cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

topology.c (6974B)


      1/*
      2 * arch/arm/kernel/topology.c
      3 *
      4 * Copyright (C) 2011 Linaro Limited.
      5 * Written by: Vincent Guittot
      6 *
      7 * based on arch/sh/kernel/topology.c
      8 *
      9 * This file is subject to the terms and conditions of the GNU General Public
     10 * License.  See the file "COPYING" in the main directory of this archive
     11 * for more details.
     12 */
     13
     14#include <linux/arch_topology.h>
     15#include <linux/cpu.h>
     16#include <linux/cpufreq.h>
     17#include <linux/cpumask.h>
     18#include <linux/export.h>
     19#include <linux/init.h>
     20#include <linux/percpu.h>
     21#include <linux/node.h>
     22#include <linux/nodemask.h>
     23#include <linux/of.h>
     24#include <linux/sched.h>
     25#include <linux/sched/topology.h>
     26#include <linux/slab.h>
     27#include <linux/string.h>
     28
     29#include <asm/cpu.h>
     30#include <asm/cputype.h>
     31#include <asm/topology.h>
     32
     33/*
     34 * cpu capacity scale management
     35 */
     36
     37/*
     38 * cpu capacity table
     39 * This per cpu data structure describes the relative capacity of each core.
     40 * On a heteregenous system, cores don't have the same computation capacity
     41 * and we reflect that difference in the cpu_capacity field so the scheduler
     42 * can take this difference into account during load balance. A per cpu
     43 * structure is preferred because each CPU updates its own cpu_capacity field
     44 * during the load balance except for idle cores. One idle core is selected
     45 * to run the rebalance_domains for all idle cores and the cpu_capacity can be
     46 * updated during this sequence.
     47 */
     48
     49#ifdef CONFIG_OF
     50struct cpu_efficiency {
     51	const char *compatible;
     52	unsigned long efficiency;
     53};
     54
     55/*
     56 * Table of relative efficiency of each processors
     57 * The efficiency value must fit in 20bit and the final
     58 * cpu_scale value must be in the range
     59 *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
     60 * in order to return at most 1 when DIV_ROUND_CLOSEST
     61 * is used to compute the capacity of a CPU.
     62 * Processors that are not defined in the table,
     63 * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
     64 */
     65static const struct cpu_efficiency table_efficiency[] = {
     66	{"arm,cortex-a15", 3891},
     67	{"arm,cortex-a7",  2048},
     68	{NULL, },
     69};
     70
     71static unsigned long *__cpu_capacity;
     72#define cpu_capacity(cpu)	__cpu_capacity[cpu]
     73
     74static unsigned long middle_capacity = 1;
     75static bool cap_from_dt = true;
     76
     77/*
     78 * Iterate all CPUs' descriptor in DT and compute the efficiency
     79 * (as per table_efficiency). Also calculate a middle efficiency
     80 * as close as possible to  (max{eff_i} - min{eff_i}) / 2
     81 * This is later used to scale the cpu_capacity field such that an
     82 * 'average' CPU is of middle capacity. Also see the comments near
     83 * table_efficiency[] and update_cpu_capacity().
     84 */
     85static void __init parse_dt_topology(void)
     86{
     87	const struct cpu_efficiency *cpu_eff;
     88	struct device_node *cn = NULL;
     89	unsigned long min_capacity = ULONG_MAX;
     90	unsigned long max_capacity = 0;
     91	unsigned long capacity = 0;
     92	int cpu = 0;
     93
     94	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
     95				 GFP_NOWAIT);
     96
     97	for_each_possible_cpu(cpu) {
     98		const __be32 *rate;
     99		int len;
    100
    101		/* too early to use cpu->of_node */
    102		cn = of_get_cpu_node(cpu, NULL);
    103		if (!cn) {
    104			pr_err("missing device node for CPU %d\n", cpu);
    105			continue;
    106		}
    107
    108		if (topology_parse_cpu_capacity(cn, cpu)) {
    109			of_node_put(cn);
    110			continue;
    111		}
    112
    113		cap_from_dt = false;
    114
    115		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
    116			if (of_device_is_compatible(cn, cpu_eff->compatible))
    117				break;
    118
    119		if (cpu_eff->compatible == NULL)
    120			continue;
    121
    122		rate = of_get_property(cn, "clock-frequency", &len);
    123		if (!rate || len != 4) {
    124			pr_err("%pOF missing clock-frequency property\n", cn);
    125			continue;
    126		}
    127
    128		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
    129
    130		/* Save min capacity of the system */
    131		if (capacity < min_capacity)
    132			min_capacity = capacity;
    133
    134		/* Save max capacity of the system */
    135		if (capacity > max_capacity)
    136			max_capacity = capacity;
    137
    138		cpu_capacity(cpu) = capacity;
    139	}
    140
    141	/* If min and max capacities are equals, we bypass the update of the
    142	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
    143	 * compute a middle_capacity factor that will ensure that the capacity
    144	 * of an 'average' CPU of the system will be as close as possible to
    145	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
    146	 * constraint explained near table_efficiency[].
    147	 */
    148	if (4*max_capacity < (3*(max_capacity + min_capacity)))
    149		middle_capacity = (min_capacity + max_capacity)
    150				>> (SCHED_CAPACITY_SHIFT+1);
    151	else
    152		middle_capacity = ((max_capacity / 3)
    153				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
    154
    155	if (cap_from_dt)
    156		topology_normalize_cpu_scale();
    157}
    158
    159/*
    160 * Look for a customed capacity of a CPU in the cpu_capacity table during the
    161 * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
    162 * function returns directly for SMP system.
    163 */
    164static void update_cpu_capacity(unsigned int cpu)
    165{
    166	if (!cpu_capacity(cpu) || cap_from_dt)
    167		return;
    168
    169	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
    170
    171	pr_info("CPU%u: update cpu_capacity %lu\n",
    172		cpu, topology_get_cpu_scale(cpu));
    173}
    174
    175#else
    176static inline void parse_dt_topology(void) {}
    177static inline void update_cpu_capacity(unsigned int cpuid) {}
    178#endif
    179
    180/*
    181 * store_cpu_topology is called at boot when only one cpu is running
    182 * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
    183 * which prevents simultaneous write access to cpu_topology array
    184 */
    185void store_cpu_topology(unsigned int cpuid)
    186{
    187	struct cpu_topology *cpuid_topo = &cpu_topology[cpuid];
    188	unsigned int mpidr;
    189
    190	if (cpuid_topo->package_id != -1)
    191		goto topology_populated;
    192
    193	mpidr = read_cpuid_mpidr();
    194
    195	/* create cpu topology mapping */
    196	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
    197		/*
    198		 * This is a multiprocessor system
    199		 * multiprocessor format & multiprocessor mode field are set
    200		 */
    201
    202		if (mpidr & MPIDR_MT_BITMASK) {
    203			/* core performance interdependency */
    204			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
    205			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
    206			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
    207		} else {
    208			/* largely independent cores */
    209			cpuid_topo->thread_id = -1;
    210			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
    211			cpuid_topo->package_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
    212		}
    213	} else {
    214		/*
    215		 * This is an uniprocessor system
    216		 * we are in multiprocessor format but uniprocessor system
    217		 * or in the old uniprocessor format
    218		 */
    219		cpuid_topo->thread_id = -1;
    220		cpuid_topo->core_id = 0;
    221		cpuid_topo->package_id = -1;
    222	}
    223
    224	update_cpu_capacity(cpuid);
    225
    226	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
    227		cpuid, cpu_topology[cpuid].thread_id,
    228		cpu_topology[cpuid].core_id,
    229		cpu_topology[cpuid].package_id, mpidr);
    230
    231topology_populated:
    232	update_siblings_masks(cpuid);
    233}
    234
    235/*
    236 * init_cpu_topology is called at boot when only one cpu is running
    237 * which prevent simultaneous write access to cpu_topology array
    238 */
    239void __init init_cpu_topology(void)
    240{
    241	reset_cpu_topology();
    242	smp_wmb();
    243
    244	parse_dt_topology();
    245}