cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

spc.c (14651B)


      1/*
      2 * Versatile Express Serial Power Controller (SPC) support
      3 *
      4 * Copyright (C) 2013 ARM Ltd.
      5 *
      6 * Authors: Sudeep KarkadaNagesha <sudeep.karkadanagesha@arm.com>
      7 *          Achin Gupta           <achin.gupta@arm.com>
      8 *          Lorenzo Pieralisi     <lorenzo.pieralisi@arm.com>
      9 *
     10 * This program is free software; you can redistribute it and/or modify
     11 * it under the terms of the GNU General Public License version 2 as
     12 * published by the Free Software Foundation.
     13 *
     14 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
     15 * kind, whether express or implied; without even the implied warranty
     16 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
     17 * GNU General Public License for more details.
     18 */
     19
     20#include <linux/clk-provider.h>
     21#include <linux/clkdev.h>
     22#include <linux/cpu.h>
     23#include <linux/delay.h>
     24#include <linux/err.h>
     25#include <linux/interrupt.h>
     26#include <linux/io.h>
     27#include <linux/platform_device.h>
     28#include <linux/pm_opp.h>
     29#include <linux/slab.h>
     30#include <linux/semaphore.h>
     31
     32#include <asm/cacheflush.h>
     33
     34#include "spc.h"
     35
     36#define SPCLOG "vexpress-spc: "
     37
     38#define PERF_LVL_A15		0x00
     39#define PERF_REQ_A15		0x04
     40#define PERF_LVL_A7		0x08
     41#define PERF_REQ_A7		0x0c
     42#define COMMS			0x10
     43#define COMMS_REQ		0x14
     44#define PWC_STATUS		0x18
     45#define PWC_FLAG		0x1c
     46
     47/* SPC wake-up IRQs status and mask */
     48#define WAKE_INT_MASK		0x24
     49#define WAKE_INT_RAW		0x28
     50#define WAKE_INT_STAT		0x2c
     51/* SPC power down registers */
     52#define A15_PWRDN_EN		0x30
     53#define A7_PWRDN_EN		0x34
     54/* SPC per-CPU mailboxes */
     55#define A15_BX_ADDR0		0x68
     56#define A7_BX_ADDR0		0x78
     57
     58/* SPC CPU/cluster reset statue */
     59#define STANDBYWFI_STAT		0x3c
     60#define STANDBYWFI_STAT_A15_CPU_MASK(cpu)	(1 << (cpu))
     61#define STANDBYWFI_STAT_A7_CPU_MASK(cpu)	(1 << (3 + (cpu)))
     62
     63/* SPC system config interface registers */
     64#define SYSCFG_WDATA		0x70
     65#define SYSCFG_RDATA		0x74
     66
     67/* A15/A7 OPP virtual register base */
     68#define A15_PERFVAL_BASE	0xC10
     69#define A7_PERFVAL_BASE		0xC30
     70
     71/* Config interface control bits */
     72#define SYSCFG_START		BIT(31)
     73#define SYSCFG_SCC		(6 << 20)
     74#define SYSCFG_STAT		(14 << 20)
     75
     76/* wake-up interrupt masks */
     77#define GBL_WAKEUP_INT_MSK	(0x3 << 10)
     78
     79/* TC2 static dual-cluster configuration */
     80#define MAX_CLUSTERS		2
     81
     82/*
     83 * Even though the SPC takes max 3-5 ms to complete any OPP/COMMS
     84 * operation, the operation could start just before jiffie is about
     85 * to be incremented. So setting timeout value of 20ms = 2jiffies@100Hz
     86 */
     87#define TIMEOUT_US	20000
     88
     89#define MAX_OPPS	8
     90#define CA15_DVFS	0
     91#define CA7_DVFS	1
     92#define SPC_SYS_CFG	2
     93#define STAT_COMPLETE(type)	((1 << 0) << (type << 2))
     94#define STAT_ERR(type)		((1 << 1) << (type << 2))
     95#define RESPONSE_MASK(type)	(STAT_COMPLETE(type) | STAT_ERR(type))
     96
     97struct ve_spc_opp {
     98	unsigned long freq;
     99	unsigned long u_volt;
    100};
    101
    102struct ve_spc_drvdata {
    103	void __iomem *baseaddr;
    104	/*
    105	 * A15s cluster identifier
    106	 * It corresponds to A15 processors MPIDR[15:8] bitfield
    107	 */
    108	u32 a15_clusid;
    109	uint32_t cur_rsp_mask;
    110	uint32_t cur_rsp_stat;
    111	struct semaphore sem;
    112	struct completion done;
    113	struct ve_spc_opp *opps[MAX_CLUSTERS];
    114	int num_opps[MAX_CLUSTERS];
    115};
    116
    117static struct ve_spc_drvdata *info;
    118
    119static inline bool cluster_is_a15(u32 cluster)
    120{
    121	return cluster == info->a15_clusid;
    122}
    123
    124/**
    125 * ve_spc_global_wakeup_irq() - sets/clears global wakeup IRQs
    126 *
    127 * @set: if true, global wake-up IRQs are set, if false they are cleared
    128 *
    129 * Function to set/clear global wakeup IRQs. Not protected by locking since
    130 * it might be used in code paths where normal cacheable locks are not
    131 * working. Locking must be provided by the caller to ensure atomicity.
    132 */
    133void ve_spc_global_wakeup_irq(bool set)
    134{
    135	u32 reg;
    136
    137	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
    138
    139	if (set)
    140		reg |= GBL_WAKEUP_INT_MSK;
    141	else
    142		reg &= ~GBL_WAKEUP_INT_MSK;
    143
    144	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
    145}
    146
    147/**
    148 * ve_spc_cpu_wakeup_irq() - sets/clears per-CPU wake-up IRQs
    149 *
    150 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
    151 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
    152 * @set: if true, wake-up IRQs are set, if false they are cleared
    153 *
    154 * Function to set/clear per-CPU wake-up IRQs. Not protected by locking since
    155 * it might be used in code paths where normal cacheable locks are not
    156 * working. Locking must be provided by the caller to ensure atomicity.
    157 */
    158void ve_spc_cpu_wakeup_irq(u32 cluster, u32 cpu, bool set)
    159{
    160	u32 mask, reg;
    161
    162	if (cluster >= MAX_CLUSTERS)
    163		return;
    164
    165	mask = BIT(cpu);
    166
    167	if (!cluster_is_a15(cluster))
    168		mask <<= 4;
    169
    170	reg = readl_relaxed(info->baseaddr + WAKE_INT_MASK);
    171
    172	if (set)
    173		reg |= mask;
    174	else
    175		reg &= ~mask;
    176
    177	writel_relaxed(reg, info->baseaddr + WAKE_INT_MASK);
    178}
    179
    180/**
    181 * ve_spc_set_resume_addr() - set the jump address used for warm boot
    182 *
    183 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
    184 * @cpu: mpidr[7:0] bitfield describing cpu affinity level
    185 * @addr: physical resume address
    186 */
    187void ve_spc_set_resume_addr(u32 cluster, u32 cpu, u32 addr)
    188{
    189	void __iomem *baseaddr;
    190
    191	if (cluster >= MAX_CLUSTERS)
    192		return;
    193
    194	if (cluster_is_a15(cluster))
    195		baseaddr = info->baseaddr + A15_BX_ADDR0 + (cpu << 2);
    196	else
    197		baseaddr = info->baseaddr + A7_BX_ADDR0 + (cpu << 2);
    198
    199	writel_relaxed(addr, baseaddr);
    200}
    201
    202/**
    203 * ve_spc_powerdown() - enables/disables cluster powerdown
    204 *
    205 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
    206 * @enable: if true enables powerdown, if false disables it
    207 *
    208 * Function to enable/disable cluster powerdown. Not protected by locking
    209 * since it might be used in code paths where normal cacheable locks are not
    210 * working. Locking must be provided by the caller to ensure atomicity.
    211 */
    212void ve_spc_powerdown(u32 cluster, bool enable)
    213{
    214	u32 pwdrn_reg;
    215
    216	if (cluster >= MAX_CLUSTERS)
    217		return;
    218
    219	pwdrn_reg = cluster_is_a15(cluster) ? A15_PWRDN_EN : A7_PWRDN_EN;
    220	writel_relaxed(enable, info->baseaddr + pwdrn_reg);
    221}
    222
    223static u32 standbywfi_cpu_mask(u32 cpu, u32 cluster)
    224{
    225	return cluster_is_a15(cluster) ?
    226		  STANDBYWFI_STAT_A15_CPU_MASK(cpu)
    227		: STANDBYWFI_STAT_A7_CPU_MASK(cpu);
    228}
    229
    230/**
    231 * ve_spc_cpu_in_wfi() - Checks if the specified CPU is in WFI or not
    232 *
    233 * @cpu: mpidr[7:0] bitfield describing CPU affinity level within cluster
    234 * @cluster: mpidr[15:8] bitfield describing cluster affinity level
    235 *
    236 * @return: non-zero if and only if the specified CPU is in WFI
    237 *
    238 * Take care when interpreting the result of this function: a CPU might
    239 * be in WFI temporarily due to idle, and is not necessarily safely
    240 * parked.
    241 */
    242int ve_spc_cpu_in_wfi(u32 cpu, u32 cluster)
    243{
    244	int ret;
    245	u32 mask = standbywfi_cpu_mask(cpu, cluster);
    246
    247	if (cluster >= MAX_CLUSTERS)
    248		return 1;
    249
    250	ret = readl_relaxed(info->baseaddr + STANDBYWFI_STAT);
    251
    252	pr_debug("%s: PCFGREG[0x%X] = 0x%08X, mask = 0x%X\n",
    253		 __func__, STANDBYWFI_STAT, ret, mask);
    254
    255	return ret & mask;
    256}
    257
    258static int ve_spc_get_performance(int cluster, u32 *freq)
    259{
    260	struct ve_spc_opp *opps = info->opps[cluster];
    261	u32 perf_cfg_reg = 0;
    262	u32 perf;
    263
    264	perf_cfg_reg = cluster_is_a15(cluster) ? PERF_LVL_A15 : PERF_LVL_A7;
    265
    266	perf = readl_relaxed(info->baseaddr + perf_cfg_reg);
    267	if (perf >= info->num_opps[cluster])
    268		return -EINVAL;
    269
    270	opps += perf;
    271	*freq = opps->freq;
    272
    273	return 0;
    274}
    275
    276/* find closest match to given frequency in OPP table */
    277static int ve_spc_round_performance(int cluster, u32 freq)
    278{
    279	int idx, max_opp = info->num_opps[cluster];
    280	struct ve_spc_opp *opps = info->opps[cluster];
    281	u32 fmin = 0, fmax = ~0, ftmp;
    282
    283	freq /= 1000; /* OPP entries in kHz */
    284	for (idx = 0; idx < max_opp; idx++, opps++) {
    285		ftmp = opps->freq;
    286		if (ftmp >= freq) {
    287			if (ftmp <= fmax)
    288				fmax = ftmp;
    289		} else {
    290			if (ftmp >= fmin)
    291				fmin = ftmp;
    292		}
    293	}
    294	if (fmax != ~0)
    295		return fmax * 1000;
    296	else
    297		return fmin * 1000;
    298}
    299
    300static int ve_spc_find_performance_index(int cluster, u32 freq)
    301{
    302	int idx, max_opp = info->num_opps[cluster];
    303	struct ve_spc_opp *opps = info->opps[cluster];
    304
    305	for (idx = 0; idx < max_opp; idx++, opps++)
    306		if (opps->freq == freq)
    307			break;
    308	return (idx == max_opp) ? -EINVAL : idx;
    309}
    310
    311static int ve_spc_waitforcompletion(int req_type)
    312{
    313	int ret = wait_for_completion_interruptible_timeout(
    314			&info->done, usecs_to_jiffies(TIMEOUT_US));
    315	if (ret == 0)
    316		ret = -ETIMEDOUT;
    317	else if (ret > 0)
    318		ret = info->cur_rsp_stat & STAT_COMPLETE(req_type) ? 0 : -EIO;
    319	return ret;
    320}
    321
    322static int ve_spc_set_performance(int cluster, u32 freq)
    323{
    324	u32 perf_cfg_reg;
    325	int ret, perf, req_type;
    326
    327	if (cluster_is_a15(cluster)) {
    328		req_type = CA15_DVFS;
    329		perf_cfg_reg = PERF_LVL_A15;
    330	} else {
    331		req_type = CA7_DVFS;
    332		perf_cfg_reg = PERF_LVL_A7;
    333	}
    334
    335	perf = ve_spc_find_performance_index(cluster, freq);
    336
    337	if (perf < 0)
    338		return perf;
    339
    340	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
    341		return -ETIME;
    342
    343	init_completion(&info->done);
    344	info->cur_rsp_mask = RESPONSE_MASK(req_type);
    345
    346	writel(perf, info->baseaddr + perf_cfg_reg);
    347	ret = ve_spc_waitforcompletion(req_type);
    348
    349	info->cur_rsp_mask = 0;
    350	up(&info->sem);
    351
    352	return ret;
    353}
    354
    355static int ve_spc_read_sys_cfg(int func, int offset, uint32_t *data)
    356{
    357	int ret;
    358
    359	if (down_timeout(&info->sem, usecs_to_jiffies(TIMEOUT_US)))
    360		return -ETIME;
    361
    362	init_completion(&info->done);
    363	info->cur_rsp_mask = RESPONSE_MASK(SPC_SYS_CFG);
    364
    365	/* Set the control value */
    366	writel(SYSCFG_START | func | offset >> 2, info->baseaddr + COMMS);
    367	ret = ve_spc_waitforcompletion(SPC_SYS_CFG);
    368
    369	if (ret == 0)
    370		*data = readl(info->baseaddr + SYSCFG_RDATA);
    371
    372	info->cur_rsp_mask = 0;
    373	up(&info->sem);
    374
    375	return ret;
    376}
    377
    378static irqreturn_t ve_spc_irq_handler(int irq, void *data)
    379{
    380	struct ve_spc_drvdata *drv_data = data;
    381	uint32_t status = readl_relaxed(drv_data->baseaddr + PWC_STATUS);
    382
    383	if (info->cur_rsp_mask & status) {
    384		info->cur_rsp_stat = status;
    385		complete(&drv_data->done);
    386	}
    387
    388	return IRQ_HANDLED;
    389}
    390
    391/*
    392 *  +--------------------------+
    393 *  | 31      20 | 19        0 |
    394 *  +--------------------------+
    395 *  |   m_volt   |  freq(kHz)  |
    396 *  +--------------------------+
    397 */
    398#define MULT_FACTOR	20
    399#define VOLT_SHIFT	20
    400#define FREQ_MASK	(0xFFFFF)
    401static int ve_spc_populate_opps(uint32_t cluster)
    402{
    403	uint32_t data = 0, off, ret, idx;
    404	struct ve_spc_opp *opps;
    405
    406	opps = kcalloc(MAX_OPPS, sizeof(*opps), GFP_KERNEL);
    407	if (!opps)
    408		return -ENOMEM;
    409
    410	info->opps[cluster] = opps;
    411
    412	off = cluster_is_a15(cluster) ? A15_PERFVAL_BASE : A7_PERFVAL_BASE;
    413	for (idx = 0; idx < MAX_OPPS; idx++, off += 4, opps++) {
    414		ret = ve_spc_read_sys_cfg(SYSCFG_SCC, off, &data);
    415		if (!ret) {
    416			opps->freq = (data & FREQ_MASK) * MULT_FACTOR;
    417			opps->u_volt = (data >> VOLT_SHIFT) * 1000;
    418		} else {
    419			break;
    420		}
    421	}
    422	info->num_opps[cluster] = idx;
    423
    424	return ret;
    425}
    426
    427static int ve_init_opp_table(struct device *cpu_dev)
    428{
    429	int cluster;
    430	int idx, ret = 0, max_opp;
    431	struct ve_spc_opp *opps;
    432
    433	cluster = topology_physical_package_id(cpu_dev->id);
    434	cluster = cluster < 0 ? 0 : cluster;
    435
    436	max_opp = info->num_opps[cluster];
    437	opps = info->opps[cluster];
    438
    439	for (idx = 0; idx < max_opp; idx++, opps++) {
    440		ret = dev_pm_opp_add(cpu_dev, opps->freq * 1000, opps->u_volt);
    441		if (ret) {
    442			dev_warn(cpu_dev, "failed to add opp %lu %lu\n",
    443				 opps->freq, opps->u_volt);
    444			return ret;
    445		}
    446	}
    447	return ret;
    448}
    449
    450int __init ve_spc_init(void __iomem *baseaddr, u32 a15_clusid, int irq)
    451{
    452	int ret;
    453	info = kzalloc(sizeof(*info), GFP_KERNEL);
    454	if (!info)
    455		return -ENOMEM;
    456
    457	info->baseaddr = baseaddr;
    458	info->a15_clusid = a15_clusid;
    459
    460	if (irq <= 0) {
    461		pr_err(SPCLOG "Invalid IRQ %d\n", irq);
    462		kfree(info);
    463		return -EINVAL;
    464	}
    465
    466	init_completion(&info->done);
    467
    468	readl_relaxed(info->baseaddr + PWC_STATUS);
    469
    470	ret = request_irq(irq, ve_spc_irq_handler, IRQF_TRIGGER_HIGH
    471				| IRQF_ONESHOT, "vexpress-spc", info);
    472	if (ret) {
    473		pr_err(SPCLOG "IRQ %d request failed\n", irq);
    474		kfree(info);
    475		return -ENODEV;
    476	}
    477
    478	sema_init(&info->sem, 1);
    479	/*
    480	 * Multi-cluster systems may need this data when non-coherent, during
    481	 * cluster power-up/power-down. Make sure driver info reaches main
    482	 * memory.
    483	 */
    484	sync_cache_w(info);
    485	sync_cache_w(&info);
    486
    487	return 0;
    488}
    489
    490struct clk_spc {
    491	struct clk_hw hw;
    492	int cluster;
    493};
    494
    495#define to_clk_spc(spc) container_of(spc, struct clk_spc, hw)
    496static unsigned long spc_recalc_rate(struct clk_hw *hw,
    497		unsigned long parent_rate)
    498{
    499	struct clk_spc *spc = to_clk_spc(hw);
    500	u32 freq;
    501
    502	if (ve_spc_get_performance(spc->cluster, &freq))
    503		return -EIO;
    504
    505	return freq * 1000;
    506}
    507
    508static long spc_round_rate(struct clk_hw *hw, unsigned long drate,
    509		unsigned long *parent_rate)
    510{
    511	struct clk_spc *spc = to_clk_spc(hw);
    512
    513	return ve_spc_round_performance(spc->cluster, drate);
    514}
    515
    516static int spc_set_rate(struct clk_hw *hw, unsigned long rate,
    517		unsigned long parent_rate)
    518{
    519	struct clk_spc *spc = to_clk_spc(hw);
    520
    521	return ve_spc_set_performance(spc->cluster, rate / 1000);
    522}
    523
    524static struct clk_ops clk_spc_ops = {
    525	.recalc_rate = spc_recalc_rate,
    526	.round_rate = spc_round_rate,
    527	.set_rate = spc_set_rate,
    528};
    529
    530static struct clk *ve_spc_clk_register(struct device *cpu_dev)
    531{
    532	struct clk_init_data init;
    533	struct clk_spc *spc;
    534
    535	spc = kzalloc(sizeof(*spc), GFP_KERNEL);
    536	if (!spc)
    537		return ERR_PTR(-ENOMEM);
    538
    539	spc->hw.init = &init;
    540	spc->cluster = topology_physical_package_id(cpu_dev->id);
    541
    542	spc->cluster = spc->cluster < 0 ? 0 : spc->cluster;
    543
    544	init.name = dev_name(cpu_dev);
    545	init.ops = &clk_spc_ops;
    546	init.flags = CLK_GET_RATE_NOCACHE;
    547	init.num_parents = 0;
    548
    549	return devm_clk_register(cpu_dev, &spc->hw);
    550}
    551
    552static int __init ve_spc_clk_init(void)
    553{
    554	int cpu, cluster;
    555	struct clk *clk;
    556	bool init_opp_table[MAX_CLUSTERS] = { false };
    557
    558	if (!info)
    559		return 0; /* Continue only if SPC is initialised */
    560
    561	if (ve_spc_populate_opps(0) || ve_spc_populate_opps(1)) {
    562		pr_err("failed to build OPP table\n");
    563		return -ENODEV;
    564	}
    565
    566	for_each_possible_cpu(cpu) {
    567		struct device *cpu_dev = get_cpu_device(cpu);
    568		if (!cpu_dev) {
    569			pr_warn("failed to get cpu%d device\n", cpu);
    570			continue;
    571		}
    572		clk = ve_spc_clk_register(cpu_dev);
    573		if (IS_ERR(clk)) {
    574			pr_warn("failed to register cpu%d clock\n", cpu);
    575			continue;
    576		}
    577		if (clk_register_clkdev(clk, NULL, dev_name(cpu_dev))) {
    578			pr_warn("failed to register cpu%d clock lookup\n", cpu);
    579			continue;
    580		}
    581
    582		cluster = topology_physical_package_id(cpu_dev->id);
    583		if (cluster < 0 || init_opp_table[cluster])
    584			continue;
    585
    586		if (ve_init_opp_table(cpu_dev))
    587			pr_warn("failed to initialise cpu%d opp table\n", cpu);
    588		else if (dev_pm_opp_set_sharing_cpus(cpu_dev,
    589			 topology_core_cpumask(cpu_dev->id)))
    590			pr_warn("failed to mark OPPs shared for cpu%d\n", cpu);
    591		else
    592			init_opp_table[cluster] = true;
    593	}
    594
    595	platform_device_register_simple("vexpress-spc-cpufreq", -1, NULL, 0);
    596	return 0;
    597}
    598device_initcall(ve_spc_clk_init);