entry-armv.S (34195B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * linux/arch/arm/kernel/entry-armv.S 4 * 5 * Copyright (C) 1996,1997,1998 Russell King. 6 * ARM700 fix by Matthew Godbolt (linux-user@willothewisp.demon.co.uk) 7 * nommu support by Hyok S. Choi (hyok.choi@samsung.com) 8 * 9 * Low-level vector interface routines 10 * 11 * Note: there is a StrongARM bug in the STMIA rn, {regs}^ instruction 12 * that causes it to save wrong values... Be aware! 13 */ 14 15#include <linux/init.h> 16 17#include <asm/assembler.h> 18#include <asm/memory.h> 19#include <asm/glue-df.h> 20#include <asm/glue-pf.h> 21#include <asm/vfpmacros.h> 22#include <asm/thread_notify.h> 23#include <asm/unwind.h> 24#include <asm/unistd.h> 25#include <asm/tls.h> 26#include <asm/system_info.h> 27#include <asm/uaccess-asm.h> 28 29#include "entry-header.S" 30#include <asm/probes.h> 31 32/* 33 * Interrupt handling. 34 */ 35 .macro irq_handler, from_user:req 36 mov r1, sp 37 ldr_this_cpu r2, irq_stack_ptr, r2, r3 38 .if \from_user == 0 39 @ 40 @ If we took the interrupt while running in the kernel, we may already 41 @ be using the IRQ stack, so revert to the original value in that case. 42 @ 43 subs r3, r2, r1 @ SP above bottom of IRQ stack? 44 rsbscs r3, r3, #THREAD_SIZE @ ... and below the top? 45#ifdef CONFIG_VMAP_STACK 46 ldr_va r3, high_memory, cc @ End of the linear region 47 cmpcc r3, r1 @ Stack pointer was below it? 48#endif 49 bcc 0f @ If not, switch to the IRQ stack 50 mov r0, r1 51 bl generic_handle_arch_irq 52 b 1f 530: 54 .endif 55 56 mov_l r0, generic_handle_arch_irq 57 bl call_with_stack 581: 59 .endm 60 61 .macro pabt_helper 62 @ PABORT handler takes pt_regs in r2, fault address in r4 and psr in r5 63#ifdef MULTI_PABORT 64 ldr_va ip, processor, offset=PROCESSOR_PABT_FUNC 65 bl_r ip 66#else 67 bl CPU_PABORT_HANDLER 68#endif 69 .endm 70 71 .macro dabt_helper 72 73 @ 74 @ Call the processor-specific abort handler: 75 @ 76 @ r2 - pt_regs 77 @ r4 - aborted context pc 78 @ r5 - aborted context psr 79 @ 80 @ The abort handler must return the aborted address in r0, and 81 @ the fault status register in r1. r9 must be preserved. 82 @ 83#ifdef MULTI_DABORT 84 ldr_va ip, processor, offset=PROCESSOR_DABT_FUNC 85 bl_r ip 86#else 87 bl CPU_DABORT_HANDLER 88#endif 89 .endm 90 91 .section .entry.text,"ax",%progbits 92 93/* 94 * Invalid mode handlers 95 */ 96 .macro inv_entry, reason 97 sub sp, sp, #PT_REGS_SIZE 98 ARM( stmib sp, {r1 - lr} ) 99 THUMB( stmia sp, {r0 - r12} ) 100 THUMB( str sp, [sp, #S_SP] ) 101 THUMB( str lr, [sp, #S_LR] ) 102 mov r1, #\reason 103 .endm 104 105__pabt_invalid: 106 inv_entry BAD_PREFETCH 107 b common_invalid 108ENDPROC(__pabt_invalid) 109 110__dabt_invalid: 111 inv_entry BAD_DATA 112 b common_invalid 113ENDPROC(__dabt_invalid) 114 115__irq_invalid: 116 inv_entry BAD_IRQ 117 b common_invalid 118ENDPROC(__irq_invalid) 119 120__und_invalid: 121 inv_entry BAD_UNDEFINSTR 122 123 @ 124 @ XXX fall through to common_invalid 125 @ 126 127@ 128@ common_invalid - generic code for failed exception (re-entrant version of handlers) 129@ 130common_invalid: 131 zero_fp 132 133 ldmia r0, {r4 - r6} 134 add r0, sp, #S_PC @ here for interlock avoidance 135 mov r7, #-1 @ "" "" "" "" 136 str r4, [sp] @ save preserved r0 137 stmia r0, {r5 - r7} @ lr_<exception>, 138 @ cpsr_<exception>, "old_r0" 139 140 mov r0, sp 141 b bad_mode 142ENDPROC(__und_invalid) 143 144/* 145 * SVC mode handlers 146 */ 147 148#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) 149#define SPFIX(code...) code 150#else 151#define SPFIX(code...) 152#endif 153 154 .macro svc_entry, stack_hole=0, trace=1, uaccess=1, overflow_check=1 155 UNWIND(.fnstart ) 156 sub sp, sp, #(SVC_REGS_SIZE + \stack_hole) 157 THUMB( add sp, r1 ) @ get SP in a GPR without 158 THUMB( sub r1, sp, r1 ) @ using a temp register 159 160 .if \overflow_check 161 UNWIND(.save {r0 - pc} ) 162 do_overflow_check (SVC_REGS_SIZE + \stack_hole) 163 .endif 164 165#ifdef CONFIG_THUMB2_KERNEL 166 tst r1, #4 @ test stack pointer alignment 167 sub r1, sp, r1 @ restore original R1 168 sub sp, r1 @ restore original SP 169#else 170 SPFIX( tst sp, #4 ) 171#endif 172 SPFIX( subne sp, sp, #4 ) 173 174 ARM( stmib sp, {r1 - r12} ) 175 THUMB( stmia sp, {r0 - r12} ) @ No STMIB in Thumb-2 176 177 ldmia r0, {r3 - r5} 178 add r7, sp, #S_SP @ here for interlock avoidance 179 mov r6, #-1 @ "" "" "" "" 180 add r2, sp, #(SVC_REGS_SIZE + \stack_hole) 181 SPFIX( addne r2, r2, #4 ) 182 str r3, [sp] @ save the "real" r0 copied 183 @ from the exception stack 184 185 mov r3, lr 186 187 @ 188 @ We are now ready to fill in the remaining blanks on the stack: 189 @ 190 @ r2 - sp_svc 191 @ r3 - lr_svc 192 @ r4 - lr_<exception>, already fixed up for correct return/restart 193 @ r5 - spsr_<exception> 194 @ r6 - orig_r0 (see pt_regs definition in ptrace.h) 195 @ 196 stmia r7, {r2 - r6} 197 198 get_thread_info tsk 199 uaccess_entry tsk, r0, r1, r2, \uaccess 200 201 .if \trace 202#ifdef CONFIG_TRACE_IRQFLAGS 203 bl trace_hardirqs_off 204#endif 205 .endif 206 .endm 207 208 .align 5 209__dabt_svc: 210 svc_entry uaccess=0 211 mov r2, sp 212 dabt_helper 213 THUMB( ldr r5, [sp, #S_PSR] ) @ potentially updated CPSR 214 svc_exit r5 @ return from exception 215 UNWIND(.fnend ) 216ENDPROC(__dabt_svc) 217 218 .align 5 219__irq_svc: 220 svc_entry 221 irq_handler from_user=0 222 223#ifdef CONFIG_PREEMPTION 224 ldr r8, [tsk, #TI_PREEMPT] @ get preempt count 225 ldr r0, [tsk, #TI_FLAGS] @ get flags 226 teq r8, #0 @ if preempt count != 0 227 movne r0, #0 @ force flags to 0 228 tst r0, #_TIF_NEED_RESCHED 229 blne svc_preempt 230#endif 231 232 svc_exit r5, irq = 1 @ return from exception 233 UNWIND(.fnend ) 234ENDPROC(__irq_svc) 235 236 .ltorg 237 238#ifdef CONFIG_PREEMPTION 239svc_preempt: 240 mov r8, lr 2411: bl preempt_schedule_irq @ irq en/disable is done inside 242 ldr r0, [tsk, #TI_FLAGS] @ get new tasks TI_FLAGS 243 tst r0, #_TIF_NEED_RESCHED 244 reteq r8 @ go again 245 b 1b 246#endif 247 248__und_fault: 249 @ Correct the PC such that it is pointing at the instruction 250 @ which caused the fault. If the faulting instruction was ARM 251 @ the PC will be pointing at the next instruction, and have to 252 @ subtract 4. Otherwise, it is Thumb, and the PC will be 253 @ pointing at the second half of the Thumb instruction. We 254 @ have to subtract 2. 255 ldr r2, [r0, #S_PC] 256 sub r2, r2, r1 257 str r2, [r0, #S_PC] 258 b do_undefinstr 259ENDPROC(__und_fault) 260 261 .align 5 262__und_svc: 263#ifdef CONFIG_KPROBES 264 @ If a kprobe is about to simulate a "stmdb sp..." instruction, 265 @ it obviously needs free stack space which then will belong to 266 @ the saved context. 267 svc_entry MAX_STACK_SIZE 268#else 269 svc_entry 270#endif 271 272 mov r1, #4 @ PC correction to apply 273 THUMB( tst r5, #PSR_T_BIT ) @ exception taken in Thumb mode? 274 THUMB( movne r1, #2 ) @ if so, fix up PC correction 275 mov r0, sp @ struct pt_regs *regs 276 bl __und_fault 277 278__und_svc_finish: 279 get_thread_info tsk 280 ldr r5, [sp, #S_PSR] @ Get SVC cpsr 281 svc_exit r5 @ return from exception 282 UNWIND(.fnend ) 283ENDPROC(__und_svc) 284 285 .align 5 286__pabt_svc: 287 svc_entry 288 mov r2, sp @ regs 289 pabt_helper 290 svc_exit r5 @ return from exception 291 UNWIND(.fnend ) 292ENDPROC(__pabt_svc) 293 294 .align 5 295__fiq_svc: 296 svc_entry trace=0 297 mov r0, sp @ struct pt_regs *regs 298 bl handle_fiq_as_nmi 299 svc_exit_via_fiq 300 UNWIND(.fnend ) 301ENDPROC(__fiq_svc) 302 303/* 304 * Abort mode handlers 305 */ 306 307@ 308@ Taking a FIQ in abort mode is similar to taking a FIQ in SVC mode 309@ and reuses the same macros. However in abort mode we must also 310@ save/restore lr_abt and spsr_abt to make nested aborts safe. 311@ 312 .align 5 313__fiq_abt: 314 svc_entry trace=0 315 316 ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) 317 THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) 318 THUMB( msr cpsr_c, r0 ) 319 mov r1, lr @ Save lr_abt 320 mrs r2, spsr @ Save spsr_abt, abort is now safe 321 ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) 322 THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) 323 THUMB( msr cpsr_c, r0 ) 324 stmfd sp!, {r1 - r2} 325 326 add r0, sp, #8 @ struct pt_regs *regs 327 bl handle_fiq_as_nmi 328 329 ldmfd sp!, {r1 - r2} 330 ARM( msr cpsr_c, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) 331 THUMB( mov r0, #ABT_MODE | PSR_I_BIT | PSR_F_BIT ) 332 THUMB( msr cpsr_c, r0 ) 333 mov lr, r1 @ Restore lr_abt, abort is unsafe 334 msr spsr_cxsf, r2 @ Restore spsr_abt 335 ARM( msr cpsr_c, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) 336 THUMB( mov r0, #SVC_MODE | PSR_I_BIT | PSR_F_BIT ) 337 THUMB( msr cpsr_c, r0 ) 338 339 svc_exit_via_fiq 340 UNWIND(.fnend ) 341ENDPROC(__fiq_abt) 342 343/* 344 * User mode handlers 345 * 346 * EABI note: sp_svc is always 64-bit aligned here, so should PT_REGS_SIZE 347 */ 348 349#if defined(CONFIG_AEABI) && (__LINUX_ARM_ARCH__ >= 5) && (PT_REGS_SIZE & 7) 350#error "sizeof(struct pt_regs) must be a multiple of 8" 351#endif 352 353 .macro usr_entry, trace=1, uaccess=1 354 UNWIND(.fnstart ) 355 UNWIND(.cantunwind ) @ don't unwind the user space 356 sub sp, sp, #PT_REGS_SIZE 357 ARM( stmib sp, {r1 - r12} ) 358 THUMB( stmia sp, {r0 - r12} ) 359 360 ATRAP( mrc p15, 0, r7, c1, c0, 0) 361 ATRAP( ldr_va r8, cr_alignment) 362 363 ldmia r0, {r3 - r5} 364 add r0, sp, #S_PC @ here for interlock avoidance 365 mov r6, #-1 @ "" "" "" "" 366 367 str r3, [sp] @ save the "real" r0 copied 368 @ from the exception stack 369 370 @ 371 @ We are now ready to fill in the remaining blanks on the stack: 372 @ 373 @ r4 - lr_<exception>, already fixed up for correct return/restart 374 @ r5 - spsr_<exception> 375 @ r6 - orig_r0 (see pt_regs definition in ptrace.h) 376 @ 377 @ Also, separately save sp_usr and lr_usr 378 @ 379 stmia r0, {r4 - r6} 380 ARM( stmdb r0, {sp, lr}^ ) 381 THUMB( store_user_sp_lr r0, r1, S_SP - S_PC ) 382 383 .if \uaccess 384 uaccess_disable ip 385 .endif 386 387 @ Enable the alignment trap while in kernel mode 388 ATRAP( teq r8, r7) 389 ATRAP( mcrne p15, 0, r8, c1, c0, 0) 390 391 reload_current r7, r8 392 393 @ 394 @ Clear FP to mark the first stack frame 395 @ 396 zero_fp 397 398 .if \trace 399#ifdef CONFIG_TRACE_IRQFLAGS 400 bl trace_hardirqs_off 401#endif 402 ct_user_exit save = 0 403 .endif 404 .endm 405 406 .macro kuser_cmpxchg_check 407#if !defined(CONFIG_CPU_32v6K) && defined(CONFIG_KUSER_HELPERS) 408#ifndef CONFIG_MMU 409#warning "NPTL on non MMU needs fixing" 410#else 411 @ Make sure our user space atomic helper is restarted 412 @ if it was interrupted in a critical region. Here we 413 @ perform a quick test inline since it should be false 414 @ 99.9999% of the time. The rest is done out of line. 415 ldr r0, =TASK_SIZE 416 cmp r4, r0 417 blhs kuser_cmpxchg64_fixup 418#endif 419#endif 420 .endm 421 422 .align 5 423__dabt_usr: 424 usr_entry uaccess=0 425 kuser_cmpxchg_check 426 mov r2, sp 427 dabt_helper 428 b ret_from_exception 429 UNWIND(.fnend ) 430ENDPROC(__dabt_usr) 431 432 .align 5 433__irq_usr: 434 usr_entry 435 kuser_cmpxchg_check 436 irq_handler from_user=1 437 get_thread_info tsk 438 mov why, #0 439 b ret_to_user_from_irq 440 UNWIND(.fnend ) 441ENDPROC(__irq_usr) 442 443 .ltorg 444 445 .align 5 446__und_usr: 447 usr_entry uaccess=0 448 449 mov r2, r4 450 mov r3, r5 451 452 @ r2 = regs->ARM_pc, which is either 2 or 4 bytes ahead of the 453 @ faulting instruction depending on Thumb mode. 454 @ r3 = regs->ARM_cpsr 455 @ 456 @ The emulation code returns using r9 if it has emulated the 457 @ instruction, or the more conventional lr if we are to treat 458 @ this as a real undefined instruction 459 @ 460 badr r9, ret_from_exception 461 462 @ IRQs must be enabled before attempting to read the instruction from 463 @ user space since that could cause a page/translation fault if the 464 @ page table was modified by another CPU. 465 enable_irq 466 467 tst r3, #PSR_T_BIT @ Thumb mode? 468 bne __und_usr_thumb 469 sub r4, r2, #4 @ ARM instr at LR - 4 4701: ldrt r0, [r4] 471 ARM_BE8(rev r0, r0) @ little endian instruction 472 473 uaccess_disable ip 474 475 @ r0 = 32-bit ARM instruction which caused the exception 476 @ r2 = PC value for the following instruction (:= regs->ARM_pc) 477 @ r4 = PC value for the faulting instruction 478 @ lr = 32-bit undefined instruction function 479 badr lr, __und_usr_fault_32 480 b call_fpe 481 482__und_usr_thumb: 483 @ Thumb instruction 484 sub r4, r2, #2 @ First half of thumb instr at LR - 2 485#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7 486/* 487 * Thumb-2 instruction handling. Note that because pre-v6 and >= v6 platforms 488 * can never be supported in a single kernel, this code is not applicable at 489 * all when __LINUX_ARM_ARCH__ < 6. This allows simplifying assumptions to be 490 * made about .arch directives. 491 */ 492#if __LINUX_ARM_ARCH__ < 7 493/* If the target CPU may not be Thumb-2-capable, a run-time check is needed: */ 494 ldr_va r5, cpu_architecture 495 cmp r5, #CPU_ARCH_ARMv7 496 blo __und_usr_fault_16 @ 16bit undefined instruction 497/* 498 * The following code won't get run unless the running CPU really is v7, so 499 * coding round the lack of ldrht on older arches is pointless. Temporarily 500 * override the assembler target arch with the minimum required instead: 501 */ 502 .arch armv6t2 503#endif 5042: ldrht r5, [r4] 505ARM_BE8(rev16 r5, r5) @ little endian instruction 506 cmp r5, #0xe800 @ 32bit instruction if xx != 0 507 blo __und_usr_fault_16_pan @ 16bit undefined instruction 5083: ldrht r0, [r2] 509ARM_BE8(rev16 r0, r0) @ little endian instruction 510 uaccess_disable ip 511 add r2, r2, #2 @ r2 is PC + 2, make it PC + 4 512 str r2, [sp, #S_PC] @ it's a 2x16bit instr, update 513 orr r0, r0, r5, lsl #16 514 badr lr, __und_usr_fault_32 515 @ r0 = the two 16-bit Thumb instructions which caused the exception 516 @ r2 = PC value for the following Thumb instruction (:= regs->ARM_pc) 517 @ r4 = PC value for the first 16-bit Thumb instruction 518 @ lr = 32bit undefined instruction function 519 520#if __LINUX_ARM_ARCH__ < 7 521/* If the target arch was overridden, change it back: */ 522#ifdef CONFIG_CPU_32v6K 523 .arch armv6k 524#else 525 .arch armv6 526#endif 527#endif /* __LINUX_ARM_ARCH__ < 7 */ 528#else /* !(CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7) */ 529 b __und_usr_fault_16 530#endif 531 UNWIND(.fnend) 532ENDPROC(__und_usr) 533 534/* 535 * The out of line fixup for the ldrt instructions above. 536 */ 537 .pushsection .text.fixup, "ax" 538 .align 2 5394: str r4, [sp, #S_PC] @ retry current instruction 540 ret r9 541 .popsection 542 .pushsection __ex_table,"a" 543 .long 1b, 4b 544#if CONFIG_ARM_THUMB && __LINUX_ARM_ARCH__ >= 6 && CONFIG_CPU_V7 545 .long 2b, 4b 546 .long 3b, 4b 547#endif 548 .popsection 549 550/* 551 * Check whether the instruction is a co-processor instruction. 552 * If yes, we need to call the relevant co-processor handler. 553 * 554 * Note that we don't do a full check here for the co-processor 555 * instructions; all instructions with bit 27 set are well 556 * defined. The only instructions that should fault are the 557 * co-processor instructions. However, we have to watch out 558 * for the ARM6/ARM7 SWI bug. 559 * 560 * NEON is a special case that has to be handled here. Not all 561 * NEON instructions are co-processor instructions, so we have 562 * to make a special case of checking for them. Plus, there's 563 * five groups of them, so we have a table of mask/opcode pairs 564 * to check against, and if any match then we branch off into the 565 * NEON handler code. 566 * 567 * Emulators may wish to make use of the following registers: 568 * r0 = instruction opcode (32-bit ARM or two 16-bit Thumb) 569 * r2 = PC value to resume execution after successful emulation 570 * r9 = normal "successful" return address 571 * r10 = this threads thread_info structure 572 * lr = unrecognised instruction return address 573 * IRQs enabled, FIQs enabled. 574 */ 575 @ 576 @ Fall-through from Thumb-2 __und_usr 577 @ 578#ifdef CONFIG_NEON 579 get_thread_info r10 @ get current thread 580 adr r6, .LCneon_thumb_opcodes 581 b 2f 582#endif 583call_fpe: 584 get_thread_info r10 @ get current thread 585#ifdef CONFIG_NEON 586 adr r6, .LCneon_arm_opcodes 5872: ldr r5, [r6], #4 @ mask value 588 ldr r7, [r6], #4 @ opcode bits matching in mask 589 cmp r5, #0 @ end mask? 590 beq 1f 591 and r8, r0, r5 592 cmp r8, r7 @ NEON instruction? 593 bne 2b 594 mov r7, #1 595 strb r7, [r10, #TI_USED_CP + 10] @ mark CP#10 as used 596 strb r7, [r10, #TI_USED_CP + 11] @ mark CP#11 as used 597 b do_vfp @ let VFP handler handle this 5981: 599#endif 600 tst r0, #0x08000000 @ only CDP/CPRT/LDC/STC have bit 27 601 tstne r0, #0x04000000 @ bit 26 set on both ARM and Thumb-2 602 reteq lr 603 and r8, r0, #0x00000f00 @ mask out CP number 604 mov r7, #1 605 add r6, r10, r8, lsr #8 @ add used_cp[] array offset first 606 strb r7, [r6, #TI_USED_CP] @ set appropriate used_cp[] 607#ifdef CONFIG_IWMMXT 608 @ Test if we need to give access to iWMMXt coprocessors 609 ldr r5, [r10, #TI_FLAGS] 610 rsbs r7, r8, #(1 << 8) @ CP 0 or 1 only 611 movscs r7, r5, lsr #(TIF_USING_IWMMXT + 1) 612 bcs iwmmxt_task_enable 613#endif 614 ARM( add pc, pc, r8, lsr #6 ) 615 THUMB( lsr r8, r8, #6 ) 616 THUMB( add pc, r8 ) 617 nop 618 619 ret.w lr @ CP#0 620 W(b) do_fpe @ CP#1 (FPE) 621 W(b) do_fpe @ CP#2 (FPE) 622 ret.w lr @ CP#3 623 ret.w lr @ CP#4 624 ret.w lr @ CP#5 625 ret.w lr @ CP#6 626 ret.w lr @ CP#7 627 ret.w lr @ CP#8 628 ret.w lr @ CP#9 629#ifdef CONFIG_VFP 630 W(b) do_vfp @ CP#10 (VFP) 631 W(b) do_vfp @ CP#11 (VFP) 632#else 633 ret.w lr @ CP#10 (VFP) 634 ret.w lr @ CP#11 (VFP) 635#endif 636 ret.w lr @ CP#12 637 ret.w lr @ CP#13 638 ret.w lr @ CP#14 (Debug) 639 ret.w lr @ CP#15 (Control) 640 641#ifdef CONFIG_NEON 642 .align 6 643 644.LCneon_arm_opcodes: 645 .word 0xfe000000 @ mask 646 .word 0xf2000000 @ opcode 647 648 .word 0xff100000 @ mask 649 .word 0xf4000000 @ opcode 650 651 .word 0x00000000 @ mask 652 .word 0x00000000 @ opcode 653 654.LCneon_thumb_opcodes: 655 .word 0xef000000 @ mask 656 .word 0xef000000 @ opcode 657 658 .word 0xff100000 @ mask 659 .word 0xf9000000 @ opcode 660 661 .word 0x00000000 @ mask 662 .word 0x00000000 @ opcode 663#endif 664 665do_fpe: 666 add r10, r10, #TI_FPSTATE @ r10 = workspace 667 ldr_va pc, fp_enter, tmp=r4 @ Call FP module USR entry point 668 669/* 670 * The FP module is called with these registers set: 671 * r0 = instruction 672 * r2 = PC+4 673 * r9 = normal "successful" return address 674 * r10 = FP workspace 675 * lr = unrecognised FP instruction return address 676 */ 677 678 .pushsection .data 679 .align 2 680ENTRY(fp_enter) 681 .word no_fp 682 .popsection 683 684ENTRY(no_fp) 685 ret lr 686ENDPROC(no_fp) 687 688__und_usr_fault_32: 689 mov r1, #4 690 b 1f 691__und_usr_fault_16_pan: 692 uaccess_disable ip 693__und_usr_fault_16: 694 mov r1, #2 6951: mov r0, sp 696 badr lr, ret_from_exception 697 b __und_fault 698ENDPROC(__und_usr_fault_32) 699ENDPROC(__und_usr_fault_16) 700 701 .align 5 702__pabt_usr: 703 usr_entry 704 mov r2, sp @ regs 705 pabt_helper 706 UNWIND(.fnend ) 707 /* fall through */ 708/* 709 * This is the return code to user mode for abort handlers 710 */ 711ENTRY(ret_from_exception) 712 UNWIND(.fnstart ) 713 UNWIND(.cantunwind ) 714 get_thread_info tsk 715 mov why, #0 716 b ret_to_user 717 UNWIND(.fnend ) 718ENDPROC(__pabt_usr) 719ENDPROC(ret_from_exception) 720 721 .align 5 722__fiq_usr: 723 usr_entry trace=0 724 kuser_cmpxchg_check 725 mov r0, sp @ struct pt_regs *regs 726 bl handle_fiq_as_nmi 727 get_thread_info tsk 728 restore_user_regs fast = 0, offset = 0 729 UNWIND(.fnend ) 730ENDPROC(__fiq_usr) 731 732/* 733 * Register switch for ARMv3 and ARMv4 processors 734 * r0 = previous task_struct, r1 = previous thread_info, r2 = next thread_info 735 * previous and next are guaranteed not to be the same. 736 */ 737ENTRY(__switch_to) 738 UNWIND(.fnstart ) 739 UNWIND(.cantunwind ) 740 add ip, r1, #TI_CPU_SAVE 741 ARM( stmia ip!, {r4 - sl, fp, sp, lr} ) @ Store most regs on stack 742 THUMB( stmia ip!, {r4 - sl, fp} ) @ Store most regs on stack 743 THUMB( str sp, [ip], #4 ) 744 THUMB( str lr, [ip], #4 ) 745 ldr r4, [r2, #TI_TP_VALUE] 746 ldr r5, [r2, #TI_TP_VALUE + 4] 747#ifdef CONFIG_CPU_USE_DOMAINS 748 mrc p15, 0, r6, c3, c0, 0 @ Get domain register 749 str r6, [r1, #TI_CPU_DOMAIN] @ Save old domain register 750 ldr r6, [r2, #TI_CPU_DOMAIN] 751#endif 752 switch_tls r1, r4, r5, r3, r7 753#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && \ 754 !defined(CONFIG_STACKPROTECTOR_PER_TASK) 755 ldr r8, =__stack_chk_guard 756 .if (TSK_STACK_CANARY > IMM12_MASK) 757 add r9, r2, #TSK_STACK_CANARY & ~IMM12_MASK 758 ldr r9, [r9, #TSK_STACK_CANARY & IMM12_MASK] 759 .else 760 ldr r9, [r2, #TSK_STACK_CANARY & IMM12_MASK] 761 .endif 762#endif 763 mov r7, r2 @ Preserve 'next' 764#ifdef CONFIG_CPU_USE_DOMAINS 765 mcr p15, 0, r6, c3, c0, 0 @ Set domain register 766#endif 767 mov r5, r0 768 add r4, r2, #TI_CPU_SAVE 769 ldr r0, =thread_notify_head 770 mov r1, #THREAD_NOTIFY_SWITCH 771 bl atomic_notifier_call_chain 772#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_SMP) && \ 773 !defined(CONFIG_STACKPROTECTOR_PER_TASK) 774 str r9, [r8] 775#endif 776 mov r0, r5 777#if !defined(CONFIG_THUMB2_KERNEL) && !defined(CONFIG_VMAP_STACK) 778 set_current r7, r8 779 ldmia r4, {r4 - sl, fp, sp, pc} @ Load all regs saved previously 780#else 781 mov r1, r7 782 ldmia r4, {r4 - sl, fp, ip, lr} @ Load all regs saved previously 783#ifdef CONFIG_VMAP_STACK 784 @ 785 @ Do a dummy read from the new stack while running from the old one so 786 @ that we can rely on do_translation_fault() to fix up any stale PMD 787 @ entries covering the vmalloc region. 788 @ 789 ldr r2, [ip] 790#endif 791 792 @ When CONFIG_THREAD_INFO_IN_TASK=n, the update of SP itself is what 793 @ effectuates the task switch, as that is what causes the observable 794 @ values of current and current_thread_info to change. When 795 @ CONFIG_THREAD_INFO_IN_TASK=y, setting current (and therefore 796 @ current_thread_info) is done explicitly, and the update of SP just 797 @ switches us to another stack, with few other side effects. In order 798 @ to prevent this distinction from causing any inconsistencies, let's 799 @ keep the 'set_current' call as close as we can to the update of SP. 800 set_current r1, r2 801 mov sp, ip 802 ret lr 803#endif 804 UNWIND(.fnend ) 805ENDPROC(__switch_to) 806 807#ifdef CONFIG_VMAP_STACK 808 .text 809 .align 2 810__bad_stack: 811 @ 812 @ We've just detected an overflow. We need to load the address of this 813 @ CPU's overflow stack into the stack pointer register. We have only one 814 @ scratch register so let's use a sequence of ADDs including one 815 @ involving the PC, and decorate them with PC-relative group 816 @ relocations. As these are ARM only, switch to ARM mode first. 817 @ 818 @ We enter here with IP clobbered and its value stashed on the mode 819 @ stack. 820 @ 821THUMB( bx pc ) 822THUMB( nop ) 823THUMB( .arm ) 824 ldr_this_cpu_armv6 ip, overflow_stack_ptr 825 826 str sp, [ip, #-4]! @ Preserve original SP value 827 mov sp, ip @ Switch to overflow stack 828 pop {ip} @ Original SP in IP 829 830#if defined(CONFIG_UNWINDER_FRAME_POINTER) && defined(CONFIG_CC_IS_GCC) 831 mov ip, ip @ mov expected by unwinder 832 push {fp, ip, lr, pc} @ GCC flavor frame record 833#else 834 str ip, [sp, #-8]! @ store original SP 835 push {fpreg, lr} @ Clang flavor frame record 836#endif 837UNWIND( ldr ip, [r0, #4] ) @ load exception LR 838UNWIND( str ip, [sp, #12] ) @ store in the frame record 839 ldr ip, [r0, #12] @ reload IP 840 841 @ Store the original GPRs to the new stack. 842 svc_entry uaccess=0, overflow_check=0 843 844UNWIND( .save {sp, pc} ) 845UNWIND( .save {fpreg, lr} ) 846UNWIND( .setfp fpreg, sp ) 847 848 ldr fpreg, [sp, #S_SP] @ Add our frame record 849 @ to the linked list 850#if defined(CONFIG_UNWINDER_FRAME_POINTER) && defined(CONFIG_CC_IS_GCC) 851 ldr r1, [fp, #4] @ reload SP at entry 852 add fp, fp, #12 853#else 854 ldr r1, [fpreg, #8] 855#endif 856 str r1, [sp, #S_SP] @ store in pt_regs 857 858 @ Stash the regs for handle_bad_stack 859 mov r0, sp 860 861 @ Time to die 862 bl handle_bad_stack 863 nop 864UNWIND( .fnend ) 865ENDPROC(__bad_stack) 866#endif 867 868 __INIT 869 870/* 871 * User helpers. 872 * 873 * Each segment is 32-byte aligned and will be moved to the top of the high 874 * vector page. New segments (if ever needed) must be added in front of 875 * existing ones. This mechanism should be used only for things that are 876 * really small and justified, and not be abused freely. 877 * 878 * See Documentation/arm/kernel_user_helpers.rst for formal definitions. 879 */ 880 THUMB( .arm ) 881 882 .macro usr_ret, reg 883#ifdef CONFIG_ARM_THUMB 884 bx \reg 885#else 886 ret \reg 887#endif 888 .endm 889 890 .macro kuser_pad, sym, size 891 .if (. - \sym) & 3 892 .rept 4 - (. - \sym) & 3 893 .byte 0 894 .endr 895 .endif 896 .rept (\size - (. - \sym)) / 4 897 .word 0xe7fddef1 898 .endr 899 .endm 900 901#ifdef CONFIG_KUSER_HELPERS 902 .align 5 903 .globl __kuser_helper_start 904__kuser_helper_start: 905 906/* 907 * Due to the length of some sequences, __kuser_cmpxchg64 spans 2 regular 908 * kuser "slots", therefore 0xffff0f80 is not used as a valid entry point. 909 */ 910 911__kuser_cmpxchg64: @ 0xffff0f60 912 913#if defined(CONFIG_CPU_32v6K) 914 915 stmfd sp!, {r4, r5, r6, r7} 916 ldrd r4, r5, [r0] @ load old val 917 ldrd r6, r7, [r1] @ load new val 918 smp_dmb arm 9191: ldrexd r0, r1, [r2] @ load current val 920 eors r3, r0, r4 @ compare with oldval (1) 921 eorseq r3, r1, r5 @ compare with oldval (2) 922 strexdeq r3, r6, r7, [r2] @ store newval if eq 923 teqeq r3, #1 @ success? 924 beq 1b @ if no then retry 925 smp_dmb arm 926 rsbs r0, r3, #0 @ set returned val and C flag 927 ldmfd sp!, {r4, r5, r6, r7} 928 usr_ret lr 929 930#elif !defined(CONFIG_SMP) 931 932#ifdef CONFIG_MMU 933 934 /* 935 * The only thing that can break atomicity in this cmpxchg64 936 * implementation is either an IRQ or a data abort exception 937 * causing another process/thread to be scheduled in the middle of 938 * the critical sequence. The same strategy as for cmpxchg is used. 939 */ 940 stmfd sp!, {r4, r5, r6, lr} 941 ldmia r0, {r4, r5} @ load old val 942 ldmia r1, {r6, lr} @ load new val 9431: ldmia r2, {r0, r1} @ load current val 944 eors r3, r0, r4 @ compare with oldval (1) 945 eorseq r3, r1, r5 @ compare with oldval (2) 9462: stmiaeq r2, {r6, lr} @ store newval if eq 947 rsbs r0, r3, #0 @ set return val and C flag 948 ldmfd sp!, {r4, r5, r6, pc} 949 950 .text 951kuser_cmpxchg64_fixup: 952 @ Called from kuser_cmpxchg_fixup. 953 @ r4 = address of interrupted insn (must be preserved). 954 @ sp = saved regs. r7 and r8 are clobbered. 955 @ 1b = first critical insn, 2b = last critical insn. 956 @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. 957 mov r7, #0xffff0fff 958 sub r7, r7, #(0xffff0fff - (0xffff0f60 + (1b - __kuser_cmpxchg64))) 959 subs r8, r4, r7 960 rsbscs r8, r8, #(2b - 1b) 961 strcs r7, [sp, #S_PC] 962#if __LINUX_ARM_ARCH__ < 6 963 bcc kuser_cmpxchg32_fixup 964#endif 965 ret lr 966 .previous 967 968#else 969#warning "NPTL on non MMU needs fixing" 970 mov r0, #-1 971 adds r0, r0, #0 972 usr_ret lr 973#endif 974 975#else 976#error "incoherent kernel configuration" 977#endif 978 979 kuser_pad __kuser_cmpxchg64, 64 980 981__kuser_memory_barrier: @ 0xffff0fa0 982 smp_dmb arm 983 usr_ret lr 984 985 kuser_pad __kuser_memory_barrier, 32 986 987__kuser_cmpxchg: @ 0xffff0fc0 988 989#if __LINUX_ARM_ARCH__ < 6 990 991#ifdef CONFIG_MMU 992 993 /* 994 * The only thing that can break atomicity in this cmpxchg 995 * implementation is either an IRQ or a data abort exception 996 * causing another process/thread to be scheduled in the middle 997 * of the critical sequence. To prevent this, code is added to 998 * the IRQ and data abort exception handlers to set the pc back 999 * to the beginning of the critical section if it is found to be 1000 * within that critical section (see kuser_cmpxchg_fixup). 1001 */ 10021: ldr r3, [r2] @ load current val 1003 subs r3, r3, r0 @ compare with oldval 10042: streq r1, [r2] @ store newval if eq 1005 rsbs r0, r3, #0 @ set return val and C flag 1006 usr_ret lr 1007 1008 .text 1009kuser_cmpxchg32_fixup: 1010 @ Called from kuser_cmpxchg_check macro. 1011 @ r4 = address of interrupted insn (must be preserved). 1012 @ sp = saved regs. r7 and r8 are clobbered. 1013 @ 1b = first critical insn, 2b = last critical insn. 1014 @ If r4 >= 1b and r4 <= 2b then saved pc_usr is set to 1b. 1015 mov r7, #0xffff0fff 1016 sub r7, r7, #(0xffff0fff - (0xffff0fc0 + (1b - __kuser_cmpxchg))) 1017 subs r8, r4, r7 1018 rsbscs r8, r8, #(2b - 1b) 1019 strcs r7, [sp, #S_PC] 1020 ret lr 1021 .previous 1022 1023#else 1024#warning "NPTL on non MMU needs fixing" 1025 mov r0, #-1 1026 adds r0, r0, #0 1027 usr_ret lr 1028#endif 1029 1030#else 1031 1032 smp_dmb arm 10331: ldrex r3, [r2] 1034 subs r3, r3, r0 1035 strexeq r3, r1, [r2] 1036 teqeq r3, #1 1037 beq 1b 1038 rsbs r0, r3, #0 1039 /* beware -- each __kuser slot must be 8 instructions max */ 1040 ALT_SMP(b __kuser_memory_barrier) 1041 ALT_UP(usr_ret lr) 1042 1043#endif 1044 1045 kuser_pad __kuser_cmpxchg, 32 1046 1047__kuser_get_tls: @ 0xffff0fe0 1048 ldr r0, [pc, #(16 - 8)] @ read TLS, set in kuser_get_tls_init 1049 usr_ret lr 1050 mrc p15, 0, r0, c13, c0, 3 @ 0xffff0fe8 hardware TLS code 1051 kuser_pad __kuser_get_tls, 16 1052 .rep 3 1053 .word 0 @ 0xffff0ff0 software TLS value, then 1054 .endr @ pad up to __kuser_helper_version 1055 1056__kuser_helper_version: @ 0xffff0ffc 1057 .word ((__kuser_helper_end - __kuser_helper_start) >> 5) 1058 1059 .globl __kuser_helper_end 1060__kuser_helper_end: 1061 1062#endif 1063 1064 THUMB( .thumb ) 1065 1066/* 1067 * Vector stubs. 1068 * 1069 * This code is copied to 0xffff1000 so we can use branches in the 1070 * vectors, rather than ldr's. Note that this code must not exceed 1071 * a page size. 1072 * 1073 * Common stub entry macro: 1074 * Enter in IRQ mode, spsr = SVC/USR CPSR, lr = SVC/USR PC 1075 * 1076 * SP points to a minimal amount of processor-private memory, the address 1077 * of which is copied into r0 for the mode specific abort handler. 1078 */ 1079 .macro vector_stub, name, mode, correction=0 1080 .align 5 1081#ifdef CONFIG_HARDEN_BRANCH_HISTORY 1082vector_bhb_bpiall_\name: 1083 mcr p15, 0, r0, c7, c5, 6 @ BPIALL 1084 @ isb not needed due to "movs pc, lr" in the vector stub 1085 @ which gives a "context synchronisation". 1086#endif 1087 1088vector_\name: 1089 .if \correction 1090 sub lr, lr, #\correction 1091 .endif 1092 1093 @ Save r0, lr_<exception> (parent PC) 1094 stmia sp, {r0, lr} @ save r0, lr 1095 1096 @ Save spsr_<exception> (parent CPSR) 1097.Lvec_\name: 1098 mrs lr, spsr 1099 str lr, [sp, #8] @ save spsr 1100 1101 @ 1102 @ Prepare for SVC32 mode. IRQs remain disabled. 1103 @ 1104 mrs r0, cpsr 1105 eor r0, r0, #(\mode ^ SVC_MODE | PSR_ISETSTATE) 1106 msr spsr_cxsf, r0 1107 1108 @ 1109 @ the branch table must immediately follow this code 1110 @ 1111 and lr, lr, #0x0f 1112 THUMB( adr r0, 1f ) 1113 THUMB( ldr lr, [r0, lr, lsl #2] ) 1114 mov r0, sp 1115 ARM( ldr lr, [pc, lr, lsl #2] ) 1116 movs pc, lr @ branch to handler in SVC mode 1117ENDPROC(vector_\name) 1118 1119#ifdef CONFIG_HARDEN_BRANCH_HISTORY 1120 .subsection 1 1121 .align 5 1122vector_bhb_loop8_\name: 1123 .if \correction 1124 sub lr, lr, #\correction 1125 .endif 1126 1127 @ Save r0, lr_<exception> (parent PC) 1128 stmia sp, {r0, lr} 1129 1130 @ bhb workaround 1131 mov r0, #8 11323: W(b) . + 4 1133 subs r0, r0, #1 1134 bne 3b 1135 dsb nsh 1136 @ isb not needed due to "movs pc, lr" in the vector stub 1137 @ which gives a "context synchronisation". 1138 b .Lvec_\name 1139ENDPROC(vector_bhb_loop8_\name) 1140 .previous 1141#endif 1142 1143 .align 2 1144 @ handler addresses follow this label 11451: 1146 .endm 1147 1148 .section .stubs, "ax", %progbits 1149 @ These need to remain at the start of the section so that 1150 @ they are in range of the 'SWI' entries in the vector tables 1151 @ located 4k down. 1152.L__vector_swi: 1153 .word vector_swi 1154#ifdef CONFIG_HARDEN_BRANCH_HISTORY 1155.L__vector_bhb_loop8_swi: 1156 .word vector_bhb_loop8_swi 1157.L__vector_bhb_bpiall_swi: 1158 .word vector_bhb_bpiall_swi 1159#endif 1160 1161vector_rst: 1162 ARM( swi SYS_ERROR0 ) 1163 THUMB( svc #0 ) 1164 THUMB( nop ) 1165 b vector_und 1166 1167/* 1168 * Interrupt dispatcher 1169 */ 1170 vector_stub irq, IRQ_MODE, 4 1171 1172 .long __irq_usr @ 0 (USR_26 / USR_32) 1173 .long __irq_invalid @ 1 (FIQ_26 / FIQ_32) 1174 .long __irq_invalid @ 2 (IRQ_26 / IRQ_32) 1175 .long __irq_svc @ 3 (SVC_26 / SVC_32) 1176 .long __irq_invalid @ 4 1177 .long __irq_invalid @ 5 1178 .long __irq_invalid @ 6 1179 .long __irq_invalid @ 7 1180 .long __irq_invalid @ 8 1181 .long __irq_invalid @ 9 1182 .long __irq_invalid @ a 1183 .long __irq_invalid @ b 1184 .long __irq_invalid @ c 1185 .long __irq_invalid @ d 1186 .long __irq_invalid @ e 1187 .long __irq_invalid @ f 1188 1189/* 1190 * Data abort dispatcher 1191 * Enter in ABT mode, spsr = USR CPSR, lr = USR PC 1192 */ 1193 vector_stub dabt, ABT_MODE, 8 1194 1195 .long __dabt_usr @ 0 (USR_26 / USR_32) 1196 .long __dabt_invalid @ 1 (FIQ_26 / FIQ_32) 1197 .long __dabt_invalid @ 2 (IRQ_26 / IRQ_32) 1198 .long __dabt_svc @ 3 (SVC_26 / SVC_32) 1199 .long __dabt_invalid @ 4 1200 .long __dabt_invalid @ 5 1201 .long __dabt_invalid @ 6 1202 .long __dabt_invalid @ 7 1203 .long __dabt_invalid @ 8 1204 .long __dabt_invalid @ 9 1205 .long __dabt_invalid @ a 1206 .long __dabt_invalid @ b 1207 .long __dabt_invalid @ c 1208 .long __dabt_invalid @ d 1209 .long __dabt_invalid @ e 1210 .long __dabt_invalid @ f 1211 1212/* 1213 * Prefetch abort dispatcher 1214 * Enter in ABT mode, spsr = USR CPSR, lr = USR PC 1215 */ 1216 vector_stub pabt, ABT_MODE, 4 1217 1218 .long __pabt_usr @ 0 (USR_26 / USR_32) 1219 .long __pabt_invalid @ 1 (FIQ_26 / FIQ_32) 1220 .long __pabt_invalid @ 2 (IRQ_26 / IRQ_32) 1221 .long __pabt_svc @ 3 (SVC_26 / SVC_32) 1222 .long __pabt_invalid @ 4 1223 .long __pabt_invalid @ 5 1224 .long __pabt_invalid @ 6 1225 .long __pabt_invalid @ 7 1226 .long __pabt_invalid @ 8 1227 .long __pabt_invalid @ 9 1228 .long __pabt_invalid @ a 1229 .long __pabt_invalid @ b 1230 .long __pabt_invalid @ c 1231 .long __pabt_invalid @ d 1232 .long __pabt_invalid @ e 1233 .long __pabt_invalid @ f 1234 1235/* 1236 * Undef instr entry dispatcher 1237 * Enter in UND mode, spsr = SVC/USR CPSR, lr = SVC/USR PC 1238 */ 1239 vector_stub und, UND_MODE 1240 1241 .long __und_usr @ 0 (USR_26 / USR_32) 1242 .long __und_invalid @ 1 (FIQ_26 / FIQ_32) 1243 .long __und_invalid @ 2 (IRQ_26 / IRQ_32) 1244 .long __und_svc @ 3 (SVC_26 / SVC_32) 1245 .long __und_invalid @ 4 1246 .long __und_invalid @ 5 1247 .long __und_invalid @ 6 1248 .long __und_invalid @ 7 1249 .long __und_invalid @ 8 1250 .long __und_invalid @ 9 1251 .long __und_invalid @ a 1252 .long __und_invalid @ b 1253 .long __und_invalid @ c 1254 .long __und_invalid @ d 1255 .long __und_invalid @ e 1256 .long __und_invalid @ f 1257 1258 .align 5 1259 1260/*============================================================================= 1261 * Address exception handler 1262 *----------------------------------------------------------------------------- 1263 * These aren't too critical. 1264 * (they're not supposed to happen, and won't happen in 32-bit data mode). 1265 */ 1266 1267vector_addrexcptn: 1268 b vector_addrexcptn 1269 1270/*============================================================================= 1271 * FIQ "NMI" handler 1272 *----------------------------------------------------------------------------- 1273 * Handle a FIQ using the SVC stack allowing FIQ act like NMI on x86 1274 * systems. This must be the last vector stub, so lets place it in its own 1275 * subsection. 1276 */ 1277 .subsection 2 1278 vector_stub fiq, FIQ_MODE, 4 1279 1280 .long __fiq_usr @ 0 (USR_26 / USR_32) 1281 .long __fiq_svc @ 1 (FIQ_26 / FIQ_32) 1282 .long __fiq_svc @ 2 (IRQ_26 / IRQ_32) 1283 .long __fiq_svc @ 3 (SVC_26 / SVC_32) 1284 .long __fiq_svc @ 4 1285 .long __fiq_svc @ 5 1286 .long __fiq_svc @ 6 1287 .long __fiq_abt @ 7 1288 .long __fiq_svc @ 8 1289 .long __fiq_svc @ 9 1290 .long __fiq_svc @ a 1291 .long __fiq_svc @ b 1292 .long __fiq_svc @ c 1293 .long __fiq_svc @ d 1294 .long __fiq_svc @ e 1295 .long __fiq_svc @ f 1296 1297 .globl vector_fiq 1298 1299 .section .vectors, "ax", %progbits 1300 W(b) vector_rst 1301 W(b) vector_und 1302ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_swi ) 1303THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_swi ) 1304 W(ldr) pc, . 1305 W(b) vector_pabt 1306 W(b) vector_dabt 1307 W(b) vector_addrexcptn 1308 W(b) vector_irq 1309 W(b) vector_fiq 1310 1311#ifdef CONFIG_HARDEN_BRANCH_HISTORY 1312 .section .vectors.bhb.loop8, "ax", %progbits 1313 W(b) vector_rst 1314 W(b) vector_bhb_loop8_und 1315ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_bhb_loop8_swi ) 1316THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_bhb_loop8_swi ) 1317 W(ldr) pc, . 1318 W(b) vector_bhb_loop8_pabt 1319 W(b) vector_bhb_loop8_dabt 1320 W(b) vector_addrexcptn 1321 W(b) vector_bhb_loop8_irq 1322 W(b) vector_bhb_loop8_fiq 1323 1324 .section .vectors.bhb.bpiall, "ax", %progbits 1325 W(b) vector_rst 1326 W(b) vector_bhb_bpiall_und 1327ARM( .reloc ., R_ARM_LDR_PC_G0, .L__vector_bhb_bpiall_swi ) 1328THUMB( .reloc ., R_ARM_THM_PC12, .L__vector_bhb_bpiall_swi ) 1329 W(ldr) pc, . 1330 W(b) vector_bhb_bpiall_pabt 1331 W(b) vector_bhb_bpiall_dabt 1332 W(b) vector_addrexcptn 1333 W(b) vector_bhb_bpiall_irq 1334 W(b) vector_bhb_bpiall_fiq 1335#endif 1336 1337 .data 1338 .align 2 1339 1340 .globl cr_alignment 1341cr_alignment: 1342 .space 4