cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

bitops.h (7590B)


      1/* SPDX-License-Identifier: GPL-2.0 */
      2/*
      3 * Copyright 1995, Russell King.
      4 * Various bits and pieces copyrights include:
      5 *  Linus Torvalds (test_bit).
      6 * Big endian support: Copyright 2001, Nicolas Pitre
      7 *  reworked by rmk.
      8 *
      9 * bit 0 is the LSB of an "unsigned long" quantity.
     10 *
     11 * Please note that the code in this file should never be included
     12 * from user space.  Many of these are not implemented in assembler
     13 * since they would be too costly.  Also, they require privileged
     14 * instructions (which are not available from user mode) to ensure
     15 * that they are atomic.
     16 */
     17
     18#ifndef __ASM_ARM_BITOPS_H
     19#define __ASM_ARM_BITOPS_H
     20
     21#ifdef __KERNEL__
     22
     23#ifndef _LINUX_BITOPS_H
     24#error only <linux/bitops.h> can be included directly
     25#endif
     26
     27#include <linux/compiler.h>
     28#include <linux/irqflags.h>
     29#include <asm/barrier.h>
     30
     31/*
     32 * These functions are the basis of our bit ops.
     33 *
     34 * First, the atomic bitops. These use native endian.
     35 */
     36static inline void ____atomic_set_bit(unsigned int bit, volatile unsigned long *p)
     37{
     38	unsigned long flags;
     39	unsigned long mask = BIT_MASK(bit);
     40
     41	p += BIT_WORD(bit);
     42
     43	raw_local_irq_save(flags);
     44	*p |= mask;
     45	raw_local_irq_restore(flags);
     46}
     47
     48static inline void ____atomic_clear_bit(unsigned int bit, volatile unsigned long *p)
     49{
     50	unsigned long flags;
     51	unsigned long mask = BIT_MASK(bit);
     52
     53	p += BIT_WORD(bit);
     54
     55	raw_local_irq_save(flags);
     56	*p &= ~mask;
     57	raw_local_irq_restore(flags);
     58}
     59
     60static inline void ____atomic_change_bit(unsigned int bit, volatile unsigned long *p)
     61{
     62	unsigned long flags;
     63	unsigned long mask = BIT_MASK(bit);
     64
     65	p += BIT_WORD(bit);
     66
     67	raw_local_irq_save(flags);
     68	*p ^= mask;
     69	raw_local_irq_restore(flags);
     70}
     71
     72static inline int
     73____atomic_test_and_set_bit(unsigned int bit, volatile unsigned long *p)
     74{
     75	unsigned long flags;
     76	unsigned int res;
     77	unsigned long mask = BIT_MASK(bit);
     78
     79	p += BIT_WORD(bit);
     80
     81	raw_local_irq_save(flags);
     82	res = *p;
     83	*p = res | mask;
     84	raw_local_irq_restore(flags);
     85
     86	return (res & mask) != 0;
     87}
     88
     89static inline int
     90____atomic_test_and_clear_bit(unsigned int bit, volatile unsigned long *p)
     91{
     92	unsigned long flags;
     93	unsigned int res;
     94	unsigned long mask = BIT_MASK(bit);
     95
     96	p += BIT_WORD(bit);
     97
     98	raw_local_irq_save(flags);
     99	res = *p;
    100	*p = res & ~mask;
    101	raw_local_irq_restore(flags);
    102
    103	return (res & mask) != 0;
    104}
    105
    106static inline int
    107____atomic_test_and_change_bit(unsigned int bit, volatile unsigned long *p)
    108{
    109	unsigned long flags;
    110	unsigned int res;
    111	unsigned long mask = BIT_MASK(bit);
    112
    113	p += BIT_WORD(bit);
    114
    115	raw_local_irq_save(flags);
    116	res = *p;
    117	*p = res ^ mask;
    118	raw_local_irq_restore(flags);
    119
    120	return (res & mask) != 0;
    121}
    122
    123#include <asm-generic/bitops/non-atomic.h>
    124
    125/*
    126 *  A note about Endian-ness.
    127 *  -------------------------
    128 *
    129 * When the ARM is put into big endian mode via CR15, the processor
    130 * merely swaps the order of bytes within words, thus:
    131 *
    132 *          ------------ physical data bus bits -----------
    133 *          D31 ... D24  D23 ... D16  D15 ... D8  D7 ... D0
    134 * little     byte 3       byte 2       byte 1      byte 0
    135 * big        byte 0       byte 1       byte 2      byte 3
    136 *
    137 * This means that reading a 32-bit word at address 0 returns the same
    138 * value irrespective of the endian mode bit.
    139 *
    140 * Peripheral devices should be connected with the data bus reversed in
    141 * "Big Endian" mode.  ARM Application Note 61 is applicable, and is
    142 * available from http://www.arm.com/.
    143 *
    144 * The following assumes that the data bus connectivity for big endian
    145 * mode has been followed.
    146 *
    147 * Note that bit 0 is defined to be 32-bit word bit 0, not byte 0 bit 0.
    148 */
    149
    150/*
    151 * Native endian assembly bitops.  nr = 0 -> word 0 bit 0.
    152 */
    153extern void _set_bit(int nr, volatile unsigned long * p);
    154extern void _clear_bit(int nr, volatile unsigned long * p);
    155extern void _change_bit(int nr, volatile unsigned long * p);
    156extern int _test_and_set_bit(int nr, volatile unsigned long * p);
    157extern int _test_and_clear_bit(int nr, volatile unsigned long * p);
    158extern int _test_and_change_bit(int nr, volatile unsigned long * p);
    159
    160/*
    161 * Little endian assembly bitops.  nr = 0 -> byte 0 bit 0.
    162 */
    163extern int _find_first_zero_bit_le(const unsigned long *p, unsigned size);
    164extern int _find_next_zero_bit_le(const unsigned long *p, int size, int offset);
    165extern int _find_first_bit_le(const unsigned long *p, unsigned size);
    166extern int _find_next_bit_le(const unsigned long *p, int size, int offset);
    167
    168/*
    169 * Big endian assembly bitops.  nr = 0 -> byte 3 bit 0.
    170 */
    171extern int _find_first_zero_bit_be(const unsigned long *p, unsigned size);
    172extern int _find_next_zero_bit_be(const unsigned long *p, int size, int offset);
    173extern int _find_first_bit_be(const unsigned long *p, unsigned size);
    174extern int _find_next_bit_be(const unsigned long *p, int size, int offset);
    175
    176#ifndef CONFIG_SMP
    177/*
    178 * The __* form of bitops are non-atomic and may be reordered.
    179 */
    180#define ATOMIC_BITOP(name,nr,p)			\
    181	(__builtin_constant_p(nr) ? ____atomic_##name(nr, p) : _##name(nr,p))
    182#else
    183#define ATOMIC_BITOP(name,nr,p)		_##name(nr,p)
    184#endif
    185
    186/*
    187 * Native endian atomic definitions.
    188 */
    189#define set_bit(nr,p)			ATOMIC_BITOP(set_bit,nr,p)
    190#define clear_bit(nr,p)			ATOMIC_BITOP(clear_bit,nr,p)
    191#define change_bit(nr,p)		ATOMIC_BITOP(change_bit,nr,p)
    192#define test_and_set_bit(nr,p)		ATOMIC_BITOP(test_and_set_bit,nr,p)
    193#define test_and_clear_bit(nr,p)	ATOMIC_BITOP(test_and_clear_bit,nr,p)
    194#define test_and_change_bit(nr,p)	ATOMIC_BITOP(test_and_change_bit,nr,p)
    195
    196#ifndef __ARMEB__
    197/*
    198 * These are the little endian, atomic definitions.
    199 */
    200#define find_first_zero_bit(p,sz)	_find_first_zero_bit_le(p,sz)
    201#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_le(p,sz,off)
    202#define find_first_bit(p,sz)		_find_first_bit_le(p,sz)
    203#define find_next_bit(p,sz,off)		_find_next_bit_le(p,sz,off)
    204
    205#else
    206/*
    207 * These are the big endian, atomic definitions.
    208 */
    209#define find_first_zero_bit(p,sz)	_find_first_zero_bit_be(p,sz)
    210#define find_next_zero_bit(p,sz,off)	_find_next_zero_bit_be(p,sz,off)
    211#define find_first_bit(p,sz)		_find_first_bit_be(p,sz)
    212#define find_next_bit(p,sz,off)		_find_next_bit_be(p,sz,off)
    213
    214#endif
    215
    216#if __LINUX_ARM_ARCH__ < 5
    217
    218#include <asm-generic/bitops/__fls.h>
    219#include <asm-generic/bitops/__ffs.h>
    220#include <asm-generic/bitops/fls.h>
    221#include <asm-generic/bitops/ffs.h>
    222
    223#else
    224
    225/*
    226 * On ARMv5 and above, the gcc built-ins may rely on the clz instruction
    227 * and produce optimal inlined code in all cases. On ARMv7 it is even
    228 * better by also using the rbit instruction.
    229 */
    230#include <asm-generic/bitops/builtin-__fls.h>
    231#include <asm-generic/bitops/builtin-__ffs.h>
    232#include <asm-generic/bitops/builtin-fls.h>
    233#include <asm-generic/bitops/builtin-ffs.h>
    234
    235#endif
    236
    237#include <asm-generic/bitops/ffz.h>
    238
    239#include <asm-generic/bitops/fls64.h>
    240
    241#include <asm-generic/bitops/sched.h>
    242#include <asm-generic/bitops/hweight.h>
    243#include <asm-generic/bitops/lock.h>
    244
    245#ifdef __ARMEB__
    246
    247static inline int find_first_zero_bit_le(const void *p, unsigned size)
    248{
    249	return _find_first_zero_bit_le(p, size);
    250}
    251#define find_first_zero_bit_le find_first_zero_bit_le
    252
    253static inline int find_next_zero_bit_le(const void *p, int size, int offset)
    254{
    255	return _find_next_zero_bit_le(p, size, offset);
    256}
    257#define find_next_zero_bit_le find_next_zero_bit_le
    258
    259static inline int find_next_bit_le(const void *p, int size, int offset)
    260{
    261	return _find_next_bit_le(p, size, offset);
    262}
    263#define find_next_bit_le find_next_bit_le
    264
    265#endif
    266
    267#include <asm-generic/bitops/le.h>
    268
    269/*
    270 * Ext2 is defined to use little-endian byte ordering.
    271 */
    272#include <asm-generic/bitops/ext2-atomic-setbit.h>
    273
    274#endif /* __KERNEL__ */
    275
    276#endif /* _ARM_BITOPS_H */