pgtable.h (10464B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * arch/arm/include/asm/pgtable.h 4 * 5 * Copyright (C) 1995-2002 Russell King 6 */ 7#ifndef _ASMARM_PGTABLE_H 8#define _ASMARM_PGTABLE_H 9 10#include <linux/const.h> 11#include <asm/proc-fns.h> 12 13#ifndef CONFIG_MMU 14 15#include <asm-generic/pgtable-nopud.h> 16#include <asm/pgtable-nommu.h> 17 18#else 19 20#include <asm-generic/pgtable-nopud.h> 21#include <asm/memory.h> 22#include <asm/pgtable-hwdef.h> 23 24 25#include <asm/tlbflush.h> 26 27#ifdef CONFIG_ARM_LPAE 28#include <asm/pgtable-3level.h> 29#else 30#include <asm/pgtable-2level.h> 31#endif 32 33/* 34 * Just any arbitrary offset to the start of the vmalloc VM area: the 35 * current 8MB value just means that there will be a 8MB "hole" after the 36 * physical memory until the kernel virtual memory starts. That means that 37 * any out-of-bounds memory accesses will hopefully be caught. 38 * The vmalloc() routines leaves a hole of 4kB between each vmalloced 39 * area for the same reason. ;) 40 */ 41#define VMALLOC_OFFSET (8*1024*1024) 42#define VMALLOC_START (((unsigned long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)) 43#define VMALLOC_END 0xff800000UL 44 45#define LIBRARY_TEXT_START 0x0c000000 46 47#ifndef __ASSEMBLY__ 48extern void __pte_error(const char *file, int line, pte_t); 49extern void __pmd_error(const char *file, int line, pmd_t); 50extern void __pgd_error(const char *file, int line, pgd_t); 51 52#define pte_ERROR(pte) __pte_error(__FILE__, __LINE__, pte) 53#define pmd_ERROR(pmd) __pmd_error(__FILE__, __LINE__, pmd) 54#define pgd_ERROR(pgd) __pgd_error(__FILE__, __LINE__, pgd) 55 56/* 57 * This is the lowest virtual address we can permit any user space 58 * mapping to be mapped at. This is particularly important for 59 * non-high vector CPUs. 60 */ 61#define FIRST_USER_ADDRESS (PAGE_SIZE * 2) 62 63/* 64 * Use TASK_SIZE as the ceiling argument for free_pgtables() and 65 * free_pgd_range() to avoid freeing the modules pmd when LPAE is enabled (pmd 66 * page shared between user and kernel). 67 */ 68#ifdef CONFIG_ARM_LPAE 69#define USER_PGTABLES_CEILING TASK_SIZE 70#endif 71 72/* 73 * The pgprot_* and protection_map entries will be fixed up in runtime 74 * to include the cachable and bufferable bits based on memory policy, 75 * as well as any architecture dependent bits like global/ASID and SMP 76 * shared mapping bits. 77 */ 78#define _L_PTE_DEFAULT L_PTE_PRESENT | L_PTE_YOUNG 79 80extern pgprot_t pgprot_user; 81extern pgprot_t pgprot_kernel; 82 83#define _MOD_PROT(p, b) __pgprot(pgprot_val(p) | (b)) 84 85#define PAGE_NONE _MOD_PROT(pgprot_user, L_PTE_XN | L_PTE_RDONLY | L_PTE_NONE) 86#define PAGE_SHARED _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_XN) 87#define PAGE_SHARED_EXEC _MOD_PROT(pgprot_user, L_PTE_USER) 88#define PAGE_COPY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 89#define PAGE_COPY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) 90#define PAGE_READONLY _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 91#define PAGE_READONLY_EXEC _MOD_PROT(pgprot_user, L_PTE_USER | L_PTE_RDONLY) 92#define PAGE_KERNEL _MOD_PROT(pgprot_kernel, L_PTE_XN) 93#define PAGE_KERNEL_EXEC pgprot_kernel 94 95#define __PAGE_NONE __pgprot(_L_PTE_DEFAULT | L_PTE_RDONLY | L_PTE_XN | L_PTE_NONE) 96#define __PAGE_SHARED __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_XN) 97#define __PAGE_SHARED_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER) 98#define __PAGE_COPY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 99#define __PAGE_COPY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) 100#define __PAGE_READONLY __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY | L_PTE_XN) 101#define __PAGE_READONLY_EXEC __pgprot(_L_PTE_DEFAULT | L_PTE_USER | L_PTE_RDONLY) 102 103#define __pgprot_modify(prot,mask,bits) \ 104 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 105 106#define pgprot_noncached(prot) \ 107 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED) 108 109#define pgprot_writecombine(prot) \ 110 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE) 111 112#define pgprot_stronglyordered(prot) \ 113 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED) 114 115#define pgprot_device(prot) \ 116 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_DEV_SHARED | L_PTE_SHARED | L_PTE_DIRTY | L_PTE_XN) 117 118#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE 119#define pgprot_dmacoherent(prot) \ 120 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE | L_PTE_XN) 121#define __HAVE_PHYS_MEM_ACCESS_PROT 122struct file; 123extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 124 unsigned long size, pgprot_t vma_prot); 125#else 126#define pgprot_dmacoherent(prot) \ 127 __pgprot_modify(prot, L_PTE_MT_MASK, L_PTE_MT_UNCACHED | L_PTE_XN) 128#endif 129 130#endif /* __ASSEMBLY__ */ 131 132/* 133 * The table below defines the page protection levels that we insert into our 134 * Linux page table version. These get translated into the best that the 135 * architecture can perform. Note that on most ARM hardware: 136 * 1) We cannot do execute protection 137 * 2) If we could do execute protection, then read is implied 138 * 3) write implies read permissions 139 */ 140#define __P000 __PAGE_NONE 141#define __P001 __PAGE_READONLY 142#define __P010 __PAGE_COPY 143#define __P011 __PAGE_COPY 144#define __P100 __PAGE_READONLY_EXEC 145#define __P101 __PAGE_READONLY_EXEC 146#define __P110 __PAGE_COPY_EXEC 147#define __P111 __PAGE_COPY_EXEC 148 149#define __S000 __PAGE_NONE 150#define __S001 __PAGE_READONLY 151#define __S010 __PAGE_SHARED 152#define __S011 __PAGE_SHARED 153#define __S100 __PAGE_READONLY_EXEC 154#define __S101 __PAGE_READONLY_EXEC 155#define __S110 __PAGE_SHARED_EXEC 156#define __S111 __PAGE_SHARED_EXEC 157 158#ifndef __ASSEMBLY__ 159/* 160 * ZERO_PAGE is a global shared page that is always zero: used 161 * for zero-mapped memory areas etc.. 162 */ 163extern struct page *empty_zero_page; 164#define ZERO_PAGE(vaddr) (empty_zero_page) 165 166 167extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 168 169#define pud_page(pud) pmd_page(__pmd(pud_val(pud))) 170#define pud_write(pud) pmd_write(__pmd(pud_val(pud))) 171 172#define pmd_none(pmd) (!pmd_val(pmd)) 173 174static inline pte_t *pmd_page_vaddr(pmd_t pmd) 175{ 176 return __va(pmd_val(pmd) & PHYS_MASK & (s32)PAGE_MASK); 177} 178 179#define pmd_page(pmd) pfn_to_page(__phys_to_pfn(pmd_val(pmd) & PHYS_MASK)) 180 181#define pte_pfn(pte) ((pte_val(pte) & PHYS_MASK) >> PAGE_SHIFT) 182#define pfn_pte(pfn,prot) __pte(__pfn_to_phys(pfn) | pgprot_val(prot)) 183 184#define pte_page(pte) pfn_to_page(pte_pfn(pte)) 185#define mk_pte(page,prot) pfn_pte(page_to_pfn(page), prot) 186 187#define pte_clear(mm,addr,ptep) set_pte_ext(ptep, __pte(0), 0) 188 189#define pte_isset(pte, val) ((u32)(val) == (val) ? pte_val(pte) & (val) \ 190 : !!(pte_val(pte) & (val))) 191#define pte_isclear(pte, val) (!(pte_val(pte) & (val))) 192 193#define pte_none(pte) (!pte_val(pte)) 194#define pte_present(pte) (pte_isset((pte), L_PTE_PRESENT)) 195#define pte_valid(pte) (pte_isset((pte), L_PTE_VALID)) 196#define pte_accessible(mm, pte) (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 197#define pte_write(pte) (pte_isclear((pte), L_PTE_RDONLY)) 198#define pte_dirty(pte) (pte_isset((pte), L_PTE_DIRTY)) 199#define pte_young(pte) (pte_isset((pte), L_PTE_YOUNG)) 200#define pte_exec(pte) (pte_isclear((pte), L_PTE_XN)) 201 202#define pte_valid_user(pte) \ 203 (pte_valid(pte) && pte_isset((pte), L_PTE_USER) && pte_young(pte)) 204 205static inline bool pte_access_permitted(pte_t pte, bool write) 206{ 207 pteval_t mask = L_PTE_PRESENT | L_PTE_USER; 208 pteval_t needed = mask; 209 210 if (write) 211 mask |= L_PTE_RDONLY; 212 213 return (pte_val(pte) & mask) == needed; 214} 215#define pte_access_permitted pte_access_permitted 216 217#if __LINUX_ARM_ARCH__ < 6 218static inline void __sync_icache_dcache(pte_t pteval) 219{ 220} 221#else 222extern void __sync_icache_dcache(pte_t pteval); 223#endif 224 225void set_pte_at(struct mm_struct *mm, unsigned long addr, 226 pte_t *ptep, pte_t pteval); 227 228static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 229{ 230 pte_val(pte) &= ~pgprot_val(prot); 231 return pte; 232} 233 234static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 235{ 236 pte_val(pte) |= pgprot_val(prot); 237 return pte; 238} 239 240static inline pte_t pte_wrprotect(pte_t pte) 241{ 242 return set_pte_bit(pte, __pgprot(L_PTE_RDONLY)); 243} 244 245static inline pte_t pte_mkwrite(pte_t pte) 246{ 247 return clear_pte_bit(pte, __pgprot(L_PTE_RDONLY)); 248} 249 250static inline pte_t pte_mkclean(pte_t pte) 251{ 252 return clear_pte_bit(pte, __pgprot(L_PTE_DIRTY)); 253} 254 255static inline pte_t pte_mkdirty(pte_t pte) 256{ 257 return set_pte_bit(pte, __pgprot(L_PTE_DIRTY)); 258} 259 260static inline pte_t pte_mkold(pte_t pte) 261{ 262 return clear_pte_bit(pte, __pgprot(L_PTE_YOUNG)); 263} 264 265static inline pte_t pte_mkyoung(pte_t pte) 266{ 267 return set_pte_bit(pte, __pgprot(L_PTE_YOUNG)); 268} 269 270static inline pte_t pte_mkexec(pte_t pte) 271{ 272 return clear_pte_bit(pte, __pgprot(L_PTE_XN)); 273} 274 275static inline pte_t pte_mknexec(pte_t pte) 276{ 277 return set_pte_bit(pte, __pgprot(L_PTE_XN)); 278} 279 280static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 281{ 282 const pteval_t mask = L_PTE_XN | L_PTE_RDONLY | L_PTE_USER | 283 L_PTE_NONE | L_PTE_VALID; 284 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 285 return pte; 286} 287 288/* 289 * Encode and decode a swap entry. Swap entries are stored in the Linux 290 * page tables as follows: 291 * 292 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 293 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 294 * <--------------- offset ------------------------> < type -> 0 0 295 * 296 * This gives us up to 31 swap files and 128GB per swap file. Note that 297 * the offset field is always non-zero. 298 */ 299#define __SWP_TYPE_SHIFT 2 300#define __SWP_TYPE_BITS 5 301#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 302#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 303 304#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 305#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 306#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 307 308#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 309#define __swp_entry_to_pte(swp) __pte((swp).val | PTE_TYPE_FAULT) 310 311/* 312 * It is an error for the kernel to have more swap files than we can 313 * encode in the PTEs. This ensures that we know when MAX_SWAPFILES 314 * is increased beyond what we presently support. 315 */ 316#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 317 318/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ 319/* FIXME: this is not correct */ 320#define kern_addr_valid(addr) (1) 321 322/* 323 * We provide our own arch_get_unmapped_area to cope with VIPT caches. 324 */ 325#define HAVE_ARCH_UNMAPPED_AREA 326#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 327 328#endif /* !__ASSEMBLY__ */ 329 330#endif /* CONFIG_MMU */ 331 332#endif /* _ASMARM_PGTABLE_H */