movw		\out, #:lower16:\sym
    149	movt		\out, #:upper16:\sym
    150	.endm
    151
    152//
    153// u16 crc_t10dif_pmull(u16 init_crc, const u8 *buf, size_t len);
    154//
    155// Assumes len >= 16.
    156//
    157ENTRY(crc_t10dif_pmull)
    158
    159	// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
    160	cmp		len, #256
    161	blt		.Lless_than_256_bytes
    162
    163	__adrl		fold_consts_ptr, .Lfold_across_128_bytes_consts
    164
    165	// Load the first 128 data bytes.  Byte swapping is necessary to make
    166	// the bit order match the polynomial coefficient order.
    167	vld1.64		{q0-q1}, [buf]!
    168	vld1.64		{q2-q3}, [buf]!
    169	vld1.64		{q4-q5}, [buf]!
    170	vld1.64		{q6-q7}, [buf]!
    171CPU_LE(	vrev64.8	q0, q0	)
    172CPU_LE(	vrev64.8	q1, q1	)
    173CPU_LE(	vrev64.8	q2, q2	)
    174CPU_LE(	vrev64.8	q3, q3	)
    175CPU_LE(	vrev64.8	q4, q4	)
    176CPU_LE(	vrev64.8	q5, q5	)
    177CPU_LE(	vrev64.8	q6, q6	)
    178CPU_LE(	vrev64.8	q7, q7	)
    179	vswp		q0l, q0h
    180	vswp		q1l, q1h
    181	vswp		q2l, q2h
    182	vswp		q3l, q3h
    183	vswp		q4l, q4h
    184	vswp		q5l, q5h
    185	vswp		q6l, q6h
    186	vswp		q7l, q7h
    187
    188	// XOR the first 16 data *bits* with the initial CRC value.
    189	vmov.i8		q8h, #0
    190	vmov.u16	q8h[3], init_crc
    191	veor		q0h, q0h, q8h
    192
    193	// Load the constants for folding across 128 bytes.
    194	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
    195
    196	// Subtract 128 for the 128 data bytes just consumed.  Subtract another
    197	// 128 to simplify the termination condition of the following loop.
    198	sub		len, len, #256
    199
    200	// While >= 128 data bytes remain (not counting q0-q7), fold the 128
    201	// bytes q0-q7 into them, storing the result back into q0-q7.
    202.Lfold_128_bytes_loop:
    203	fold_32_bytes	q0, q1
    204	fold_32_bytes	q2, q3
    205	fold_32_bytes	q4, q5
    206	fold_32_bytes	q6, q7
    207	subs		len, len, #128
    208	bge		.Lfold_128_bytes_loop
    209
    210	// Now fold the 112 bytes in q0-q6 into the 16 bytes in q7.
    211
    212	// Fold across 64 bytes.
    213	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
    214	fold_16_bytes	q0, q4
    215	fold_16_bytes	q1, q5
    216	fold_16_bytes	q2, q6
    217	fold_16_bytes	q3, q7, 1
    218	// Fold across 32 bytes.
    219	fold_16_bytes	q4, q6
    220	fold_16_bytes	q5, q7, 1
    221	// Fold across 16 bytes.
    222	fold_16_bytes	q6, q7
    223
    224	// Add 128 to get the correct number of data bytes remaining in 0...127
    225	// (not counting q7), following the previous extra subtraction by 128.
    226	// Then subtract 16 to simplify the termination condition of the
    227	// following loop.
    228	adds		len, len, #(128-16)
    229
    230	// While >= 16 data bytes remain (not counting q7), fold the 16 bytes q7
    231	// into them, storing the result back into q7.
    232	blt		.Lfold_16_bytes_loop_done
    233.Lfold_16_bytes_loop:
    234	vmull.p64	q8, q7l, FOLD_CONST_L
    235	vmull.p64	q7, q7h, FOLD_CONST_H
    236	veor.8		q7, q7, q8
    237	vld1.64		{q0}, [buf]!
    238CPU_LE(	vrev64.8	q0, q0	)
    239	vswp		q0l, q0h
    240	veor.8		q7, q7, q0
    241	subs		len, len, #16
    242	bge		.Lfold_16_bytes_loop
    243
    244.Lfold_16_bytes_loop_done:
    245	// Add 16 to get the correct number of data bytes remaining in 0...15
    246	// (not counting q7), following the previous extra subtraction by 16.
    247	adds		len, len, #16
    248	beq		.Lreduce_final_16_bytes
    249
    250.Lhandle_partial_segment:
    251	// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
    252	// 16 bytes are in q7 and the rest are the remaining data in 'buf'.  To
    253	// do this without needing a fold constant for each possible 'len',
    254	// redivide the bytes into a first chunk of 'len' bytes and a second
    255	// chunk of 16 bytes, then fold the first chunk into the second.
    256
    257	// q0 = last 16 original data bytes
    258	add		buf, buf, len
    259	sub		buf, buf, #16
    260	vld1.64		{q0}, [buf]
    261CPU_LE(	vrev64.8	q0, q0	)
    262	vswp		q0l, q0h
    263
    264	// q1 = high order part of second chunk: q7 left-shifted by 'len' bytes.
    265	__adrl		r3, .Lbyteshift_table + 16
    266	sub		r3, r3, len
    267	vld1.8		{q2}, [r3]
    268	vtbl.8		q1l, {q7l-q7h}, q2l
    269	vtbl.8		q1h, {q7l-q7h}, q2h
    270
    271	// q3 = first chunk: q7 right-shifted by '16-len' bytes.
    272	vmov.i8		q3, #0x80
    273	veor.8		q2, q2, q3
    274	vtbl.8		q3l, {q7l-q7h}, q2l
    275	vtbl.8		q3h, {q7l-q7h}, q2h
    276
    277	// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
    278	vshr.s8		q2, q2, #7
    279
    280	// q2 = second chunk: 'len' bytes from q0 (low-order bytes),
    281	// then '16-len' bytes from q1 (high-order bytes).
    282	vbsl.8		q2, q1, q0
    283
    284	// Fold the first chunk into the second chunk, storing the result in q7.
    285	vmull.p64	q0, q3l, FOLD_CONST_L
    286	vmull.p64	q7, q3h, FOLD_CONST_H
    287	veor.8		q7, q7, q0
    288	veor.8		q7, q7, q2
    289
    290.Lreduce_final_16_bytes:
    291	// Reduce the 128-bit value M(x), stored in q7, to the final 16-bit CRC.
    292
    293	// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
    294	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
    295
    296	// Fold the high 64 bits into the low 64 bits, while also multiplying by
    297	// x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
    298	// whose low 48 bits are 0.
    299	vmull.p64	q0, q7h, FOLD_CONST_H	// high bits * x^48 * (x^80 mod G(x))
    300	veor.8		q0h, q0h, q7l		// + low bits * x^64
    301
    302	// Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
    303	// value congruent to x^64 * M(x) and whose low 48 bits are 0.
    304	vmov.i8		q1, #0
    305	vmov		s4, s3			// extract high 32 bits
    306	vmov		s3, s5			// zero high 32 bits
    307	vmull.p64	q1, q1l, FOLD_CONST_L	// high 32 bits * x^48 * (x^48 mod G(x))
    308	veor.8		q0, q0, q1		// + low bits
    309
    310	// Load G(x) and floor(x^48 / G(x)).
    311	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]
    312
    313	// Use Barrett reduction to compute the final CRC value.
    314	vmull.p64	q1, q0h, FOLD_CONST_H	// high 32 bits * floor(x^48 / G(x))
    315	vshr.u64	q1l, q1l, #32		// /= x^32
    316	vmull.p64	q1, q1l, FOLD_CONST_L	// *= G(x)
    317	vshr.u64	q0l, q0l, #48
    318	veor.8		q0l, q0l, q1l		// + low 16 nonzero bits
    319	// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of q0.
    320
    321	vmov.u16	r0, q0l[0]
    322	bx		lr
    323
    324.Lless_than_256_bytes:
    325	// Checksumming a buffer of length 16...255 bytes
    326
    327	__adrl		fold_consts_ptr, .Lfold_across_16_bytes_consts
    328
    329	// Load the first 16 data bytes.
    330	vld1.64		{q7}, [buf]!
    331CPU_LE(	vrev64.8	q7, q7	)
    332	vswp		q7l, q7h
    333
    334	// XOR the first 16 data *bits* with the initial CRC value.
    335	vmov.i8		q0h, #0
    336	vmov.u16	q0h[3], init_crc
    337	veor.8		q7h, q7h, q0h
    338
    339	// Load the fold-across-16-bytes constants.
    340	vld1.64		{FOLD_CONSTS}, [fold_consts_ptr, :128]!
    341
    342	cmp		len, #16
    343	beq		.Lreduce_final_16_bytes		// len == 16
    344	subs		len, len, #32
    345	addlt		len, len, #16
    346	blt		.Lhandle_partial_segment	// 17 <= len <= 31
    347	b		.Lfold_16_bytes_loop		// 32 <= len <= 255
    348ENDPROC(crc_t10dif_pmull)
    349
    350	.section	".rodata", "a"
    351	.align		4
    352
    353// Fold constants precomputed from the polynomial 0x18bb7
    354// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
    355.Lfold_across_128_bytes_consts:
    356	.quad		0x0000000000006123	// x^(8*128)	mod G(x)
    357	.quad		0x0000000000002295	// x^(8*128+64)	mod G(x)
    358// .Lfold_across_64_bytes_consts:
    359	.quad		0x0000000000001069	// x^(4*128)	mod G(x)
    360	.quad		0x000000000000dd31	// x^(4*128+64)	mod G(x)
    361// .Lfold_across_32_bytes_consts:
    362	.quad		0x000000000000857d	// x^(2*128)	mod G(x)
    363	.quad		0x0000000000007acc	// x^(2*128+64)	mod G(x)
    364.Lfold_across_16_bytes_consts:
    365	.quad		0x000000000000a010	// x^(1*128)	mod G(x)
    366	.quad		0x0000000000001faa	// x^(1*128+64)	mod G(x)
    367// .Lfinal_fold_consts:
    368	.quad		0x1368000000000000	// x^48 * (x^48 mod G(x))
    369	.quad		0x2d56000000000000	// x^48 * (x^80 mod G(x))
    370// .Lbarrett_reduction_consts:
    371	.quad		0x0000000000018bb7	// G(x)
    372	.quad		0x00000001f65a57f8	// floor(x^48 / G(x))
    373
    374// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
    375// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
    376// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
    377.Lbyteshift_table:
    378	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
    379	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
    380	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
    381	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0