copypage-xscale.c (3585B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/arch/arm/lib/copypage-xscale.S 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * 7 * This handles the mini data cache, as found on SA11x0 and XScale 8 * processors. When we copy a user page page, we map it in such a way 9 * that accesses to this page will not touch the main data cache, but 10 * will be cached in the mini data cache. This prevents us thrashing 11 * the main data cache on page faults. 12 */ 13#include <linux/init.h> 14#include <linux/mm.h> 15#include <linux/highmem.h> 16#include <linux/pagemap.h> 17 18#include <asm/tlbflush.h> 19#include <asm/cacheflush.h> 20 21#include "mm.h" 22 23#define minicache_pgprot __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | \ 24 L_PTE_MT_MINICACHE) 25 26static DEFINE_RAW_SPINLOCK(minicache_lock); 27 28/* 29 * XScale mini-dcache optimised copy_user_highpage 30 * 31 * We flush the destination cache lines just before we write the data into the 32 * corresponding address. Since the Dcache is read-allocate, this removes the 33 * Dcache aliasing issue. The writes will be forwarded to the write buffer, 34 * and merged as appropriate. 35 */ 36static void mc_copy_user_page(void *from, void *to) 37{ 38 int tmp; 39 40 /* 41 * Strangely enough, best performance is achieved 42 * when prefetching destination as well. (NP) 43 */ 44 asm volatile ("\ 45.arch xscale \n\ 46 pld [%0, #0] \n\ 47 pld [%0, #32] \n\ 48 pld [%1, #0] \n\ 49 pld [%1, #32] \n\ 501: pld [%0, #64] \n\ 51 pld [%0, #96] \n\ 52 pld [%1, #64] \n\ 53 pld [%1, #96] \n\ 542: ldrd r2, r3, [%0], #8 \n\ 55 ldrd r4, r5, [%0], #8 \n\ 56 mov ip, %1 \n\ 57 strd r2, r3, [%1], #8 \n\ 58 ldrd r2, r3, [%0], #8 \n\ 59 strd r4, r5, [%1], #8 \n\ 60 ldrd r4, r5, [%0], #8 \n\ 61 strd r2, r3, [%1], #8 \n\ 62 strd r4, r5, [%1], #8 \n\ 63 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ 64 ldrd r2, r3, [%0], #8 \n\ 65 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ 66 ldrd r4, r5, [%0], #8 \n\ 67 mov ip, %1 \n\ 68 strd r2, r3, [%1], #8 \n\ 69 ldrd r2, r3, [%0], #8 \n\ 70 strd r4, r5, [%1], #8 \n\ 71 ldrd r4, r5, [%0], #8 \n\ 72 strd r2, r3, [%1], #8 \n\ 73 strd r4, r5, [%1], #8 \n\ 74 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ 75 subs %2, %2, #1 \n\ 76 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ 77 bgt 1b \n\ 78 beq 2b " 79 : "+&r" (from), "+&r" (to), "=&r" (tmp) 80 : "2" (PAGE_SIZE / 64 - 1) 81 : "r2", "r3", "r4", "r5", "ip"); 82} 83 84void xscale_mc_copy_user_highpage(struct page *to, struct page *from, 85 unsigned long vaddr, struct vm_area_struct *vma) 86{ 87 void *kto = kmap_atomic(to); 88 89 if (!test_and_set_bit(PG_dcache_clean, &from->flags)) 90 __flush_dcache_page(page_mapping_file(from), from); 91 92 raw_spin_lock(&minicache_lock); 93 94 set_top_pte(COPYPAGE_MINICACHE, mk_pte(from, minicache_pgprot)); 95 96 mc_copy_user_page((void *)COPYPAGE_MINICACHE, kto); 97 98 raw_spin_unlock(&minicache_lock); 99 100 kunmap_atomic(kto); 101} 102 103/* 104 * XScale optimised clear_user_page 105 */ 106void 107xscale_mc_clear_user_highpage(struct page *page, unsigned long vaddr) 108{ 109 void *ptr, *kaddr = kmap_atomic(page); 110 asm volatile("\ 111.arch xscale \n\ 112 mov r1, %2 \n\ 113 mov r2, #0 \n\ 114 mov r3, #0 \n\ 1151: mov ip, %0 \n\ 116 strd r2, r3, [%0], #8 \n\ 117 strd r2, r3, [%0], #8 \n\ 118 strd r2, r3, [%0], #8 \n\ 119 strd r2, r3, [%0], #8 \n\ 120 mcr p15, 0, ip, c7, c10, 1 @ clean D line\n\ 121 subs r1, r1, #1 \n\ 122 mcr p15, 0, ip, c7, c6, 1 @ invalidate D line\n\ 123 bne 1b" 124 : "=r" (ptr) 125 : "0" (kaddr), "I" (PAGE_SIZE / 32) 126 : "r1", "r2", "r3", "ip"); 127 kunmap_atomic(kaddr); 128} 129 130struct cpu_user_fns xscale_mc_user_fns __initdata = { 131 .cpu_clear_user_highpage = xscale_mc_clear_user_highpage, 132 .cpu_copy_user_highpage = xscale_mc_copy_user_highpage, 133};