cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cache-b15-rac.c (10373B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Broadcom Brahma-B15 CPU read-ahead cache management functions
      4 *
      5 * Copyright (C) 2015-2016 Broadcom
      6 */
      7
      8#include <linux/err.h>
      9#include <linux/spinlock.h>
     10#include <linux/io.h>
     11#include <linux/bitops.h>
     12#include <linux/of_address.h>
     13#include <linux/notifier.h>
     14#include <linux/cpu.h>
     15#include <linux/syscore_ops.h>
     16#include <linux/reboot.h>
     17
     18#include <asm/cacheflush.h>
     19#include <asm/hardware/cache-b15-rac.h>
     20
     21extern void v7_flush_kern_cache_all(void);
     22
     23/* RAC register offsets, relative to the HIF_CPU_BIUCTRL register base */
     24#define RAC_CONFIG0_REG			(0x78)
     25#define  RACENPREF_MASK			(0x3)
     26#define  RACPREFINST_SHIFT		(0)
     27#define  RACENINST_SHIFT		(2)
     28#define  RACPREFDATA_SHIFT		(4)
     29#define  RACENDATA_SHIFT		(6)
     30#define  RAC_CPU_SHIFT			(8)
     31#define  RACCFG_MASK			(0xff)
     32#define RAC_CONFIG1_REG			(0x7c)
     33/* Brahma-B15 is a quad-core only design */
     34#define B15_RAC_FLUSH_REG		(0x80)
     35/* Brahma-B53 is an octo-core design */
     36#define B53_RAC_FLUSH_REG		(0x84)
     37#define  FLUSH_RAC			(1 << 0)
     38
     39/* Bitmask to enable instruction and data prefetching with a 256-bytes stride */
     40#define RAC_DATA_INST_EN_MASK		(1 << RACPREFINST_SHIFT | \
     41					 RACENPREF_MASK << RACENINST_SHIFT | \
     42					 1 << RACPREFDATA_SHIFT | \
     43					 RACENPREF_MASK << RACENDATA_SHIFT)
     44
     45#define RAC_ENABLED			0
     46/* Special state where we want to bypass the spinlock and call directly
     47 * into the v7 cache maintenance operations during suspend/resume
     48 */
     49#define RAC_SUSPENDED			1
     50
     51static void __iomem *b15_rac_base;
     52static DEFINE_SPINLOCK(rac_lock);
     53
     54static u32 rac_config0_reg;
     55static u32 rac_flush_offset;
     56
     57/* Initialization flag to avoid checking for b15_rac_base, and to prevent
     58 * multi-platform kernels from crashing here as well.
     59 */
     60static unsigned long b15_rac_flags;
     61
     62static inline u32 __b15_rac_disable(void)
     63{
     64	u32 val = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
     65	__raw_writel(0, b15_rac_base + RAC_CONFIG0_REG);
     66	dmb();
     67	return val;
     68}
     69
     70static inline void __b15_rac_flush(void)
     71{
     72	u32 reg;
     73
     74	__raw_writel(FLUSH_RAC, b15_rac_base + rac_flush_offset);
     75	do {
     76		/* This dmb() is required to force the Bus Interface Unit
     77		 * to clean outstanding writes, and forces an idle cycle
     78		 * to be inserted.
     79		 */
     80		dmb();
     81		reg = __raw_readl(b15_rac_base + rac_flush_offset);
     82	} while (reg & FLUSH_RAC);
     83}
     84
     85static inline u32 b15_rac_disable_and_flush(void)
     86{
     87	u32 reg;
     88
     89	reg = __b15_rac_disable();
     90	__b15_rac_flush();
     91	return reg;
     92}
     93
     94static inline void __b15_rac_enable(u32 val)
     95{
     96	__raw_writel(val, b15_rac_base + RAC_CONFIG0_REG);
     97	/* dsb() is required here to be consistent with __flush_icache_all() */
     98	dsb();
     99}
    100
    101#define BUILD_RAC_CACHE_OP(name, bar)				\
    102void b15_flush_##name(void)					\
    103{								\
    104	unsigned int do_flush;					\
    105	u32 val = 0;						\
    106								\
    107	if (test_bit(RAC_SUSPENDED, &b15_rac_flags)) {		\
    108		v7_flush_##name();				\
    109		bar;						\
    110		return;						\
    111	}							\
    112								\
    113	spin_lock(&rac_lock);					\
    114	do_flush = test_bit(RAC_ENABLED, &b15_rac_flags);	\
    115	if (do_flush)						\
    116		val = b15_rac_disable_and_flush();		\
    117	v7_flush_##name();					\
    118	if (!do_flush)						\
    119		bar;						\
    120	else							\
    121		__b15_rac_enable(val);				\
    122	spin_unlock(&rac_lock);					\
    123}
    124
    125#define nobarrier
    126
    127/* The readahead cache present in the Brahma-B15 CPU is a special piece of
    128 * hardware after the integrated L2 cache of the B15 CPU complex whose purpose
    129 * is to prefetch instruction and/or data with a line size of either 64 bytes
    130 * or 256 bytes. The rationale is that the data-bus of the CPU interface is
    131 * optimized for 256-bytes transactions, and enabling the readahead cache
    132 * provides a significant performance boost we want it enabled (typically
    133 * twice the performance for a memcpy benchmark application).
    134 *
    135 * The readahead cache is transparent for Modified Virtual Addresses
    136 * cache maintenance operations: ICIMVAU, DCIMVAC, DCCMVAC, DCCMVAU and
    137 * DCCIMVAC.
    138 *
    139 * It is however not transparent for the following cache maintenance
    140 * operations: DCISW, DCCSW, DCCISW, ICIALLUIS and ICIALLU which is precisely
    141 * what we are patching here with our BUILD_RAC_CACHE_OP here.
    142 */
    143BUILD_RAC_CACHE_OP(kern_cache_all, nobarrier);
    144
    145static void b15_rac_enable(void)
    146{
    147	unsigned int cpu;
    148	u32 enable = 0;
    149
    150	for_each_possible_cpu(cpu)
    151		enable |= (RAC_DATA_INST_EN_MASK << (cpu * RAC_CPU_SHIFT));
    152
    153	b15_rac_disable_and_flush();
    154	__b15_rac_enable(enable);
    155}
    156
    157static int b15_rac_reboot_notifier(struct notifier_block *nb,
    158				   unsigned long action,
    159				   void *data)
    160{
    161	/* During kexec, we are not yet migrated on the boot CPU, so we need to
    162	 * make sure we are SMP safe here. Once the RAC is disabled, flag it as
    163	 * suspended such that the hotplug notifier returns early.
    164	 */
    165	if (action == SYS_RESTART) {
    166		spin_lock(&rac_lock);
    167		b15_rac_disable_and_flush();
    168		clear_bit(RAC_ENABLED, &b15_rac_flags);
    169		set_bit(RAC_SUSPENDED, &b15_rac_flags);
    170		spin_unlock(&rac_lock);
    171	}
    172
    173	return NOTIFY_DONE;
    174}
    175
    176static struct notifier_block b15_rac_reboot_nb = {
    177	.notifier_call	= b15_rac_reboot_notifier,
    178};
    179
    180/* The CPU hotplug case is the most interesting one, we basically need to make
    181 * sure that the RAC is disabled for the entire system prior to having a CPU
    182 * die, in particular prior to this dying CPU having exited the coherency
    183 * domain.
    184 *
    185 * Once this CPU is marked dead, we can safely re-enable the RAC for the
    186 * remaining CPUs in the system which are still online.
    187 *
    188 * Offlining a CPU is the problematic case, onlining a CPU is not much of an
    189 * issue since the CPU and its cache-level hierarchy will start filling with
    190 * the RAC disabled, so L1 and L2 only.
    191 *
    192 * In this function, we should NOT have to verify any unsafe setting/condition
    193 * b15_rac_base:
    194 *
    195 *   It is protected by the RAC_ENABLED flag which is cleared by default, and
    196 *   being cleared when initial procedure is done. b15_rac_base had been set at
    197 *   that time.
    198 *
    199 * RAC_ENABLED:
    200 *   There is a small timing windows, in b15_rac_init(), between
    201 *      cpuhp_setup_state_*()
    202 *      ...
    203 *      set RAC_ENABLED
    204 *   However, there is no hotplug activity based on the Linux booting procedure.
    205 *
    206 * Since we have to disable RAC for all cores, we keep RAC on as long as as
    207 * possible (disable it as late as possible) to gain the cache benefit.
    208 *
    209 * Thus, dying/dead states are chosen here
    210 *
    211 * We are choosing not do disable the RAC on a per-CPU basis, here, if we did
    212 * we would want to consider disabling it as early as possible to benefit the
    213 * other active CPUs.
    214 */
    215
    216/* Running on the dying CPU */
    217static int b15_rac_dying_cpu(unsigned int cpu)
    218{
    219	/* During kexec/reboot, the RAC is disabled via the reboot notifier
    220	 * return early here.
    221	 */
    222	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
    223		return 0;
    224
    225	spin_lock(&rac_lock);
    226
    227	/* Indicate that we are starting a hotplug procedure */
    228	__clear_bit(RAC_ENABLED, &b15_rac_flags);
    229
    230	/* Disable the readahead cache and save its value to a global */
    231	rac_config0_reg = b15_rac_disable_and_flush();
    232
    233	spin_unlock(&rac_lock);
    234
    235	return 0;
    236}
    237
    238/* Running on a non-dying CPU */
    239static int b15_rac_dead_cpu(unsigned int cpu)
    240{
    241	/* During kexec/reboot, the RAC is disabled via the reboot notifier
    242	 * return early here.
    243	 */
    244	if (test_bit(RAC_SUSPENDED, &b15_rac_flags))
    245		return 0;
    246
    247	spin_lock(&rac_lock);
    248
    249	/* And enable it */
    250	__b15_rac_enable(rac_config0_reg);
    251	__set_bit(RAC_ENABLED, &b15_rac_flags);
    252
    253	spin_unlock(&rac_lock);
    254
    255	return 0;
    256}
    257
    258static int b15_rac_suspend(void)
    259{
    260	/* Suspend the read-ahead cache oeprations, forcing our cache
    261	 * implementation to fallback to the regular ARMv7 calls.
    262	 *
    263	 * We are guaranteed to be running on the boot CPU at this point and
    264	 * with every other CPU quiesced, so setting RAC_SUSPENDED is not racy
    265	 * here.
    266	 */
    267	rac_config0_reg = b15_rac_disable_and_flush();
    268	set_bit(RAC_SUSPENDED, &b15_rac_flags);
    269
    270	return 0;
    271}
    272
    273static void b15_rac_resume(void)
    274{
    275	/* Coming out of a S3 suspend/resume cycle, the read-ahead cache
    276	 * register RAC_CONFIG0_REG will be restored to its default value, make
    277	 * sure we re-enable it and set the enable flag, we are also guaranteed
    278	 * to run on the boot CPU, so not racy again.
    279	 */
    280	__b15_rac_enable(rac_config0_reg);
    281	clear_bit(RAC_SUSPENDED, &b15_rac_flags);
    282}
    283
    284static struct syscore_ops b15_rac_syscore_ops = {
    285	.suspend	= b15_rac_suspend,
    286	.resume		= b15_rac_resume,
    287};
    288
    289static int __init b15_rac_init(void)
    290{
    291	struct device_node *dn, *cpu_dn;
    292	int ret = 0, cpu;
    293	u32 reg, en_mask = 0;
    294
    295	dn = of_find_compatible_node(NULL, NULL, "brcm,brcmstb-cpu-biu-ctrl");
    296	if (!dn)
    297		return -ENODEV;
    298
    299	if (WARN(num_possible_cpus() > 4, "RAC only supports 4 CPUs\n"))
    300		goto out;
    301
    302	b15_rac_base = of_iomap(dn, 0);
    303	if (!b15_rac_base) {
    304		pr_err("failed to remap BIU control base\n");
    305		ret = -ENOMEM;
    306		goto out;
    307	}
    308
    309	cpu_dn = of_get_cpu_node(0, NULL);
    310	if (!cpu_dn) {
    311		ret = -ENODEV;
    312		goto out;
    313	}
    314
    315	if (of_device_is_compatible(cpu_dn, "brcm,brahma-b15"))
    316		rac_flush_offset = B15_RAC_FLUSH_REG;
    317	else if (of_device_is_compatible(cpu_dn, "brcm,brahma-b53"))
    318		rac_flush_offset = B53_RAC_FLUSH_REG;
    319	else {
    320		pr_err("Unsupported CPU\n");
    321		of_node_put(cpu_dn);
    322		ret = -EINVAL;
    323		goto out;
    324	}
    325	of_node_put(cpu_dn);
    326
    327	ret = register_reboot_notifier(&b15_rac_reboot_nb);
    328	if (ret) {
    329		pr_err("failed to register reboot notifier\n");
    330		iounmap(b15_rac_base);
    331		goto out;
    332	}
    333
    334	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
    335		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DEAD,
    336					"arm/cache-b15-rac:dead",
    337					NULL, b15_rac_dead_cpu);
    338		if (ret)
    339			goto out_unmap;
    340
    341		ret = cpuhp_setup_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING,
    342					"arm/cache-b15-rac:dying",
    343					NULL, b15_rac_dying_cpu);
    344		if (ret)
    345			goto out_cpu_dead;
    346	}
    347
    348	if (IS_ENABLED(CONFIG_PM_SLEEP))
    349		register_syscore_ops(&b15_rac_syscore_ops);
    350
    351	spin_lock(&rac_lock);
    352	reg = __raw_readl(b15_rac_base + RAC_CONFIG0_REG);
    353	for_each_possible_cpu(cpu)
    354		en_mask |= ((1 << RACPREFDATA_SHIFT) << (cpu * RAC_CPU_SHIFT));
    355	WARN(reg & en_mask, "Read-ahead cache not previously disabled\n");
    356
    357	b15_rac_enable();
    358	set_bit(RAC_ENABLED, &b15_rac_flags);
    359	spin_unlock(&rac_lock);
    360
    361	pr_info("%pOF: Broadcom Brahma-B15 readahead cache\n", dn);
    362
    363	goto out;
    364
    365out_cpu_dead:
    366	cpuhp_remove_state_nocalls(CPUHP_AP_ARM_CACHE_B15_RAC_DYING);
    367out_unmap:
    368	unregister_reboot_notifier(&b15_rac_reboot_nb);
    369	iounmap(b15_rac_base);
    370out:
    371	of_node_put(dn);
    372	return ret;
    373}
    374arch_initcall(b15_rac_init);