cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable-2level.h (8710B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  arch/arm/include/asm/pgtable-2level.h
      4 *
      5 *  Copyright (C) 1995-2002 Russell King
      6 */
      7#ifndef _ASM_PGTABLE_2LEVEL_H
      8#define _ASM_PGTABLE_2LEVEL_H
      9
     10#define __PAGETABLE_PMD_FOLDED 1
     11
     12/*
     13 * Hardware-wise, we have a two level page table structure, where the first
     14 * level has 4096 entries, and the second level has 256 entries.  Each entry
     15 * is one 32-bit word.  Most of the bits in the second level entry are used
     16 * by hardware, and there aren't any "accessed" and "dirty" bits.
     17 *
     18 * Linux on the other hand has a three level page table structure, which can
     19 * be wrapped to fit a two level page table structure easily - using the PGD
     20 * and PTE only.  However, Linux also expects one "PTE" table per page, and
     21 * at least a "dirty" bit.
     22 *
     23 * Therefore, we tweak the implementation slightly - we tell Linux that we
     24 * have 2048 entries in the first level, each of which is 8 bytes (iow, two
     25 * hardware pointers to the second level.)  The second level contains two
     26 * hardware PTE tables arranged contiguously, preceded by Linux versions
     27 * which contain the state information Linux needs.  We, therefore, end up
     28 * with 512 entries in the "PTE" level.
     29 *
     30 * This leads to the page tables having the following layout:
     31 *
     32 *    pgd             pte
     33 * |        |
     34 * +--------+
     35 * |        |       +------------+ +0
     36 * +- - - - +       | Linux pt 0 |
     37 * |        |       +------------+ +1024
     38 * +--------+ +0    | Linux pt 1 |
     39 * |        |-----> +------------+ +2048
     40 * +- - - - + +4    |  h/w pt 0  |
     41 * |        |-----> +------------+ +3072
     42 * +--------+ +8    |  h/w pt 1  |
     43 * |        |       +------------+ +4096
     44 *
     45 * See L_PTE_xxx below for definitions of bits in the "Linux pt", and
     46 * PTE_xxx for definitions of bits appearing in the "h/w pt".
     47 *
     48 * PMD_xxx definitions refer to bits in the first level page table.
     49 *
     50 * The "dirty" bit is emulated by only granting hardware write permission
     51 * iff the page is marked "writable" and "dirty" in the Linux PTE.  This
     52 * means that a write to a clean page will cause a permission fault, and
     53 * the Linux MM layer will mark the page dirty via handle_pte_fault().
     54 * For the hardware to notice the permission change, the TLB entry must
     55 * be flushed, and ptep_set_access_flags() does that for us.
     56 *
     57 * The "accessed" or "young" bit is emulated by a similar method; we only
     58 * allow accesses to the page if the "young" bit is set.  Accesses to the
     59 * page will cause a fault, and handle_pte_fault() will set the young bit
     60 * for us as long as the page is marked present in the corresponding Linux
     61 * PTE entry.  Again, ptep_set_access_flags() will ensure that the TLB is
     62 * up to date.
     63 *
     64 * However, when the "young" bit is cleared, we deny access to the page
     65 * by clearing the hardware PTE.  Currently Linux does not flush the TLB
     66 * for us in this case, which means the TLB will retain the transation
     67 * until either the TLB entry is evicted under pressure, or a context
     68 * switch which changes the user space mapping occurs.
     69 */
     70#define PTRS_PER_PTE		512
     71#define PTRS_PER_PMD		1
     72#define PTRS_PER_PGD		2048
     73
     74#define PTE_HWTABLE_PTRS	(PTRS_PER_PTE)
     75#define PTE_HWTABLE_OFF		(PTE_HWTABLE_PTRS * sizeof(pte_t))
     76#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u32))
     77
     78#define MAX_POSSIBLE_PHYSMEM_BITS	32
     79
     80/*
     81 * PMD_SHIFT determines the size of the area a second-level page table can map
     82 * PGDIR_SHIFT determines what a third-level page table entry can map
     83 */
     84#define PMD_SHIFT		21
     85#define PGDIR_SHIFT		21
     86
     87#define PMD_SIZE		(1UL << PMD_SHIFT)
     88#define PMD_MASK		(~(PMD_SIZE-1))
     89#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
     90#define PGDIR_MASK		(~(PGDIR_SIZE-1))
     91
     92/*
     93 * section address mask and size definitions.
     94 */
     95#define SECTION_SHIFT		20
     96#define SECTION_SIZE		(1UL << SECTION_SHIFT)
     97#define SECTION_MASK		(~(SECTION_SIZE-1))
     98
     99/*
    100 * ARMv6 supersection address mask and size definitions.
    101 */
    102#define SUPERSECTION_SHIFT	24
    103#define SUPERSECTION_SIZE	(1UL << SUPERSECTION_SHIFT)
    104#define SUPERSECTION_MASK	(~(SUPERSECTION_SIZE-1))
    105
    106#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
    107
    108/*
    109 * "Linux" PTE definitions.
    110 *
    111 * We keep two sets of PTEs - the hardware and the linux version.
    112 * This allows greater flexibility in the way we map the Linux bits
    113 * onto the hardware tables, and allows us to have YOUNG and DIRTY
    114 * bits.
    115 *
    116 * The PTE table pointer refers to the hardware entries; the "Linux"
    117 * entries are stored 1024 bytes below.
    118 */
    119#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
    120#define L_PTE_PRESENT		(_AT(pteval_t, 1) << 0)
    121#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 1)
    122#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 6)
    123#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 7)
    124#define L_PTE_USER		(_AT(pteval_t, 1) << 8)
    125#define L_PTE_XN		(_AT(pteval_t, 1) << 9)
    126#define L_PTE_SHARED		(_AT(pteval_t, 1) << 10)	/* shared(v6), coherent(xsc3) */
    127#define L_PTE_NONE		(_AT(pteval_t, 1) << 11)
    128
    129/*
    130 * These are the memory types, defined to be compatible with
    131 * pre-ARMv6 CPUs cacheable and bufferable bits: n/a,n/a,C,B
    132 * ARMv6+ without TEX remapping, they are a table index.
    133 * ARMv6+ with TEX remapping, they correspond to n/a,TEX(0),C,B
    134 *
    135 * MT type		Pre-ARMv6	ARMv6+ type / cacheable status
    136 * UNCACHED		Uncached	Strongly ordered
    137 * BUFFERABLE		Bufferable	Normal memory / non-cacheable
    138 * WRITETHROUGH		Writethrough	Normal memory / write through
    139 * WRITEBACK		Writeback	Normal memory / write back, read alloc
    140 * MINICACHE		Minicache	N/A
    141 * WRITEALLOC		Writeback	Normal memory / write back, write alloc
    142 * DEV_SHARED		Uncached	Device memory (shared)
    143 * DEV_NONSHARED	Uncached	Device memory (non-shared)
    144 * DEV_WC		Bufferable	Normal memory / non-cacheable
    145 * DEV_CACHED		Writeback	Normal memory / write back, read alloc
    146 * VECTORS		Variable	Normal memory / variable
    147 *
    148 * All normal memory mappings have the following properties:
    149 * - reads can be repeated with no side effects
    150 * - repeated reads return the last value written
    151 * - reads can fetch additional locations without side effects
    152 * - writes can be repeated (in certain cases) with no side effects
    153 * - writes can be merged before accessing the target
    154 * - unaligned accesses can be supported
    155 *
    156 * All device mappings have the following properties:
    157 * - no access speculation
    158 * - no repetition (eg, on return from an exception)
    159 * - number, order and size of accesses are maintained
    160 * - unaligned accesses are "unpredictable"
    161 */
    162#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0x00) << 2)	/* 0000 */
    163#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 0x01) << 2)	/* 0001 */
    164#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 0x02) << 2)	/* 0010 */
    165#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 0x03) << 2)	/* 0011 */
    166#define L_PTE_MT_MINICACHE	(_AT(pteval_t, 0x06) << 2)	/* 0110 (sa1100, xscale) */
    167#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 0x07) << 2)	/* 0111 */
    168#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 0x04) << 2)	/* 0100 */
    169#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 0x0c) << 2)	/* 1100 */
    170#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 0x09) << 2)	/* 1001 */
    171#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 0x0b) << 2)	/* 1011 */
    172#define L_PTE_MT_VECTORS	(_AT(pteval_t, 0x0f) << 2)	/* 1111 */
    173#define L_PTE_MT_MASK		(_AT(pteval_t, 0x0f) << 2)
    174
    175#ifndef __ASSEMBLY__
    176
    177/*
    178 * The "pud_xxx()" functions here are trivial when the pmd is folded into
    179 * the pud: the pud entry is never bad, always exists, and can't be set or
    180 * cleared.
    181 */
    182static inline int pud_none(pud_t pud)
    183{
    184	return 0;
    185}
    186
    187static inline int pud_bad(pud_t pud)
    188{
    189	return 0;
    190}
    191
    192static inline int pud_present(pud_t pud)
    193{
    194	return 1;
    195}
    196
    197static inline void pud_clear(pud_t *pudp)
    198{
    199}
    200
    201static inline void set_pud(pud_t *pudp, pud_t pud)
    202{
    203}
    204
    205static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
    206{
    207	return (pmd_t *)pud;
    208}
    209#define pmd_offset pmd_offset
    210
    211#define pmd_pfn(pmd)		(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK))
    212
    213#define pmd_large(pmd)		(pmd_val(pmd) & 2)
    214#define pmd_leaf(pmd)		(pmd_val(pmd) & 2)
    215#define pmd_bad(pmd)		(pmd_val(pmd) & 2)
    216#define pmd_present(pmd)	(pmd_val(pmd))
    217
    218#define copy_pmd(pmdpd,pmdps)		\
    219	do {				\
    220		pmdpd[0] = pmdps[0];	\
    221		pmdpd[1] = pmdps[1];	\
    222		flush_pmd_entry(pmdpd);	\
    223	} while (0)
    224
    225#define pmd_clear(pmdp)			\
    226	do {				\
    227		pmdp[0] = __pmd(0);	\
    228		pmdp[1] = __pmd(0);	\
    229		clean_pmd_entry(pmdp);	\
    230	} while (0)
    231
    232/* we don't need complex calculations here as the pmd is folded into the pgd */
    233#define pmd_addr_end(addr,end) (end)
    234
    235#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,pte,ext)
    236
    237/*
    238 * We don't have huge page support for short descriptors, for the moment
    239 * define empty stubs for use by pin_page_for_write.
    240 */
    241#define pmd_hugewillfault(pmd)	(0)
    242#define pmd_thp_or_huge(pmd)	(0)
    243
    244#endif /* __ASSEMBLY__ */
    245
    246#endif /* _ASM_PGTABLE_2LEVEL_H */