cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

context.c (7625B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/arch/arm/mm/context.c
      4 *
      5 *  Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
      6 *  Copyright (C) 2012 ARM Limited
      7 *
      8 *  Author: Will Deacon <will.deacon@arm.com>
      9 */
     10#include <linux/init.h>
     11#include <linux/sched.h>
     12#include <linux/mm.h>
     13#include <linux/smp.h>
     14#include <linux/percpu.h>
     15
     16#include <asm/mmu_context.h>
     17#include <asm/smp_plat.h>
     18#include <asm/thread_notify.h>
     19#include <asm/tlbflush.h>
     20#include <asm/proc-fns.h>
     21
     22/*
     23 * On ARMv6, we have the following structure in the Context ID:
     24 *
     25 * 31                         7          0
     26 * +-------------------------+-----------+
     27 * |      process ID         |   ASID    |
     28 * +-------------------------+-----------+
     29 * |              context ID             |
     30 * +-------------------------------------+
     31 *
     32 * The ASID is used to tag entries in the CPU caches and TLBs.
     33 * The context ID is used by debuggers and trace logic, and
     34 * should be unique within all running processes.
     35 *
     36 * In big endian operation, the two 32 bit words are swapped if accessed
     37 * by non-64-bit operations.
     38 */
     39#define ASID_FIRST_VERSION	(1ULL << ASID_BITS)
     40#define NUM_USER_ASIDS		ASID_FIRST_VERSION
     41
     42static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
     43static atomic64_t asid_generation = ATOMIC64_INIT(ASID_FIRST_VERSION);
     44static DECLARE_BITMAP(asid_map, NUM_USER_ASIDS);
     45
     46static DEFINE_PER_CPU(atomic64_t, active_asids);
     47static DEFINE_PER_CPU(u64, reserved_asids);
     48static cpumask_t tlb_flush_pending;
     49
     50#ifdef CONFIG_ARM_ERRATA_798181
     51void a15_erratum_get_cpumask(int this_cpu, struct mm_struct *mm,
     52			     cpumask_t *mask)
     53{
     54	int cpu;
     55	unsigned long flags;
     56	u64 context_id, asid;
     57
     58	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
     59	context_id = mm->context.id.counter;
     60	for_each_online_cpu(cpu) {
     61		if (cpu == this_cpu)
     62			continue;
     63		/*
     64		 * We only need to send an IPI if the other CPUs are
     65		 * running the same ASID as the one being invalidated.
     66		 */
     67		asid = per_cpu(active_asids, cpu).counter;
     68		if (asid == 0)
     69			asid = per_cpu(reserved_asids, cpu);
     70		if (context_id == asid)
     71			cpumask_set_cpu(cpu, mask);
     72	}
     73	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
     74}
     75#endif
     76
     77#ifdef CONFIG_ARM_LPAE
     78/*
     79 * With LPAE, the ASID and page tables are updated atomicly, so there is
     80 * no need for a reserved set of tables (the active ASID tracking prevents
     81 * any issues across a rollover).
     82 */
     83#define cpu_set_reserved_ttbr0()
     84#else
     85static void cpu_set_reserved_ttbr0(void)
     86{
     87	u32 ttb;
     88	/*
     89	 * Copy TTBR1 into TTBR0.
     90	 * This points at swapper_pg_dir, which contains only global
     91	 * entries so any speculative walks are perfectly safe.
     92	 */
     93	asm volatile(
     94	"	mrc	p15, 0, %0, c2, c0, 1		@ read TTBR1\n"
     95	"	mcr	p15, 0, %0, c2, c0, 0		@ set TTBR0\n"
     96	: "=r" (ttb));
     97	isb();
     98}
     99#endif
    100
    101#ifdef CONFIG_PID_IN_CONTEXTIDR
    102static int contextidr_notifier(struct notifier_block *unused, unsigned long cmd,
    103			       void *t)
    104{
    105	u32 contextidr;
    106	pid_t pid;
    107	struct thread_info *thread = t;
    108
    109	if (cmd != THREAD_NOTIFY_SWITCH)
    110		return NOTIFY_DONE;
    111
    112	pid = task_pid_nr(thread_task(thread)) << ASID_BITS;
    113	asm volatile(
    114	"	mrc	p15, 0, %0, c13, c0, 1\n"
    115	"	and	%0, %0, %2\n"
    116	"	orr	%0, %0, %1\n"
    117	"	mcr	p15, 0, %0, c13, c0, 1\n"
    118	: "=r" (contextidr), "+r" (pid)
    119	: "I" (~ASID_MASK));
    120	isb();
    121
    122	return NOTIFY_OK;
    123}
    124
    125static struct notifier_block contextidr_notifier_block = {
    126	.notifier_call = contextidr_notifier,
    127};
    128
    129static int __init contextidr_notifier_init(void)
    130{
    131	return thread_register_notifier(&contextidr_notifier_block);
    132}
    133arch_initcall(contextidr_notifier_init);
    134#endif
    135
    136static void flush_context(unsigned int cpu)
    137{
    138	int i;
    139	u64 asid;
    140
    141	/* Update the list of reserved ASIDs and the ASID bitmap. */
    142	bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
    143	for_each_possible_cpu(i) {
    144		asid = atomic64_xchg(&per_cpu(active_asids, i), 0);
    145		/*
    146		 * If this CPU has already been through a
    147		 * rollover, but hasn't run another task in
    148		 * the meantime, we must preserve its reserved
    149		 * ASID, as this is the only trace we have of
    150		 * the process it is still running.
    151		 */
    152		if (asid == 0)
    153			asid = per_cpu(reserved_asids, i);
    154		__set_bit(asid & ~ASID_MASK, asid_map);
    155		per_cpu(reserved_asids, i) = asid;
    156	}
    157
    158	/* Queue a TLB invalidate and flush the I-cache if necessary. */
    159	cpumask_setall(&tlb_flush_pending);
    160
    161	if (icache_is_vivt_asid_tagged())
    162		__flush_icache_all();
    163}
    164
    165static bool check_update_reserved_asid(u64 asid, u64 newasid)
    166{
    167	int cpu;
    168	bool hit = false;
    169
    170	/*
    171	 * Iterate over the set of reserved ASIDs looking for a match.
    172	 * If we find one, then we can update our mm to use newasid
    173	 * (i.e. the same ASID in the current generation) but we can't
    174	 * exit the loop early, since we need to ensure that all copies
    175	 * of the old ASID are updated to reflect the mm. Failure to do
    176	 * so could result in us missing the reserved ASID in a future
    177	 * generation.
    178	 */
    179	for_each_possible_cpu(cpu) {
    180		if (per_cpu(reserved_asids, cpu) == asid) {
    181			hit = true;
    182			per_cpu(reserved_asids, cpu) = newasid;
    183		}
    184	}
    185
    186	return hit;
    187}
    188
    189static u64 new_context(struct mm_struct *mm, unsigned int cpu)
    190{
    191	static u32 cur_idx = 1;
    192	u64 asid = atomic64_read(&mm->context.id);
    193	u64 generation = atomic64_read(&asid_generation);
    194
    195	if (asid != 0) {
    196		u64 newasid = generation | (asid & ~ASID_MASK);
    197
    198		/*
    199		 * If our current ASID was active during a rollover, we
    200		 * can continue to use it and this was just a false alarm.
    201		 */
    202		if (check_update_reserved_asid(asid, newasid))
    203			return newasid;
    204
    205		/*
    206		 * We had a valid ASID in a previous life, so try to re-use
    207		 * it if possible.,
    208		 */
    209		asid &= ~ASID_MASK;
    210		if (!__test_and_set_bit(asid, asid_map))
    211			return newasid;
    212	}
    213
    214	/*
    215	 * Allocate a free ASID. If we can't find one, take a note of the
    216	 * currently active ASIDs and mark the TLBs as requiring flushes.
    217	 * We always count from ASID #1, as we reserve ASID #0 to switch
    218	 * via TTBR0 and to avoid speculative page table walks from hitting
    219	 * in any partial walk caches, which could be populated from
    220	 * overlapping level-1 descriptors used to map both the module
    221	 * area and the userspace stack.
    222	 */
    223	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
    224	if (asid == NUM_USER_ASIDS) {
    225		generation = atomic64_add_return(ASID_FIRST_VERSION,
    226						 &asid_generation);
    227		flush_context(cpu);
    228		asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
    229	}
    230
    231	__set_bit(asid, asid_map);
    232	cur_idx = asid;
    233	cpumask_clear(mm_cpumask(mm));
    234	return asid | generation;
    235}
    236
    237void check_and_switch_context(struct mm_struct *mm, struct task_struct *tsk)
    238{
    239	unsigned long flags;
    240	unsigned int cpu = smp_processor_id();
    241	u64 asid;
    242
    243	check_vmalloc_seq(mm);
    244
    245	/*
    246	 * We cannot update the pgd and the ASID atomicly with classic
    247	 * MMU, so switch exclusively to global mappings to avoid
    248	 * speculative page table walking with the wrong TTBR.
    249	 */
    250	cpu_set_reserved_ttbr0();
    251
    252	asid = atomic64_read(&mm->context.id);
    253	if (!((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS)
    254	    && atomic64_xchg(&per_cpu(active_asids, cpu), asid))
    255		goto switch_mm_fastpath;
    256
    257	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
    258	/* Check that our ASID belongs to the current generation. */
    259	asid = atomic64_read(&mm->context.id);
    260	if ((asid ^ atomic64_read(&asid_generation)) >> ASID_BITS) {
    261		asid = new_context(mm, cpu);
    262		atomic64_set(&mm->context.id, asid);
    263	}
    264
    265	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending)) {
    266		local_flush_bp_all();
    267		local_flush_tlb_all();
    268	}
    269
    270	atomic64_set(&per_cpu(active_asids, cpu), asid);
    271	cpumask_set_cpu(cpu, mm_cpumask(mm));
    272	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
    273
    274switch_mm_fastpath:
    275	cpu_switch_mm(mm->pgd, mm);
    276}