cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

io.h (14377B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  arch/arm/include/asm/io.h
      4 *
      5 *  Copyright (C) 1996-2000 Russell King
      6 *
      7 * Modifications:
      8 *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
      9 *			constant addresses and variable addresses.
     10 *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
     11 *			specific IO header files.
     12 *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
     13 *  04-Apr-1999	PJB	Added check_signature.
     14 *  12-Dec-1999	RMK	More cleanups
     15 *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
     16 *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
     17 */
     18#ifndef __ASM_ARM_IO_H
     19#define __ASM_ARM_IO_H
     20
     21#ifdef __KERNEL__
     22
     23#include <linux/string.h>
     24#include <linux/types.h>
     25#include <asm/byteorder.h>
     26#include <asm/memory.h>
     27#include <asm-generic/pci_iomap.h>
     28
     29/*
     30 * ISA I/O bus memory addresses are 1:1 with the physical address.
     31 */
     32#define isa_virt_to_bus virt_to_phys
     33#define isa_bus_to_virt phys_to_virt
     34
     35/*
     36 * Atomic MMIO-wide IO modify
     37 */
     38extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
     39extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
     40
     41/*
     42 * Generic IO read/write.  These perform native-endian accesses.  Note
     43 * that some architectures will want to re-define __raw_{read,write}w.
     44 */
     45void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
     46void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
     47void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
     48
     49void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
     50void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
     51void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
     52
     53#if __LINUX_ARM_ARCH__ < 6
     54/*
     55 * Half-word accesses are problematic with RiscPC due to limitations of
     56 * the bus. Rather than special-case the machine, just let the compiler
     57 * generate the access for CPUs prior to ARMv6.
     58 */
     59#define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
     60#define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
     61#else
     62/*
     63 * When running under a hypervisor, we want to avoid I/O accesses with
     64 * writeback addressing modes as these incur a significant performance
     65 * overhead (the address generation must be emulated in software).
     66 */
     67#define __raw_writew __raw_writew
     68static inline void __raw_writew(u16 val, volatile void __iomem *addr)
     69{
     70	asm volatile("strh %1, %0"
     71		     : : "Q" (*(volatile u16 __force *)addr), "r" (val));
     72}
     73
     74#define __raw_readw __raw_readw
     75static inline u16 __raw_readw(const volatile void __iomem *addr)
     76{
     77	u16 val;
     78	asm volatile("ldrh %0, %1"
     79		     : "=r" (val)
     80		     : "Q" (*(volatile u16 __force *)addr));
     81	return val;
     82}
     83#endif
     84
     85#define __raw_writeb __raw_writeb
     86static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
     87{
     88	asm volatile("strb %1, %0"
     89		     : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
     90}
     91
     92#define __raw_writel __raw_writel
     93static inline void __raw_writel(u32 val, volatile void __iomem *addr)
     94{
     95	asm volatile("str %1, %0"
     96		     : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
     97}
     98
     99#define __raw_readb __raw_readb
    100static inline u8 __raw_readb(const volatile void __iomem *addr)
    101{
    102	u8 val;
    103	asm volatile("ldrb %0, %1"
    104		     : "=r" (val)
    105		     : "Qo" (*(volatile u8 __force *)addr));
    106	return val;
    107}
    108
    109#define __raw_readl __raw_readl
    110static inline u32 __raw_readl(const volatile void __iomem *addr)
    111{
    112	u32 val;
    113	asm volatile("ldr %0, %1"
    114		     : "=r" (val)
    115		     : "Qo" (*(volatile u32 __force *)addr));
    116	return val;
    117}
    118
    119/*
    120 * Architecture ioremap implementation.
    121 */
    122#define MT_DEVICE		0
    123#define MT_DEVICE_NONSHARED	1
    124#define MT_DEVICE_CACHED	2
    125#define MT_DEVICE_WC		3
    126/*
    127 * types 4 onwards can be found in asm/mach/map.h and are undefined
    128 * for ioremap
    129 */
    130
    131/*
    132 * __arm_ioremap takes CPU physical address.
    133 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
    134 * The _caller variety takes a __builtin_return_address(0) value for
    135 * /proc/vmalloc to use - and should only be used in non-inline functions.
    136 */
    137extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
    138	void *);
    139extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
    140extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
    141void __arm_iomem_set_ro(void __iomem *ptr, size_t size);
    142extern void __iounmap(volatile void __iomem *addr);
    143
    144extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
    145	unsigned int, void *);
    146extern void (*arch_iounmap)(volatile void __iomem *);
    147
    148/*
    149 * Bad read/write accesses...
    150 */
    151extern void __readwrite_bug(const char *fn);
    152
    153/*
    154 * A typesafe __io() helper
    155 */
    156static inline void __iomem *__typesafe_io(unsigned long addr)
    157{
    158	return (void __iomem *)addr;
    159}
    160
    161#define IOMEM(x)	((void __force __iomem *)(x))
    162
    163/* IO barriers */
    164#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
    165#include <asm/barrier.h>
    166#define __iormb()		rmb()
    167#define __iowmb()		wmb()
    168#else
    169#define __iormb()		do { } while (0)
    170#define __iowmb()		do { } while (0)
    171#endif
    172
    173/* PCI fixed i/o mapping */
    174#define PCI_IO_VIRT_BASE	0xfee00000
    175#define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)
    176
    177#if defined(CONFIG_PCI) || IS_ENABLED(CONFIG_PCMCIA)
    178void pci_ioremap_set_mem_type(int mem_type);
    179#else
    180static inline void pci_ioremap_set_mem_type(int mem_type) {}
    181#endif
    182
    183struct resource;
    184
    185#define pci_remap_iospace pci_remap_iospace
    186int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr);
    187
    188/*
    189 * PCI configuration space mapping function.
    190 *
    191 * The PCI specification does not allow configuration write
    192 * transactions to be posted. Add an arch specific
    193 * pci_remap_cfgspace() definition that is implemented
    194 * through strongly ordered memory mappings.
    195 */
    196#define pci_remap_cfgspace pci_remap_cfgspace
    197void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
    198/*
    199 * Now, pick up the machine-defined IO definitions
    200 */
    201#ifdef CONFIG_NEED_MACH_IO_H
    202#include <mach/io.h>
    203#else
    204#if IS_ENABLED(CONFIG_PCMCIA) || defined(CONFIG_PCI)
    205#define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
    206#else
    207#define IO_SPACE_LIMIT ((resource_size_t)0)
    208#endif
    209#define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
    210#endif
    211
    212/*
    213 *  IO port access primitives
    214 *  -------------------------
    215 *
    216 * The ARM doesn't have special IO access instructions; all IO is memory
    217 * mapped.  Note that these are defined to perform little endian accesses
    218 * only.  Their primary purpose is to access PCI and ISA peripherals.
    219 *
    220 * Note that for a big endian machine, this implies that the following
    221 * big endian mode connectivity is in place, as described by numerous
    222 * ARM documents:
    223 *
    224 *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
    225 *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
    226 *
    227 * The machine specific io.h include defines __io to translate an "IO"
    228 * address to a memory address.
    229 *
    230 * Note that we prevent GCC re-ordering or caching values in expressions
    231 * by introducing sequence points into the in*() definitions.  Note that
    232 * __raw_* do not guarantee this behaviour.
    233 *
    234 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
    235 */
    236#ifdef __io
    237#define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
    238#define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
    239					cpu_to_le16(v),__io(p)); })
    240#define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
    241					cpu_to_le32(v),__io(p)); })
    242
    243#define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
    244#define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
    245			__raw_readw(__io(p))); __iormb(); __v; })
    246#define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
    247			__raw_readl(__io(p))); __iormb(); __v; })
    248
    249#define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
    250#define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
    251#define outsl(p,d,l)		__raw_writesl(__io(p),d,l)
    252
    253#define insb(p,d,l)		__raw_readsb(__io(p),d,l)
    254#define insw(p,d,l)		__raw_readsw(__io(p),d,l)
    255#define insl(p,d,l)		__raw_readsl(__io(p),d,l)
    256#endif
    257
    258/*
    259 * String version of IO memory access ops:
    260 */
    261extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
    262extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
    263extern void _memset_io(volatile void __iomem *, int, size_t);
    264
    265/*
    266 *  Memory access primitives
    267 *  ------------------------
    268 *
    269 * These perform PCI memory accesses via an ioremap region.  They don't
    270 * take an address as such, but a cookie.
    271 *
    272 * Again, these are defined to perform little endian accesses.  See the
    273 * IO port primitives for more information.
    274 */
    275#ifndef readl
    276#define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
    277#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
    278					__raw_readw(c)); __r; })
    279#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
    280					__raw_readl(c)); __r; })
    281
    282#define writeb_relaxed(v,c)	__raw_writeb(v,c)
    283#define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
    284#define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
    285
    286#define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
    287#define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
    288#define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
    289
    290#define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
    291#define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
    292#define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
    293
    294#define readsb(p,d,l)		__raw_readsb(p,d,l)
    295#define readsw(p,d,l)		__raw_readsw(p,d,l)
    296#define readsl(p,d,l)		__raw_readsl(p,d,l)
    297
    298#define writesb(p,d,l)		__raw_writesb(p,d,l)
    299#define writesw(p,d,l)		__raw_writesw(p,d,l)
    300#define writesl(p,d,l)		__raw_writesl(p,d,l)
    301
    302#ifndef __ARMBE__
    303static inline void memset_io(volatile void __iomem *dst, unsigned c,
    304	size_t count)
    305{
    306	extern void mmioset(void *, unsigned int, size_t);
    307	mmioset((void __force *)dst, c, count);
    308}
    309#define memset_io(dst,c,count) memset_io(dst,c,count)
    310
    311static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
    312	size_t count)
    313{
    314	extern void mmiocpy(void *, const void *, size_t);
    315	mmiocpy(to, (const void __force *)from, count);
    316}
    317#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
    318
    319static inline void memcpy_toio(volatile void __iomem *to, const void *from,
    320	size_t count)
    321{
    322	extern void mmiocpy(void *, const void *, size_t);
    323	mmiocpy((void __force *)to, from, count);
    324}
    325#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
    326
    327#else
    328#define memset_io(c,v,l)	_memset_io(c,(v),(l))
    329#define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
    330#define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
    331#endif
    332
    333#endif	/* readl */
    334
    335/*
    336 * ioremap() and friends.
    337 *
    338 * ioremap() takes a resource address, and size.  Due to the ARM memory
    339 * types, it is important to use the correct ioremap() function as each
    340 * mapping has specific properties.
    341 *
    342 * Function		Memory type	Cacheability	Cache hint
    343 * ioremap()		Device		n/a		n/a
    344 * ioremap_cache()	Normal		Writeback	Read allocate
    345 * ioremap_wc()		Normal		Non-cacheable	n/a
    346 * ioremap_wt()		Normal		Non-cacheable	n/a
    347 *
    348 * All device mappings have the following properties:
    349 * - no access speculation
    350 * - no repetition (eg, on return from an exception)
    351 * - number, order and size of accesses are maintained
    352 * - unaligned accesses are "unpredictable"
    353 * - writes may be delayed before they hit the endpoint device
    354 *
    355 * All normal memory mappings have the following properties:
    356 * - reads can be repeated with no side effects
    357 * - repeated reads return the last value written
    358 * - reads can fetch additional locations without side effects
    359 * - writes can be repeated (in certain cases) with no side effects
    360 * - writes can be merged before accessing the target
    361 * - unaligned accesses can be supported
    362 * - ordering is not guaranteed without explicit dependencies or barrier
    363 *   instructions
    364 * - writes may be delayed before they hit the endpoint memory
    365 *
    366 * The cache hint is only a performance hint: CPUs may alias these hints.
    367 * Eg, a CPU not implementing read allocate but implementing write allocate
    368 * will provide a write allocate mapping instead.
    369 */
    370void __iomem *ioremap(resource_size_t res_cookie, size_t size);
    371#define ioremap ioremap
    372
    373/*
    374 * Do not use ioremap_cache for mapping memory. Use memremap instead.
    375 */
    376void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
    377#define ioremap_cache ioremap_cache
    378
    379void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
    380#define ioremap_wc ioremap_wc
    381#define ioremap_wt ioremap_wc
    382
    383void iounmap(volatile void __iomem *iomem_cookie);
    384#define iounmap iounmap
    385
    386void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
    387#define arch_memremap_wb arch_memremap_wb
    388
    389/*
    390 * io{read,write}{16,32}be() macros
    391 */
    392#define ioread16be(p)		({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
    393#define ioread32be(p)		({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
    394
    395#define iowrite16be(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
    396#define iowrite32be(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
    397
    398#ifndef ioport_map
    399#define ioport_map ioport_map
    400extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
    401#endif
    402#ifndef ioport_unmap
    403#define ioport_unmap ioport_unmap
    404extern void ioport_unmap(void __iomem *addr);
    405#endif
    406
    407struct pci_dev;
    408
    409#define pci_iounmap pci_iounmap
    410extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
    411
    412/*
    413 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
    414 * access
    415 */
    416#define xlate_dev_mem_ptr(p)	__va(p)
    417
    418#include <asm-generic/io.h>
    419
    420#ifdef CONFIG_MMU
    421#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
    422extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
    423extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
    424extern bool arch_memremap_can_ram_remap(resource_size_t offset, size_t size,
    425					unsigned long flags);
    426#define arch_memremap_can_ram_remap arch_memremap_can_ram_remap
    427#endif
    428
    429/*
    430 * Register ISA memory and port locations for glibc iopl/inb/outb
    431 * emulation.
    432 */
    433extern void register_isa_ports(unsigned int mmio, unsigned int io,
    434			       unsigned int io_shift);
    435
    436#endif	/* __KERNEL__ */
    437#endif	/* __ASM_ARM_IO_H */