cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cacheflush.h (15447B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  arch/arm/include/asm/cacheflush.h
      4 *
      5 *  Copyright (C) 1999-2002 Russell King
      6 */
      7#ifndef _ASMARM_CACHEFLUSH_H
      8#define _ASMARM_CACHEFLUSH_H
      9
     10#include <linux/mm.h>
     11
     12#include <asm/glue-cache.h>
     13#include <asm/shmparam.h>
     14#include <asm/cachetype.h>
     15#include <asm/outercache.h>
     16
     17#define CACHE_COLOUR(vaddr)	((vaddr & (SHMLBA - 1)) >> PAGE_SHIFT)
     18
     19/*
     20 * This flag is used to indicate that the page pointed to by a pte is clean
     21 * and does not require cleaning before returning it to the user.
     22 */
     23#define PG_dcache_clean PG_arch_1
     24
     25/*
     26 *	MM Cache Management
     27 *	===================
     28 *
     29 *	The arch/arm/mm/cache-*.S and arch/arm/mm/proc-*.S files
     30 *	implement these methods.
     31 *
     32 *	Start addresses are inclusive and end addresses are exclusive;
     33 *	start addresses should be rounded down, end addresses up.
     34 *
     35 *	See Documentation/core-api/cachetlb.rst for more information.
     36 *	Please note that the implementation of these, and the required
     37 *	effects are cache-type (VIVT/VIPT/PIPT) specific.
     38 *
     39 *	flush_icache_all()
     40 *
     41 *		Unconditionally clean and invalidate the entire icache.
     42 *		Currently only needed for cache-v6.S and cache-v7.S, see
     43 *		__flush_icache_all for the generic implementation.
     44 *
     45 *	flush_kern_all()
     46 *
     47 *		Unconditionally clean and invalidate the entire cache.
     48 *
     49 *     flush_kern_louis()
     50 *
     51 *             Flush data cache levels up to the level of unification
     52 *             inner shareable and invalidate the I-cache.
     53 *             Only needed from v7 onwards, falls back to flush_cache_all()
     54 *             for all other processor versions.
     55 *
     56 *	flush_user_all()
     57 *
     58 *		Clean and invalidate all user space cache entries
     59 *		before a change of page tables.
     60 *
     61 *	flush_user_range(start, end, flags)
     62 *
     63 *		Clean and invalidate a range of cache entries in the
     64 *		specified address space before a change of page tables.
     65 *		- start - user start address (inclusive, page aligned)
     66 *		- end   - user end address   (exclusive, page aligned)
     67 *		- flags - vma->vm_flags field
     68 *
     69 *	coherent_kern_range(start, end)
     70 *
     71 *		Ensure coherency between the Icache and the Dcache in the
     72 *		region described by start, end.  If you have non-snooping
     73 *		Harvard caches, you need to implement this function.
     74 *		- start  - virtual start address
     75 *		- end    - virtual end address
     76 *
     77 *	coherent_user_range(start, end)
     78 *
     79 *		Ensure coherency between the Icache and the Dcache in the
     80 *		region described by start, end.  If you have non-snooping
     81 *		Harvard caches, you need to implement this function.
     82 *		- start  - virtual start address
     83 *		- end    - virtual end address
     84 *
     85 *	flush_kern_dcache_area(kaddr, size)
     86 *
     87 *		Ensure that the data held in page is written back.
     88 *		- kaddr  - page address
     89 *		- size   - region size
     90 *
     91 *	DMA Cache Coherency
     92 *	===================
     93 *
     94 *	dma_flush_range(start, end)
     95 *
     96 *		Clean and invalidate the specified virtual address range.
     97 *		- start  - virtual start address
     98 *		- end    - virtual end address
     99 */
    100
    101struct cpu_cache_fns {
    102	void (*flush_icache_all)(void);
    103	void (*flush_kern_all)(void);
    104	void (*flush_kern_louis)(void);
    105	void (*flush_user_all)(void);
    106	void (*flush_user_range)(unsigned long, unsigned long, unsigned int);
    107
    108	void (*coherent_kern_range)(unsigned long, unsigned long);
    109	int  (*coherent_user_range)(unsigned long, unsigned long);
    110	void (*flush_kern_dcache_area)(void *, size_t);
    111
    112	void (*dma_map_area)(const void *, size_t, int);
    113	void (*dma_unmap_area)(const void *, size_t, int);
    114
    115	void (*dma_flush_range)(const void *, const void *);
    116} __no_randomize_layout;
    117
    118/*
    119 * Select the calling method
    120 */
    121#ifdef MULTI_CACHE
    122
    123extern struct cpu_cache_fns cpu_cache;
    124
    125#define __cpuc_flush_icache_all		cpu_cache.flush_icache_all
    126#define __cpuc_flush_kern_all		cpu_cache.flush_kern_all
    127#define __cpuc_flush_kern_louis		cpu_cache.flush_kern_louis
    128#define __cpuc_flush_user_all		cpu_cache.flush_user_all
    129#define __cpuc_flush_user_range		cpu_cache.flush_user_range
    130#define __cpuc_coherent_kern_range	cpu_cache.coherent_kern_range
    131#define __cpuc_coherent_user_range	cpu_cache.coherent_user_range
    132#define __cpuc_flush_dcache_area	cpu_cache.flush_kern_dcache_area
    133
    134/*
    135 * These are private to the dma-mapping API.  Do not use directly.
    136 * Their sole purpose is to ensure that data held in the cache
    137 * is visible to DMA, or data written by DMA to system memory is
    138 * visible to the CPU.
    139 */
    140#define dmac_flush_range		cpu_cache.dma_flush_range
    141
    142#else
    143
    144extern void __cpuc_flush_icache_all(void);
    145extern void __cpuc_flush_kern_all(void);
    146extern void __cpuc_flush_kern_louis(void);
    147extern void __cpuc_flush_user_all(void);
    148extern void __cpuc_flush_user_range(unsigned long, unsigned long, unsigned int);
    149extern void __cpuc_coherent_kern_range(unsigned long, unsigned long);
    150extern int  __cpuc_coherent_user_range(unsigned long, unsigned long);
    151extern void __cpuc_flush_dcache_area(void *, size_t);
    152
    153/*
    154 * These are private to the dma-mapping API.  Do not use directly.
    155 * Their sole purpose is to ensure that data held in the cache
    156 * is visible to DMA, or data written by DMA to system memory is
    157 * visible to the CPU.
    158 */
    159extern void dmac_flush_range(const void *, const void *);
    160
    161#endif
    162
    163/*
    164 * Copy user data from/to a page which is mapped into a different
    165 * processes address space.  Really, we want to allow our "user
    166 * space" model to handle this.
    167 */
    168extern void copy_to_user_page(struct vm_area_struct *, struct page *,
    169	unsigned long, void *, const void *, unsigned long);
    170#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
    171	do {							\
    172		memcpy(dst, src, len);				\
    173	} while (0)
    174
    175/*
    176 * Convert calls to our calling convention.
    177 */
    178
    179/* Invalidate I-cache */
    180#define __flush_icache_all_generic()					\
    181	asm("mcr	p15, 0, %0, c7, c5, 0"				\
    182	    : : "r" (0));
    183
    184/* Invalidate I-cache inner shareable */
    185#define __flush_icache_all_v7_smp()					\
    186	asm("mcr	p15, 0, %0, c7, c1, 0"				\
    187	    : : "r" (0));
    188
    189/*
    190 * Optimized __flush_icache_all for the common cases. Note that UP ARMv7
    191 * will fall through to use __flush_icache_all_generic.
    192 */
    193#if (defined(CONFIG_CPU_V7) && \
    194     (defined(CONFIG_CPU_V6) || defined(CONFIG_CPU_V6K))) || \
    195	defined(CONFIG_SMP_ON_UP)
    196#define __flush_icache_preferred	__cpuc_flush_icache_all
    197#elif __LINUX_ARM_ARCH__ >= 7 && defined(CONFIG_SMP)
    198#define __flush_icache_preferred	__flush_icache_all_v7_smp
    199#elif __LINUX_ARM_ARCH__ == 6 && defined(CONFIG_ARM_ERRATA_411920)
    200#define __flush_icache_preferred	__cpuc_flush_icache_all
    201#else
    202#define __flush_icache_preferred	__flush_icache_all_generic
    203#endif
    204
    205static inline void __flush_icache_all(void)
    206{
    207	__flush_icache_preferred();
    208	dsb(ishst);
    209}
    210
    211/*
    212 * Flush caches up to Level of Unification Inner Shareable
    213 */
    214#define flush_cache_louis()		__cpuc_flush_kern_louis()
    215
    216#define flush_cache_all()		__cpuc_flush_kern_all()
    217
    218static inline void vivt_flush_cache_mm(struct mm_struct *mm)
    219{
    220	if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
    221		__cpuc_flush_user_all();
    222}
    223
    224static inline void
    225vivt_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
    226{
    227	struct mm_struct *mm = vma->vm_mm;
    228
    229	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm)))
    230		__cpuc_flush_user_range(start & PAGE_MASK, PAGE_ALIGN(end),
    231					vma->vm_flags);
    232}
    233
    234static inline void
    235vivt_flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
    236{
    237	struct mm_struct *mm = vma->vm_mm;
    238
    239	if (!mm || cpumask_test_cpu(smp_processor_id(), mm_cpumask(mm))) {
    240		unsigned long addr = user_addr & PAGE_MASK;
    241		__cpuc_flush_user_range(addr, addr + PAGE_SIZE, vma->vm_flags);
    242	}
    243}
    244
    245#ifndef CONFIG_CPU_CACHE_VIPT
    246#define flush_cache_mm(mm) \
    247		vivt_flush_cache_mm(mm)
    248#define flush_cache_range(vma,start,end) \
    249		vivt_flush_cache_range(vma,start,end)
    250#define flush_cache_page(vma,addr,pfn) \
    251		vivt_flush_cache_page(vma,addr,pfn)
    252#else
    253extern void flush_cache_mm(struct mm_struct *mm);
    254extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
    255extern void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn);
    256#endif
    257
    258#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
    259
    260/*
    261 * flush_icache_user_range is used when we want to ensure that the
    262 * Harvard caches are synchronised for the user space address range.
    263 * This is used for the ARM private sys_cacheflush system call.
    264 */
    265#define flush_icache_user_range(s,e)	__cpuc_coherent_user_range(s,e)
    266
    267/*
    268 * Perform necessary cache operations to ensure that data previously
    269 * stored within this range of addresses can be executed by the CPU.
    270 */
    271#define flush_icache_range(s,e)		__cpuc_coherent_kern_range(s,e)
    272
    273/*
    274 * Perform necessary cache operations to ensure that the TLB will
    275 * see data written in the specified area.
    276 */
    277#define clean_dcache_area(start,size)	cpu_dcache_clean_area(start, size)
    278
    279/*
    280 * flush_dcache_page is used when the kernel has written to the page
    281 * cache page at virtual address page->virtual.
    282 *
    283 * If this page isn't mapped (ie, page_mapping == NULL), or it might
    284 * have userspace mappings, then we _must_ always clean + invalidate
    285 * the dcache entries associated with the kernel mapping.
    286 *
    287 * Otherwise we can defer the operation, and clean the cache when we are
    288 * about to change to user space.  This is the same method as used on SPARC64.
    289 * See update_mmu_cache for the user space part.
    290 */
    291#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
    292extern void flush_dcache_page(struct page *);
    293
    294#define ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE 1
    295static inline void flush_kernel_vmap_range(void *addr, int size)
    296{
    297	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
    298	  __cpuc_flush_dcache_area(addr, (size_t)size);
    299}
    300static inline void invalidate_kernel_vmap_range(void *addr, int size)
    301{
    302	if ((cache_is_vivt() || cache_is_vipt_aliasing()))
    303	  __cpuc_flush_dcache_area(addr, (size_t)size);
    304}
    305
    306#define ARCH_HAS_FLUSH_ANON_PAGE
    307static inline void flush_anon_page(struct vm_area_struct *vma,
    308			 struct page *page, unsigned long vmaddr)
    309{
    310	extern void __flush_anon_page(struct vm_area_struct *vma,
    311				struct page *, unsigned long);
    312	if (PageAnon(page))
    313		__flush_anon_page(vma, page, vmaddr);
    314}
    315
    316#define flush_dcache_mmap_lock(mapping)		xa_lock_irq(&mapping->i_pages)
    317#define flush_dcache_mmap_unlock(mapping)	xa_unlock_irq(&mapping->i_pages)
    318
    319/*
    320 * We don't appear to need to do anything here.  In fact, if we did, we'd
    321 * duplicate cache flushing elsewhere performed by flush_dcache_page().
    322 */
    323#define flush_icache_page(vma,page)	do { } while (0)
    324
    325/*
    326 * flush_cache_vmap() is used when creating mappings (eg, via vmap,
    327 * vmalloc, ioremap etc) in kernel space for pages.  On non-VIPT
    328 * caches, since the direct-mappings of these pages may contain cached
    329 * data, we need to do a full cache flush to ensure that writebacks
    330 * don't corrupt data placed into these pages via the new mappings.
    331 */
    332static inline void flush_cache_vmap(unsigned long start, unsigned long end)
    333{
    334	if (!cache_is_vipt_nonaliasing())
    335		flush_cache_all();
    336	else
    337		/*
    338		 * set_pte_at() called from vmap_pte_range() does not
    339		 * have a DSB after cleaning the cache line.
    340		 */
    341		dsb(ishst);
    342}
    343
    344static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
    345{
    346	if (!cache_is_vipt_nonaliasing())
    347		flush_cache_all();
    348}
    349
    350/*
    351 * Memory synchronization helpers for mixed cached vs non cached accesses.
    352 *
    353 * Some synchronization algorithms have to set states in memory with the
    354 * cache enabled or disabled depending on the code path.  It is crucial
    355 * to always ensure proper cache maintenance to update main memory right
    356 * away in that case.
    357 *
    358 * Any cached write must be followed by a cache clean operation.
    359 * Any cached read must be preceded by a cache invalidate operation.
    360 * Yet, in the read case, a cache flush i.e. atomic clean+invalidate
    361 * operation is needed to avoid discarding possible concurrent writes to the
    362 * accessed memory.
    363 *
    364 * Also, in order to prevent a cached writer from interfering with an
    365 * adjacent non-cached writer, each state variable must be located to
    366 * a separate cache line.
    367 */
    368
    369/*
    370 * This needs to be >= the max cache writeback size of all
    371 * supported platforms included in the current kernel configuration.
    372 * This is used to align state variables to their own cache lines.
    373 */
    374#define __CACHE_WRITEBACK_ORDER 6  /* guessed from existing platforms */
    375#define __CACHE_WRITEBACK_GRANULE (1 << __CACHE_WRITEBACK_ORDER)
    376
    377/*
    378 * There is no __cpuc_clean_dcache_area but we use it anyway for
    379 * code intent clarity, and alias it to __cpuc_flush_dcache_area.
    380 */
    381#define __cpuc_clean_dcache_area __cpuc_flush_dcache_area
    382
    383/*
    384 * Ensure preceding writes to *p by this CPU are visible to
    385 * subsequent reads by other CPUs:
    386 */
    387static inline void __sync_cache_range_w(volatile void *p, size_t size)
    388{
    389	char *_p = (char *)p;
    390
    391	__cpuc_clean_dcache_area(_p, size);
    392	outer_clean_range(__pa(_p), __pa(_p + size));
    393}
    394
    395/*
    396 * Ensure preceding writes to *p by other CPUs are visible to
    397 * subsequent reads by this CPU.  We must be careful not to
    398 * discard data simultaneously written by another CPU, hence the
    399 * usage of flush rather than invalidate operations.
    400 */
    401static inline void __sync_cache_range_r(volatile void *p, size_t size)
    402{
    403	char *_p = (char *)p;
    404
    405#ifdef CONFIG_OUTER_CACHE
    406	if (outer_cache.flush_range) {
    407		/*
    408		 * Ensure dirty data migrated from other CPUs into our cache
    409		 * are cleaned out safely before the outer cache is cleaned:
    410		 */
    411		__cpuc_clean_dcache_area(_p, size);
    412
    413		/* Clean and invalidate stale data for *p from outer ... */
    414		outer_flush_range(__pa(_p), __pa(_p + size));
    415	}
    416#endif
    417
    418	/* ... and inner cache: */
    419	__cpuc_flush_dcache_area(_p, size);
    420}
    421
    422#define sync_cache_w(ptr) __sync_cache_range_w(ptr, sizeof *(ptr))
    423#define sync_cache_r(ptr) __sync_cache_range_r(ptr, sizeof *(ptr))
    424
    425/*
    426 * Disabling cache access for one CPU in an ARMv7 SMP system is tricky.
    427 * To do so we must:
    428 *
    429 * - Clear the SCTLR.C bit to prevent further cache allocations
    430 * - Flush the desired level of cache
    431 * - Clear the ACTLR "SMP" bit to disable local coherency
    432 *
    433 * ... and so without any intervening memory access in between those steps,
    434 * not even to the stack.
    435 *
    436 * WARNING -- After this has been called:
    437 *
    438 * - No ldrex/strex (and similar) instructions must be used.
    439 * - The CPU is obviously no longer coherent with the other CPUs.
    440 * - This is unlikely to work as expected if Linux is running non-secure.
    441 *
    442 * Note:
    443 *
    444 * - This is known to apply to several ARMv7 processor implementations,
    445 *   however some exceptions may exist.  Caveat emptor.
    446 *
    447 * - The clobber list is dictated by the call to v7_flush_dcache_*.
    448 */
    449#define v7_exit_coherency_flush(level) \
    450	asm volatile( \
    451	".arch	armv7-a \n\t" \
    452	"mrc	p15, 0, r0, c1, c0, 0	@ get SCTLR \n\t" \
    453	"bic	r0, r0, #"__stringify(CR_C)" \n\t" \
    454	"mcr	p15, 0, r0, c1, c0, 0	@ set SCTLR \n\t" \
    455	"isb	\n\t" \
    456	"bl	v7_flush_dcache_"__stringify(level)" \n\t" \
    457	"mrc	p15, 0, r0, c1, c0, 1	@ get ACTLR \n\t" \
    458	"bic	r0, r0, #(1 << 6)	@ disable local coherency \n\t" \
    459	"mcr	p15, 0, r0, c1, c0, 1	@ set ACTLR \n\t" \
    460	"isb	\n\t" \
    461	"dsb" \
    462	: : : "r0","r1","r2","r3","r4","r5","r6", \
    463	      "r9","r10","ip","lr","memory" )
    464
    465void flush_uprobe_xol_access(struct page *page, unsigned long uaddr,
    466			     void *kaddr, unsigned long len);
    467
    468
    469#ifdef CONFIG_CPU_ICACHE_MISMATCH_WORKAROUND
    470void check_cpu_icache_size(int cpuid);
    471#else
    472static inline void check_cpu_icache_size(int cpuid) { }
    473#endif
    474
    475#endif