cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable-3level.h (8148B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * arch/arm/include/asm/pgtable-3level.h
      4 *
      5 * Copyright (C) 2011 ARM Ltd.
      6 * Author: Catalin Marinas <catalin.marinas@arm.com>
      7 */
      8#ifndef _ASM_PGTABLE_3LEVEL_H
      9#define _ASM_PGTABLE_3LEVEL_H
     10
     11/*
     12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
     13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
     14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
     15 * address range, only 4 entries in the PGD are used.
     16 *
     17 * There are enough spare bits in a page table entry for the kernel specific
     18 * state.
     19 */
     20#define PTRS_PER_PTE		512
     21#define PTRS_PER_PMD		512
     22#define PTRS_PER_PGD		4
     23
     24#define PTE_HWTABLE_PTRS	(0)
     25#define PTE_HWTABLE_OFF		(0)
     26#define PTE_HWTABLE_SIZE	(PTRS_PER_PTE * sizeof(u64))
     27
     28#define MAX_POSSIBLE_PHYSMEM_BITS 40
     29
     30/*
     31 * PGDIR_SHIFT determines the size a top-level page table entry can map.
     32 */
     33#define PGDIR_SHIFT		30
     34
     35/*
     36 * PMD_SHIFT determines the size a middle-level page table entry can map.
     37 */
     38#define PMD_SHIFT		21
     39
     40#define PMD_SIZE		(1UL << PMD_SHIFT)
     41#define PMD_MASK		(~((1 << PMD_SHIFT) - 1))
     42#define PGDIR_SIZE		(1UL << PGDIR_SHIFT)
     43#define PGDIR_MASK		(~((1 << PGDIR_SHIFT) - 1))
     44
     45/*
     46 * section address mask and size definitions.
     47 */
     48#define SECTION_SHIFT		21
     49#define SECTION_SIZE		(1UL << SECTION_SHIFT)
     50#define SECTION_MASK		(~((1 << SECTION_SHIFT) - 1))
     51
     52#define USER_PTRS_PER_PGD	(PAGE_OFFSET / PGDIR_SIZE)
     53
     54/*
     55 * Hugetlb definitions.
     56 */
     57#define HPAGE_SHIFT		PMD_SHIFT
     58#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
     59#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
     60#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
     61
     62/*
     63 * "Linux" PTE definitions for LPAE.
     64 *
     65 * These bits overlap with the hardware bits but the naming is preserved for
     66 * consistency with the classic page table format.
     67 */
     68#define L_PTE_VALID		(_AT(pteval_t, 1) << 0)		/* Valid */
     69#define L_PTE_PRESENT		(_AT(pteval_t, 3) << 0)		/* Present */
     70#define L_PTE_USER		(_AT(pteval_t, 1) << 6)		/* AP[1] */
     71#define L_PTE_SHARED		(_AT(pteval_t, 3) << 8)		/* SH[1:0], inner shareable */
     72#define L_PTE_YOUNG		(_AT(pteval_t, 1) << 10)	/* AF */
     73#define L_PTE_XN		(_AT(pteval_t, 1) << 54)	/* XN */
     74#define L_PTE_DIRTY		(_AT(pteval_t, 1) << 55)
     75#define L_PTE_SPECIAL		(_AT(pteval_t, 1) << 56)
     76#define L_PTE_NONE		(_AT(pteval_t, 1) << 57)	/* PROT_NONE */
     77#define L_PTE_RDONLY		(_AT(pteval_t, 1) << 58)	/* READ ONLY */
     78
     79#define L_PMD_SECT_VALID	(_AT(pmdval_t, 1) << 0)
     80#define L_PMD_SECT_DIRTY	(_AT(pmdval_t, 1) << 55)
     81#define L_PMD_SECT_NONE		(_AT(pmdval_t, 1) << 57)
     82#define L_PMD_SECT_RDONLY	(_AT(pteval_t, 1) << 58)
     83
     84/*
     85 * To be used in assembly code with the upper page attributes.
     86 */
     87#define L_PTE_XN_HIGH		(1 << (54 - 32))
     88#define L_PTE_DIRTY_HIGH	(1 << (55 - 32))
     89
     90/*
     91 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
     92 */
     93#define L_PTE_MT_UNCACHED	(_AT(pteval_t, 0) << 2)	/* strongly ordered */
     94#define L_PTE_MT_BUFFERABLE	(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
     95#define L_PTE_MT_WRITETHROUGH	(_AT(pteval_t, 2) << 2)	/* normal inner write-through */
     96#define L_PTE_MT_WRITEBACK	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
     97#define L_PTE_MT_WRITEALLOC	(_AT(pteval_t, 7) << 2)	/* normal inner write-alloc */
     98#define L_PTE_MT_DEV_SHARED	(_AT(pteval_t, 4) << 2)	/* device */
     99#define L_PTE_MT_DEV_NONSHARED	(_AT(pteval_t, 4) << 2)	/* device */
    100#define L_PTE_MT_DEV_WC		(_AT(pteval_t, 1) << 2)	/* normal non-cacheable */
    101#define L_PTE_MT_DEV_CACHED	(_AT(pteval_t, 3) << 2)	/* normal inner write-back */
    102#define L_PTE_MT_MASK		(_AT(pteval_t, 7) << 2)
    103
    104/*
    105 * Software PGD flags.
    106 */
    107#define L_PGD_SWAPPER		(_AT(pgdval_t, 1) << 55)	/* swapper_pg_dir entry */
    108
    109#ifndef __ASSEMBLY__
    110
    111#define pud_none(pud)		(!pud_val(pud))
    112#define pud_bad(pud)		(!(pud_val(pud) & 2))
    113#define pud_present(pud)	(pud_val(pud))
    114#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
    115						 PMD_TYPE_TABLE)
    116#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
    117						 PMD_TYPE_SECT)
    118#define pmd_large(pmd)		pmd_sect(pmd)
    119#define pmd_leaf(pmd)		pmd_sect(pmd)
    120
    121#define pud_clear(pudp)			\
    122	do {				\
    123		*pudp = __pud(0);	\
    124		clean_pmd_entry(pudp);	\
    125	} while (0)
    126
    127#define set_pud(pudp, pud)		\
    128	do {				\
    129		*pudp = pud;		\
    130		flush_pmd_entry(pudp);	\
    131	} while (0)
    132
    133static inline pmd_t *pud_pgtable(pud_t pud)
    134{
    135	return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
    136}
    137
    138#define pmd_bad(pmd)		(!(pmd_val(pmd) & 2))
    139
    140#define copy_pmd(pmdpd,pmdps)		\
    141	do {				\
    142		*pmdpd = *pmdps;	\
    143		flush_pmd_entry(pmdpd);	\
    144	} while (0)
    145
    146#define pmd_clear(pmdp)			\
    147	do {				\
    148		*pmdp = __pmd(0);	\
    149		clean_pmd_entry(pmdp);	\
    150	} while (0)
    151
    152/*
    153 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
    154 * that are written to a page table but not for ptes created with mk_pte.
    155 *
    156 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
    157 * hugetlb_cow, where it is compared with an entry in a page table.
    158 * This comparison test fails erroneously leading ultimately to a memory leak.
    159 *
    160 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
    161 * present before running the comparison.
    162 */
    163#define __HAVE_ARCH_PTE_SAME
    164#define pte_same(pte_a,pte_b)	((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG	\
    165					: pte_val(pte_a))				\
    166				== (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG	\
    167					: pte_val(pte_b)))
    168
    169#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
    170
    171#define pte_huge(pte)		(pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
    172#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
    173
    174#define pmd_isset(pmd, val)	((u32)(val) == (val) ? pmd_val(pmd) & (val) \
    175						: !!(pmd_val(pmd) & (val)))
    176#define pmd_isclear(pmd, val)	(!(pmd_val(pmd) & (val)))
    177
    178#define pmd_present(pmd)	(pmd_isset((pmd), L_PMD_SECT_VALID))
    179#define pmd_young(pmd)		(pmd_isset((pmd), PMD_SECT_AF))
    180#define pte_special(pte)	(pte_isset((pte), L_PTE_SPECIAL))
    181static inline pte_t pte_mkspecial(pte_t pte)
    182{
    183	pte_val(pte) |= L_PTE_SPECIAL;
    184	return pte;
    185}
    186
    187#define pmd_write(pmd)		(pmd_isclear((pmd), L_PMD_SECT_RDONLY))
    188#define pmd_dirty(pmd)		(pmd_isset((pmd), L_PMD_SECT_DIRTY))
    189
    190#define pmd_hugewillfault(pmd)	(!pmd_young(pmd) || !pmd_write(pmd))
    191#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
    192
    193#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    194#define pmd_trans_huge(pmd)	(pmd_val(pmd) && !pmd_table(pmd))
    195#endif
    196
    197#define PMD_BIT_FUNC(fn,op) \
    198static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
    199
    200PMD_BIT_FUNC(wrprotect,	|= L_PMD_SECT_RDONLY);
    201PMD_BIT_FUNC(mkold,	&= ~PMD_SECT_AF);
    202PMD_BIT_FUNC(mkwrite,   &= ~L_PMD_SECT_RDONLY);
    203PMD_BIT_FUNC(mkdirty,   |= L_PMD_SECT_DIRTY);
    204PMD_BIT_FUNC(mkclean,   &= ~L_PMD_SECT_DIRTY);
    205PMD_BIT_FUNC(mkyoung,   |= PMD_SECT_AF);
    206
    207#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
    208
    209#define pmd_pfn(pmd)		(((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
    210#define pfn_pmd(pfn,prot)	(__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
    211#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
    212
    213/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
    214#define pmdp_establish generic_pmdp_establish
    215
    216/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
    217static inline pmd_t pmd_mkinvalid(pmd_t pmd)
    218{
    219	return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
    220}
    221
    222static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
    223{
    224	const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
    225				L_PMD_SECT_VALID | L_PMD_SECT_NONE;
    226	pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
    227	return pmd;
    228}
    229
    230static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
    231			      pmd_t *pmdp, pmd_t pmd)
    232{
    233	BUG_ON(addr >= TASK_SIZE);
    234
    235	/* create a faulting entry if PROT_NONE protected */
    236	if (pmd_val(pmd) & L_PMD_SECT_NONE)
    237		pmd_val(pmd) &= ~L_PMD_SECT_VALID;
    238
    239	if (pmd_write(pmd) && pmd_dirty(pmd))
    240		pmd_val(pmd) &= ~PMD_SECT_AP2;
    241	else
    242		pmd_val(pmd) |= PMD_SECT_AP2;
    243
    244	*pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
    245	flush_pmd_entry(pmdp);
    246}
    247
    248#endif /* __ASSEMBLY__ */
    249
    250#endif /* _ASM_PGTABLE_3LEVEL_H */