cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

ptrace.c (21525B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/arch/arm/kernel/ptrace.c
      4 *
      5 *  By Ross Biro 1/23/92
      6 * edited by Linus Torvalds
      7 * ARM modifications Copyright (C) 2000 Russell King
      8 */
      9#include <linux/kernel.h>
     10#include <linux/sched/signal.h>
     11#include <linux/sched/task_stack.h>
     12#include <linux/mm.h>
     13#include <linux/elf.h>
     14#include <linux/smp.h>
     15#include <linux/ptrace.h>
     16#include <linux/user.h>
     17#include <linux/security.h>
     18#include <linux/init.h>
     19#include <linux/signal.h>
     20#include <linux/uaccess.h>
     21#include <linux/perf_event.h>
     22#include <linux/hw_breakpoint.h>
     23#include <linux/regset.h>
     24#include <linux/audit.h>
     25#include <linux/unistd.h>
     26
     27#include <asm/syscall.h>
     28#include <asm/traps.h>
     29
     30#define CREATE_TRACE_POINTS
     31#include <trace/events/syscalls.h>
     32
     33#define REG_PC	15
     34#define REG_PSR	16
     35/*
     36 * does not yet catch signals sent when the child dies.
     37 * in exit.c or in signal.c.
     38 */
     39
     40#if 0
     41/*
     42 * Breakpoint SWI instruction: SWI &9F0001
     43 */
     44#define BREAKINST_ARM	0xef9f0001
     45#define BREAKINST_THUMB	0xdf00		/* fill this in later */
     46#else
     47/*
     48 * New breakpoints - use an undefined instruction.  The ARM architecture
     49 * reference manual guarantees that the following instruction space
     50 * will produce an undefined instruction exception on all CPUs:
     51 *
     52 *  ARM:   xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
     53 *  Thumb: 1101 1110 xxxx xxxx
     54 */
     55#define BREAKINST_ARM	0xe7f001f0
     56#define BREAKINST_THUMB	0xde01
     57#endif
     58
     59struct pt_regs_offset {
     60	const char *name;
     61	int offset;
     62};
     63
     64#define REG_OFFSET_NAME(r) \
     65	{.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
     66#define REG_OFFSET_END {.name = NULL, .offset = 0}
     67
     68static const struct pt_regs_offset regoffset_table[] = {
     69	REG_OFFSET_NAME(r0),
     70	REG_OFFSET_NAME(r1),
     71	REG_OFFSET_NAME(r2),
     72	REG_OFFSET_NAME(r3),
     73	REG_OFFSET_NAME(r4),
     74	REG_OFFSET_NAME(r5),
     75	REG_OFFSET_NAME(r6),
     76	REG_OFFSET_NAME(r7),
     77	REG_OFFSET_NAME(r8),
     78	REG_OFFSET_NAME(r9),
     79	REG_OFFSET_NAME(r10),
     80	REG_OFFSET_NAME(fp),
     81	REG_OFFSET_NAME(ip),
     82	REG_OFFSET_NAME(sp),
     83	REG_OFFSET_NAME(lr),
     84	REG_OFFSET_NAME(pc),
     85	REG_OFFSET_NAME(cpsr),
     86	REG_OFFSET_NAME(ORIG_r0),
     87	REG_OFFSET_END,
     88};
     89
     90/**
     91 * regs_query_register_offset() - query register offset from its name
     92 * @name:	the name of a register
     93 *
     94 * regs_query_register_offset() returns the offset of a register in struct
     95 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
     96 */
     97int regs_query_register_offset(const char *name)
     98{
     99	const struct pt_regs_offset *roff;
    100	for (roff = regoffset_table; roff->name != NULL; roff++)
    101		if (!strcmp(roff->name, name))
    102			return roff->offset;
    103	return -EINVAL;
    104}
    105
    106/**
    107 * regs_query_register_name() - query register name from its offset
    108 * @offset:	the offset of a register in struct pt_regs.
    109 *
    110 * regs_query_register_name() returns the name of a register from its
    111 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
    112 */
    113const char *regs_query_register_name(unsigned int offset)
    114{
    115	const struct pt_regs_offset *roff;
    116	for (roff = regoffset_table; roff->name != NULL; roff++)
    117		if (roff->offset == offset)
    118			return roff->name;
    119	return NULL;
    120}
    121
    122/**
    123 * regs_within_kernel_stack() - check the address in the stack
    124 * @regs:      pt_regs which contains kernel stack pointer.
    125 * @addr:      address which is checked.
    126 *
    127 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
    128 * If @addr is within the kernel stack, it returns true. If not, returns false.
    129 */
    130bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
    131{
    132	return ((addr & ~(THREAD_SIZE - 1))  ==
    133		(kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
    134}
    135
    136/**
    137 * regs_get_kernel_stack_nth() - get Nth entry of the stack
    138 * @regs:	pt_regs which contains kernel stack pointer.
    139 * @n:		stack entry number.
    140 *
    141 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
    142 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
    143 * this returns 0.
    144 */
    145unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
    146{
    147	unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
    148	addr += n;
    149	if (regs_within_kernel_stack(regs, (unsigned long)addr))
    150		return *addr;
    151	else
    152		return 0;
    153}
    154
    155/*
    156 * this routine will get a word off of the processes privileged stack.
    157 * the offset is how far from the base addr as stored in the THREAD.
    158 * this routine assumes that all the privileged stacks are in our
    159 * data space.
    160 */
    161static inline long get_user_reg(struct task_struct *task, int offset)
    162{
    163	return task_pt_regs(task)->uregs[offset];
    164}
    165
    166/*
    167 * this routine will put a word on the processes privileged stack.
    168 * the offset is how far from the base addr as stored in the THREAD.
    169 * this routine assumes that all the privileged stacks are in our
    170 * data space.
    171 */
    172static inline int
    173put_user_reg(struct task_struct *task, int offset, long data)
    174{
    175	struct pt_regs newregs, *regs = task_pt_regs(task);
    176	int ret = -EINVAL;
    177
    178	newregs = *regs;
    179	newregs.uregs[offset] = data;
    180
    181	if (valid_user_regs(&newregs)) {
    182		regs->uregs[offset] = data;
    183		ret = 0;
    184	}
    185
    186	return ret;
    187}
    188
    189/*
    190 * Called by kernel/ptrace.c when detaching..
    191 */
    192void ptrace_disable(struct task_struct *child)
    193{
    194	/* Nothing to do. */
    195}
    196
    197/*
    198 * Handle hitting a breakpoint.
    199 */
    200void ptrace_break(struct pt_regs *regs)
    201{
    202	force_sig_fault(SIGTRAP, TRAP_BRKPT,
    203			(void __user *)instruction_pointer(regs));
    204}
    205
    206static int break_trap(struct pt_regs *regs, unsigned int instr)
    207{
    208	ptrace_break(regs);
    209	return 0;
    210}
    211
    212static struct undef_hook arm_break_hook = {
    213	.instr_mask	= 0x0fffffff,
    214	.instr_val	= 0x07f001f0,
    215	.cpsr_mask	= PSR_T_BIT,
    216	.cpsr_val	= 0,
    217	.fn		= break_trap,
    218};
    219
    220static struct undef_hook thumb_break_hook = {
    221	.instr_mask	= 0xffffffff,
    222	.instr_val	= 0x0000de01,
    223	.cpsr_mask	= PSR_T_BIT,
    224	.cpsr_val	= PSR_T_BIT,
    225	.fn		= break_trap,
    226};
    227
    228static struct undef_hook thumb2_break_hook = {
    229	.instr_mask	= 0xffffffff,
    230	.instr_val	= 0xf7f0a000,
    231	.cpsr_mask	= PSR_T_BIT,
    232	.cpsr_val	= PSR_T_BIT,
    233	.fn		= break_trap,
    234};
    235
    236static int __init ptrace_break_init(void)
    237{
    238	register_undef_hook(&arm_break_hook);
    239	register_undef_hook(&thumb_break_hook);
    240	register_undef_hook(&thumb2_break_hook);
    241	return 0;
    242}
    243
    244core_initcall(ptrace_break_init);
    245
    246/*
    247 * Read the word at offset "off" into the "struct user".  We
    248 * actually access the pt_regs stored on the kernel stack.
    249 */
    250static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
    251			    unsigned long __user *ret)
    252{
    253	unsigned long tmp;
    254
    255	if (off & 3)
    256		return -EIO;
    257
    258	tmp = 0;
    259	if (off == PT_TEXT_ADDR)
    260		tmp = tsk->mm->start_code;
    261	else if (off == PT_DATA_ADDR)
    262		tmp = tsk->mm->start_data;
    263	else if (off == PT_TEXT_END_ADDR)
    264		tmp = tsk->mm->end_code;
    265	else if (off < sizeof(struct pt_regs))
    266		tmp = get_user_reg(tsk, off >> 2);
    267	else if (off >= sizeof(struct user))
    268		return -EIO;
    269
    270	return put_user(tmp, ret);
    271}
    272
    273/*
    274 * Write the word at offset "off" into "struct user".  We
    275 * actually access the pt_regs stored on the kernel stack.
    276 */
    277static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
    278			     unsigned long val)
    279{
    280	if (off & 3 || off >= sizeof(struct user))
    281		return -EIO;
    282
    283	if (off >= sizeof(struct pt_regs))
    284		return 0;
    285
    286	return put_user_reg(tsk, off >> 2, val);
    287}
    288
    289#ifdef CONFIG_IWMMXT
    290
    291/*
    292 * Get the child iWMMXt state.
    293 */
    294static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
    295{
    296	struct thread_info *thread = task_thread_info(tsk);
    297
    298	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
    299		return -ENODATA;
    300	iwmmxt_task_disable(thread);  /* force it to ram */
    301	return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
    302		? -EFAULT : 0;
    303}
    304
    305/*
    306 * Set the child iWMMXt state.
    307 */
    308static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
    309{
    310	struct thread_info *thread = task_thread_info(tsk);
    311
    312	if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
    313		return -EACCES;
    314	iwmmxt_task_release(thread);  /* force a reload */
    315	return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
    316		? -EFAULT : 0;
    317}
    318
    319#endif
    320
    321#ifdef CONFIG_HAVE_HW_BREAKPOINT
    322/*
    323 * Convert a virtual register number into an index for a thread_info
    324 * breakpoint array. Breakpoints are identified using positive numbers
    325 * whilst watchpoints are negative. The registers are laid out as pairs
    326 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
    327 * Register 0 is reserved for describing resource information.
    328 */
    329static int ptrace_hbp_num_to_idx(long num)
    330{
    331	if (num < 0)
    332		num = (ARM_MAX_BRP << 1) - num;
    333	return (num - 1) >> 1;
    334}
    335
    336/*
    337 * Returns the virtual register number for the address of the
    338 * breakpoint at index idx.
    339 */
    340static long ptrace_hbp_idx_to_num(int idx)
    341{
    342	long mid = ARM_MAX_BRP << 1;
    343	long num = (idx << 1) + 1;
    344	return num > mid ? mid - num : num;
    345}
    346
    347/*
    348 * Handle hitting a HW-breakpoint.
    349 */
    350static void ptrace_hbptriggered(struct perf_event *bp,
    351				     struct perf_sample_data *data,
    352				     struct pt_regs *regs)
    353{
    354	struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
    355	long num;
    356	int i;
    357
    358	for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
    359		if (current->thread.debug.hbp[i] == bp)
    360			break;
    361
    362	num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
    363
    364	force_sig_ptrace_errno_trap((int)num, (void __user *)(bkpt->trigger));
    365}
    366
    367/*
    368 * Set ptrace breakpoint pointers to zero for this task.
    369 * This is required in order to prevent child processes from unregistering
    370 * breakpoints held by their parent.
    371 */
    372void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
    373{
    374	memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
    375}
    376
    377/*
    378 * Unregister breakpoints from this task and reset the pointers in
    379 * the thread_struct.
    380 */
    381void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
    382{
    383	int i;
    384	struct thread_struct *t = &tsk->thread;
    385
    386	for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
    387		if (t->debug.hbp[i]) {
    388			unregister_hw_breakpoint(t->debug.hbp[i]);
    389			t->debug.hbp[i] = NULL;
    390		}
    391	}
    392}
    393
    394static u32 ptrace_get_hbp_resource_info(void)
    395{
    396	u8 num_brps, num_wrps, debug_arch, wp_len;
    397	u32 reg = 0;
    398
    399	num_brps	= hw_breakpoint_slots(TYPE_INST);
    400	num_wrps	= hw_breakpoint_slots(TYPE_DATA);
    401	debug_arch	= arch_get_debug_arch();
    402	wp_len		= arch_get_max_wp_len();
    403
    404	reg		|= debug_arch;
    405	reg		<<= 8;
    406	reg		|= wp_len;
    407	reg		<<= 8;
    408	reg		|= num_wrps;
    409	reg		<<= 8;
    410	reg		|= num_brps;
    411
    412	return reg;
    413}
    414
    415static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
    416{
    417	struct perf_event_attr attr;
    418
    419	ptrace_breakpoint_init(&attr);
    420
    421	/* Initialise fields to sane defaults. */
    422	attr.bp_addr	= 0;
    423	attr.bp_len	= HW_BREAKPOINT_LEN_4;
    424	attr.bp_type	= type;
    425	attr.disabled	= 1;
    426
    427	return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
    428					   tsk);
    429}
    430
    431static int ptrace_gethbpregs(struct task_struct *tsk, long num,
    432			     unsigned long  __user *data)
    433{
    434	u32 reg;
    435	int idx, ret = 0;
    436	struct perf_event *bp;
    437	struct arch_hw_breakpoint_ctrl arch_ctrl;
    438
    439	if (num == 0) {
    440		reg = ptrace_get_hbp_resource_info();
    441	} else {
    442		idx = ptrace_hbp_num_to_idx(num);
    443		if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
    444			ret = -EINVAL;
    445			goto out;
    446		}
    447
    448		bp = tsk->thread.debug.hbp[idx];
    449		if (!bp) {
    450			reg = 0;
    451			goto put;
    452		}
    453
    454		arch_ctrl = counter_arch_bp(bp)->ctrl;
    455
    456		/*
    457		 * Fix up the len because we may have adjusted it
    458		 * to compensate for an unaligned address.
    459		 */
    460		while (!(arch_ctrl.len & 0x1))
    461			arch_ctrl.len >>= 1;
    462
    463		if (num & 0x1)
    464			reg = bp->attr.bp_addr;
    465		else
    466			reg = encode_ctrl_reg(arch_ctrl);
    467	}
    468
    469put:
    470	if (put_user(reg, data))
    471		ret = -EFAULT;
    472
    473out:
    474	return ret;
    475}
    476
    477static int ptrace_sethbpregs(struct task_struct *tsk, long num,
    478			     unsigned long __user *data)
    479{
    480	int idx, gen_len, gen_type, implied_type, ret = 0;
    481	u32 user_val;
    482	struct perf_event *bp;
    483	struct arch_hw_breakpoint_ctrl ctrl;
    484	struct perf_event_attr attr;
    485
    486	if (num == 0)
    487		goto out;
    488	else if (num < 0)
    489		implied_type = HW_BREAKPOINT_RW;
    490	else
    491		implied_type = HW_BREAKPOINT_X;
    492
    493	idx = ptrace_hbp_num_to_idx(num);
    494	if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
    495		ret = -EINVAL;
    496		goto out;
    497	}
    498
    499	if (get_user(user_val, data)) {
    500		ret = -EFAULT;
    501		goto out;
    502	}
    503
    504	bp = tsk->thread.debug.hbp[idx];
    505	if (!bp) {
    506		bp = ptrace_hbp_create(tsk, implied_type);
    507		if (IS_ERR(bp)) {
    508			ret = PTR_ERR(bp);
    509			goto out;
    510		}
    511		tsk->thread.debug.hbp[idx] = bp;
    512	}
    513
    514	attr = bp->attr;
    515
    516	if (num & 0x1) {
    517		/* Address */
    518		attr.bp_addr	= user_val;
    519	} else {
    520		/* Control */
    521		decode_ctrl_reg(user_val, &ctrl);
    522		ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
    523		if (ret)
    524			goto out;
    525
    526		if ((gen_type & implied_type) != gen_type) {
    527			ret = -EINVAL;
    528			goto out;
    529		}
    530
    531		attr.bp_len	= gen_len;
    532		attr.bp_type	= gen_type;
    533		attr.disabled	= !ctrl.enabled;
    534	}
    535
    536	ret = modify_user_hw_breakpoint(bp, &attr);
    537out:
    538	return ret;
    539}
    540#endif
    541
    542/* regset get/set implementations */
    543
    544static int gpr_get(struct task_struct *target,
    545		   const struct user_regset *regset,
    546		   struct membuf to)
    547{
    548	return membuf_write(&to, task_pt_regs(target), sizeof(struct pt_regs));
    549}
    550
    551static int gpr_set(struct task_struct *target,
    552		   const struct user_regset *regset,
    553		   unsigned int pos, unsigned int count,
    554		   const void *kbuf, const void __user *ubuf)
    555{
    556	int ret;
    557	struct pt_regs newregs = *task_pt_regs(target);
    558
    559	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
    560				 &newregs,
    561				 0, sizeof(newregs));
    562	if (ret)
    563		return ret;
    564
    565	if (!valid_user_regs(&newregs))
    566		return -EINVAL;
    567
    568	*task_pt_regs(target) = newregs;
    569	return 0;
    570}
    571
    572static int fpa_get(struct task_struct *target,
    573		   const struct user_regset *regset,
    574		   struct membuf to)
    575{
    576	return membuf_write(&to, &task_thread_info(target)->fpstate,
    577				 sizeof(struct user_fp));
    578}
    579
    580static int fpa_set(struct task_struct *target,
    581		   const struct user_regset *regset,
    582		   unsigned int pos, unsigned int count,
    583		   const void *kbuf, const void __user *ubuf)
    584{
    585	struct thread_info *thread = task_thread_info(target);
    586
    587	thread->used_cp[1] = thread->used_cp[2] = 1;
    588
    589	return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
    590		&thread->fpstate,
    591		0, sizeof(struct user_fp));
    592}
    593
    594#ifdef CONFIG_VFP
    595/*
    596 * VFP register get/set implementations.
    597 *
    598 * With respect to the kernel, struct user_fp is divided into three chunks:
    599 * 16 or 32 real VFP registers (d0-d15 or d0-31)
    600 *	These are transferred to/from the real registers in the task's
    601 *	vfp_hard_struct.  The number of registers depends on the kernel
    602 *	configuration.
    603 *
    604 * 16 or 0 fake VFP registers (d16-d31 or empty)
    605 *	i.e., the user_vfp structure has space for 32 registers even if
    606 *	the kernel doesn't have them all.
    607 *
    608 *	vfp_get() reads this chunk as zero where applicable
    609 *	vfp_set() ignores this chunk
    610 *
    611 * 1 word for the FPSCR
    612 */
    613static int vfp_get(struct task_struct *target,
    614		   const struct user_regset *regset,
    615		   struct membuf to)
    616{
    617	struct thread_info *thread = task_thread_info(target);
    618	struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
    619	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
    620
    621	vfp_sync_hwstate(thread);
    622
    623	membuf_write(&to, vfp->fpregs, sizeof(vfp->fpregs));
    624	membuf_zero(&to, user_fpscr_offset - sizeof(vfp->fpregs));
    625	return membuf_store(&to, vfp->fpscr);
    626}
    627
    628/*
    629 * For vfp_set() a read-modify-write is done on the VFP registers,
    630 * in order to avoid writing back a half-modified set of registers on
    631 * failure.
    632 */
    633static int vfp_set(struct task_struct *target,
    634			  const struct user_regset *regset,
    635			  unsigned int pos, unsigned int count,
    636			  const void *kbuf, const void __user *ubuf)
    637{
    638	int ret;
    639	struct thread_info *thread = task_thread_info(target);
    640	struct vfp_hard_struct new_vfp;
    641	const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
    642	const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
    643
    644	vfp_sync_hwstate(thread);
    645	new_vfp = thread->vfpstate.hard;
    646
    647	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
    648				  &new_vfp.fpregs,
    649				  user_fpregs_offset,
    650				  user_fpregs_offset + sizeof(new_vfp.fpregs));
    651	if (ret)
    652		return ret;
    653
    654	ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
    655				user_fpregs_offset + sizeof(new_vfp.fpregs),
    656				user_fpscr_offset);
    657	if (ret)
    658		return ret;
    659
    660	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
    661				 &new_vfp.fpscr,
    662				 user_fpscr_offset,
    663				 user_fpscr_offset + sizeof(new_vfp.fpscr));
    664	if (ret)
    665		return ret;
    666
    667	thread->vfpstate.hard = new_vfp;
    668	vfp_flush_hwstate(thread);
    669
    670	return 0;
    671}
    672#endif /* CONFIG_VFP */
    673
    674enum arm_regset {
    675	REGSET_GPR,
    676	REGSET_FPR,
    677#ifdef CONFIG_VFP
    678	REGSET_VFP,
    679#endif
    680};
    681
    682static const struct user_regset arm_regsets[] = {
    683	[REGSET_GPR] = {
    684		.core_note_type = NT_PRSTATUS,
    685		.n = ELF_NGREG,
    686		.size = sizeof(u32),
    687		.align = sizeof(u32),
    688		.regset_get = gpr_get,
    689		.set = gpr_set
    690	},
    691	[REGSET_FPR] = {
    692		/*
    693		 * For the FPA regs in fpstate, the real fields are a mixture
    694		 * of sizes, so pretend that the registers are word-sized:
    695		 */
    696		.core_note_type = NT_PRFPREG,
    697		.n = sizeof(struct user_fp) / sizeof(u32),
    698		.size = sizeof(u32),
    699		.align = sizeof(u32),
    700		.regset_get = fpa_get,
    701		.set = fpa_set
    702	},
    703#ifdef CONFIG_VFP
    704	[REGSET_VFP] = {
    705		/*
    706		 * Pretend that the VFP regs are word-sized, since the FPSCR is
    707		 * a single word dangling at the end of struct user_vfp:
    708		 */
    709		.core_note_type = NT_ARM_VFP,
    710		.n = ARM_VFPREGS_SIZE / sizeof(u32),
    711		.size = sizeof(u32),
    712		.align = sizeof(u32),
    713		.regset_get = vfp_get,
    714		.set = vfp_set
    715	},
    716#endif /* CONFIG_VFP */
    717};
    718
    719static const struct user_regset_view user_arm_view = {
    720	.name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
    721	.regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
    722};
    723
    724const struct user_regset_view *task_user_regset_view(struct task_struct *task)
    725{
    726	return &user_arm_view;
    727}
    728
    729long arch_ptrace(struct task_struct *child, long request,
    730		 unsigned long addr, unsigned long data)
    731{
    732	int ret;
    733	unsigned long __user *datap = (unsigned long __user *) data;
    734
    735	switch (request) {
    736		case PTRACE_PEEKUSR:
    737			ret = ptrace_read_user(child, addr, datap);
    738			break;
    739
    740		case PTRACE_POKEUSR:
    741			ret = ptrace_write_user(child, addr, data);
    742			break;
    743
    744		case PTRACE_GETREGS:
    745			ret = copy_regset_to_user(child,
    746						  &user_arm_view, REGSET_GPR,
    747						  0, sizeof(struct pt_regs),
    748						  datap);
    749			break;
    750
    751		case PTRACE_SETREGS:
    752			ret = copy_regset_from_user(child,
    753						    &user_arm_view, REGSET_GPR,
    754						    0, sizeof(struct pt_regs),
    755						    datap);
    756			break;
    757
    758		case PTRACE_GETFPREGS:
    759			ret = copy_regset_to_user(child,
    760						  &user_arm_view, REGSET_FPR,
    761						  0, sizeof(union fp_state),
    762						  datap);
    763			break;
    764
    765		case PTRACE_SETFPREGS:
    766			ret = copy_regset_from_user(child,
    767						    &user_arm_view, REGSET_FPR,
    768						    0, sizeof(union fp_state),
    769						    datap);
    770			break;
    771
    772#ifdef CONFIG_IWMMXT
    773		case PTRACE_GETWMMXREGS:
    774			ret = ptrace_getwmmxregs(child, datap);
    775			break;
    776
    777		case PTRACE_SETWMMXREGS:
    778			ret = ptrace_setwmmxregs(child, datap);
    779			break;
    780#endif
    781
    782		case PTRACE_GET_THREAD_AREA:
    783			ret = put_user(task_thread_info(child)->tp_value[0],
    784				       datap);
    785			break;
    786
    787		case PTRACE_SET_SYSCALL:
    788			task_thread_info(child)->abi_syscall = data &
    789							__NR_SYSCALL_MASK;
    790			ret = 0;
    791			break;
    792
    793#ifdef CONFIG_VFP
    794		case PTRACE_GETVFPREGS:
    795			ret = copy_regset_to_user(child,
    796						  &user_arm_view, REGSET_VFP,
    797						  0, ARM_VFPREGS_SIZE,
    798						  datap);
    799			break;
    800
    801		case PTRACE_SETVFPREGS:
    802			ret = copy_regset_from_user(child,
    803						    &user_arm_view, REGSET_VFP,
    804						    0, ARM_VFPREGS_SIZE,
    805						    datap);
    806			break;
    807#endif
    808
    809#ifdef CONFIG_HAVE_HW_BREAKPOINT
    810		case PTRACE_GETHBPREGS:
    811			ret = ptrace_gethbpregs(child, addr,
    812						(unsigned long __user *)data);
    813			break;
    814		case PTRACE_SETHBPREGS:
    815			ret = ptrace_sethbpregs(child, addr,
    816						(unsigned long __user *)data);
    817			break;
    818#endif
    819
    820		default:
    821			ret = ptrace_request(child, request, addr, data);
    822			break;
    823	}
    824
    825	return ret;
    826}
    827
    828enum ptrace_syscall_dir {
    829	PTRACE_SYSCALL_ENTER = 0,
    830	PTRACE_SYSCALL_EXIT,
    831};
    832
    833static void report_syscall(struct pt_regs *regs, enum ptrace_syscall_dir dir)
    834{
    835	unsigned long ip;
    836
    837	/*
    838	 * IP is used to denote syscall entry/exit:
    839	 * IP = 0 -> entry, =1 -> exit
    840	 */
    841	ip = regs->ARM_ip;
    842	regs->ARM_ip = dir;
    843
    844	if (dir == PTRACE_SYSCALL_EXIT)
    845		ptrace_report_syscall_exit(regs, 0);
    846	else if (ptrace_report_syscall_entry(regs))
    847		current_thread_info()->abi_syscall = -1;
    848
    849	regs->ARM_ip = ip;
    850}
    851
    852asmlinkage int syscall_trace_enter(struct pt_regs *regs)
    853{
    854	int scno;
    855
    856	if (test_thread_flag(TIF_SYSCALL_TRACE))
    857		report_syscall(regs, PTRACE_SYSCALL_ENTER);
    858
    859	/* Do seccomp after ptrace; syscall may have changed. */
    860#ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
    861	if (secure_computing() == -1)
    862		return -1;
    863#else
    864	/* XXX: remove this once OABI gets fixed */
    865	secure_computing_strict(syscall_get_nr(current, regs));
    866#endif
    867
    868	/* Tracer or seccomp may have changed syscall. */
    869	scno = syscall_get_nr(current, regs);
    870
    871	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
    872		trace_sys_enter(regs, scno);
    873
    874	audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
    875			    regs->ARM_r3);
    876
    877	return scno;
    878}
    879
    880asmlinkage void syscall_trace_exit(struct pt_regs *regs)
    881{
    882	/*
    883	 * Audit the syscall before anything else, as a debugger may
    884	 * come in and change the current registers.
    885	 */
    886	audit_syscall_exit(regs);
    887
    888	/*
    889	 * Note that we haven't updated the ->syscall field for the
    890	 * current thread. This isn't a problem because it will have
    891	 * been set on syscall entry and there hasn't been an opportunity
    892	 * for a PTRACE_SET_SYSCALL since then.
    893	 */
    894	if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
    895		trace_sys_exit(regs, regs_return_value(regs));
    896
    897	if (test_thread_flag(TIF_SYSCALL_TRACE))
    898		report_syscall(regs, PTRACE_SYSCALL_EXIT);
    899}