cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mmu.c (50025B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/arch/arm/mm/mmu.c
      4 *
      5 *  Copyright (C) 1995-2005 Russell King
      6 */
      7#include <linux/module.h>
      8#include <linux/kernel.h>
      9#include <linux/errno.h>
     10#include <linux/init.h>
     11#include <linux/mman.h>
     12#include <linux/nodemask.h>
     13#include <linux/memblock.h>
     14#include <linux/fs.h>
     15#include <linux/vmalloc.h>
     16#include <linux/sizes.h>
     17
     18#include <asm/cp15.h>
     19#include <asm/cputype.h>
     20#include <asm/cachetype.h>
     21#include <asm/sections.h>
     22#include <asm/setup.h>
     23#include <asm/smp_plat.h>
     24#include <asm/tlb.h>
     25#include <asm/highmem.h>
     26#include <asm/system_info.h>
     27#include <asm/traps.h>
     28#include <asm/procinfo.h>
     29#include <asm/memory.h>
     30#include <asm/pgalloc.h>
     31#include <asm/kasan_def.h>
     32
     33#include <asm/mach/arch.h>
     34#include <asm/mach/map.h>
     35#include <asm/mach/pci.h>
     36#include <asm/fixmap.h>
     37
     38#include "fault.h"
     39#include "mm.h"
     40#include "tcm.h"
     41
     42extern unsigned long __atags_pointer;
     43
     44/*
     45 * empty_zero_page is a special page that is used for
     46 * zero-initialized data and COW.
     47 */
     48struct page *empty_zero_page;
     49EXPORT_SYMBOL(empty_zero_page);
     50
     51/*
     52 * The pmd table for the upper-most set of pages.
     53 */
     54pmd_t *top_pmd;
     55
     56pmdval_t user_pmd_table = _PAGE_USER_TABLE;
     57
     58#define CPOLICY_UNCACHED	0
     59#define CPOLICY_BUFFERED	1
     60#define CPOLICY_WRITETHROUGH	2
     61#define CPOLICY_WRITEBACK	3
     62#define CPOLICY_WRITEALLOC	4
     63
     64static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
     65static unsigned int ecc_mask __initdata = 0;
     66pgprot_t pgprot_user;
     67pgprot_t pgprot_kernel;
     68
     69EXPORT_SYMBOL(pgprot_user);
     70EXPORT_SYMBOL(pgprot_kernel);
     71
     72struct cachepolicy {
     73	const char	policy[16];
     74	unsigned int	cr_mask;
     75	pmdval_t	pmd;
     76	pteval_t	pte;
     77};
     78
     79static struct cachepolicy cache_policies[] __initdata = {
     80	{
     81		.policy		= "uncached",
     82		.cr_mask	= CR_W|CR_C,
     83		.pmd		= PMD_SECT_UNCACHED,
     84		.pte		= L_PTE_MT_UNCACHED,
     85	}, {
     86		.policy		= "buffered",
     87		.cr_mask	= CR_C,
     88		.pmd		= PMD_SECT_BUFFERED,
     89		.pte		= L_PTE_MT_BUFFERABLE,
     90	}, {
     91		.policy		= "writethrough",
     92		.cr_mask	= 0,
     93		.pmd		= PMD_SECT_WT,
     94		.pte		= L_PTE_MT_WRITETHROUGH,
     95	}, {
     96		.policy		= "writeback",
     97		.cr_mask	= 0,
     98		.pmd		= PMD_SECT_WB,
     99		.pte		= L_PTE_MT_WRITEBACK,
    100	}, {
    101		.policy		= "writealloc",
    102		.cr_mask	= 0,
    103		.pmd		= PMD_SECT_WBWA,
    104		.pte		= L_PTE_MT_WRITEALLOC,
    105	}
    106};
    107
    108#ifdef CONFIG_CPU_CP15
    109static unsigned long initial_pmd_value __initdata = 0;
    110
    111/*
    112 * Initialise the cache_policy variable with the initial state specified
    113 * via the "pmd" value.  This is used to ensure that on ARMv6 and later,
    114 * the C code sets the page tables up with the same policy as the head
    115 * assembly code, which avoids an illegal state where the TLBs can get
    116 * confused.  See comments in early_cachepolicy() for more information.
    117 */
    118void __init init_default_cache_policy(unsigned long pmd)
    119{
    120	int i;
    121
    122	initial_pmd_value = pmd;
    123
    124	pmd &= PMD_SECT_CACHE_MASK;
    125
    126	for (i = 0; i < ARRAY_SIZE(cache_policies); i++)
    127		if (cache_policies[i].pmd == pmd) {
    128			cachepolicy = i;
    129			break;
    130		}
    131
    132	if (i == ARRAY_SIZE(cache_policies))
    133		pr_err("ERROR: could not find cache policy\n");
    134}
    135
    136/*
    137 * These are useful for identifying cache coherency problems by allowing
    138 * the cache or the cache and writebuffer to be turned off.  (Note: the
    139 * write buffer should not be on and the cache off).
    140 */
    141static int __init early_cachepolicy(char *p)
    142{
    143	int i, selected = -1;
    144
    145	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
    146		int len = strlen(cache_policies[i].policy);
    147
    148		if (memcmp(p, cache_policies[i].policy, len) == 0) {
    149			selected = i;
    150			break;
    151		}
    152	}
    153
    154	if (selected == -1)
    155		pr_err("ERROR: unknown or unsupported cache policy\n");
    156
    157	/*
    158	 * This restriction is partly to do with the way we boot; it is
    159	 * unpredictable to have memory mapped using two different sets of
    160	 * memory attributes (shared, type, and cache attribs).  We can not
    161	 * change these attributes once the initial assembly has setup the
    162	 * page tables.
    163	 */
    164	if (cpu_architecture() >= CPU_ARCH_ARMv6 && selected != cachepolicy) {
    165		pr_warn("Only cachepolicy=%s supported on ARMv6 and later\n",
    166			cache_policies[cachepolicy].policy);
    167		return 0;
    168	}
    169
    170	if (selected != cachepolicy) {
    171		unsigned long cr = __clear_cr(cache_policies[selected].cr_mask);
    172		cachepolicy = selected;
    173		flush_cache_all();
    174		set_cr(cr);
    175	}
    176	return 0;
    177}
    178early_param("cachepolicy", early_cachepolicy);
    179
    180static int __init early_nocache(char *__unused)
    181{
    182	char *p = "buffered";
    183	pr_warn("nocache is deprecated; use cachepolicy=%s\n", p);
    184	early_cachepolicy(p);
    185	return 0;
    186}
    187early_param("nocache", early_nocache);
    188
    189static int __init early_nowrite(char *__unused)
    190{
    191	char *p = "uncached";
    192	pr_warn("nowb is deprecated; use cachepolicy=%s\n", p);
    193	early_cachepolicy(p);
    194	return 0;
    195}
    196early_param("nowb", early_nowrite);
    197
    198#ifndef CONFIG_ARM_LPAE
    199static int __init early_ecc(char *p)
    200{
    201	if (memcmp(p, "on", 2) == 0)
    202		ecc_mask = PMD_PROTECTION;
    203	else if (memcmp(p, "off", 3) == 0)
    204		ecc_mask = 0;
    205	return 0;
    206}
    207early_param("ecc", early_ecc);
    208#endif
    209
    210#else /* ifdef CONFIG_CPU_CP15 */
    211
    212static int __init early_cachepolicy(char *p)
    213{
    214	pr_warn("cachepolicy kernel parameter not supported without cp15\n");
    215	return 0;
    216}
    217early_param("cachepolicy", early_cachepolicy);
    218
    219static int __init noalign_setup(char *__unused)
    220{
    221	pr_warn("noalign kernel parameter not supported without cp15\n");
    222	return 1;
    223}
    224__setup("noalign", noalign_setup);
    225
    226#endif /* ifdef CONFIG_CPU_CP15 / else */
    227
    228#define PROT_PTE_DEVICE		L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
    229#define PROT_PTE_S2_DEVICE	PROT_PTE_DEVICE
    230#define PROT_SECT_DEVICE	PMD_TYPE_SECT|PMD_SECT_AP_WRITE
    231
    232static struct mem_type mem_types[] __ro_after_init = {
    233	[MT_DEVICE] = {		  /* Strongly ordered / ARMv6 shared device */
    234		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
    235				  L_PTE_SHARED,
    236		.prot_l1	= PMD_TYPE_TABLE,
    237		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_S,
    238		.domain		= DOMAIN_IO,
    239	},
    240	[MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
    241		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
    242		.prot_l1	= PMD_TYPE_TABLE,
    243		.prot_sect	= PROT_SECT_DEVICE,
    244		.domain		= DOMAIN_IO,
    245	},
    246	[MT_DEVICE_CACHED] = {	  /* ioremap_cache */
    247		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
    248		.prot_l1	= PMD_TYPE_TABLE,
    249		.prot_sect	= PROT_SECT_DEVICE | PMD_SECT_WB,
    250		.domain		= DOMAIN_IO,
    251	},
    252	[MT_DEVICE_WC] = {	/* ioremap_wc */
    253		.prot_pte	= PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
    254		.prot_l1	= PMD_TYPE_TABLE,
    255		.prot_sect	= PROT_SECT_DEVICE,
    256		.domain		= DOMAIN_IO,
    257	},
    258	[MT_UNCACHED] = {
    259		.prot_pte	= PROT_PTE_DEVICE,
    260		.prot_l1	= PMD_TYPE_TABLE,
    261		.prot_sect	= PMD_TYPE_SECT | PMD_SECT_XN,
    262		.domain		= DOMAIN_IO,
    263	},
    264	[MT_CACHECLEAN] = {
    265		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
    266		.domain    = DOMAIN_KERNEL,
    267	},
    268#ifndef CONFIG_ARM_LPAE
    269	[MT_MINICLEAN] = {
    270		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
    271		.domain    = DOMAIN_KERNEL,
    272	},
    273#endif
    274	[MT_LOW_VECTORS] = {
    275		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    276				L_PTE_RDONLY,
    277		.prot_l1   = PMD_TYPE_TABLE,
    278		.domain    = DOMAIN_VECTORS,
    279	},
    280	[MT_HIGH_VECTORS] = {
    281		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    282				L_PTE_USER | L_PTE_RDONLY,
    283		.prot_l1   = PMD_TYPE_TABLE,
    284		.domain    = DOMAIN_VECTORS,
    285	},
    286	[MT_MEMORY_RWX] = {
    287		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
    288		.prot_l1   = PMD_TYPE_TABLE,
    289		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    290		.domain    = DOMAIN_KERNEL,
    291	},
    292	[MT_MEMORY_RW] = {
    293		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    294			     L_PTE_XN,
    295		.prot_l1   = PMD_TYPE_TABLE,
    296		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    297		.domain    = DOMAIN_KERNEL,
    298	},
    299	[MT_ROM] = {
    300		.prot_sect = PMD_TYPE_SECT,
    301		.domain    = DOMAIN_KERNEL,
    302	},
    303	[MT_MEMORY_RWX_NONCACHED] = {
    304		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    305				L_PTE_MT_BUFFERABLE,
    306		.prot_l1   = PMD_TYPE_TABLE,
    307		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
    308		.domain    = DOMAIN_KERNEL,
    309	},
    310	[MT_MEMORY_RW_DTCM] = {
    311		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    312				L_PTE_XN,
    313		.prot_l1   = PMD_TYPE_TABLE,
    314		.prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
    315		.domain    = DOMAIN_KERNEL,
    316	},
    317	[MT_MEMORY_RWX_ITCM] = {
    318		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
    319		.prot_l1   = PMD_TYPE_TABLE,
    320		.domain    = DOMAIN_KERNEL,
    321	},
    322	[MT_MEMORY_RW_SO] = {
    323		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    324				L_PTE_MT_UNCACHED | L_PTE_XN,
    325		.prot_l1   = PMD_TYPE_TABLE,
    326		.prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
    327				PMD_SECT_UNCACHED | PMD_SECT_XN,
    328		.domain    = DOMAIN_KERNEL,
    329	},
    330	[MT_MEMORY_DMA_READY] = {
    331		.prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
    332				L_PTE_XN,
    333		.prot_l1   = PMD_TYPE_TABLE,
    334		.domain    = DOMAIN_KERNEL,
    335	},
    336};
    337
    338const struct mem_type *get_mem_type(unsigned int type)
    339{
    340	return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
    341}
    342EXPORT_SYMBOL(get_mem_type);
    343
    344static pte_t *(*pte_offset_fixmap)(pmd_t *dir, unsigned long addr);
    345
    346static pte_t bm_pte[PTRS_PER_PTE + PTE_HWTABLE_PTRS]
    347	__aligned(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE) __initdata;
    348
    349static pte_t * __init pte_offset_early_fixmap(pmd_t *dir, unsigned long addr)
    350{
    351	return &bm_pte[pte_index(addr)];
    352}
    353
    354static pte_t *pte_offset_late_fixmap(pmd_t *dir, unsigned long addr)
    355{
    356	return pte_offset_kernel(dir, addr);
    357}
    358
    359static inline pmd_t * __init fixmap_pmd(unsigned long addr)
    360{
    361	return pmd_off_k(addr);
    362}
    363
    364void __init early_fixmap_init(void)
    365{
    366	pmd_t *pmd;
    367
    368	/*
    369	 * The early fixmap range spans multiple pmds, for which
    370	 * we are not prepared:
    371	 */
    372	BUILD_BUG_ON((__fix_to_virt(__end_of_early_ioremap_region) >> PMD_SHIFT)
    373		     != FIXADDR_TOP >> PMD_SHIFT);
    374
    375	pmd = fixmap_pmd(FIXADDR_TOP);
    376	pmd_populate_kernel(&init_mm, pmd, bm_pte);
    377
    378	pte_offset_fixmap = pte_offset_early_fixmap;
    379}
    380
    381/*
    382 * To avoid TLB flush broadcasts, this uses local_flush_tlb_kernel_range().
    383 * As a result, this can only be called with preemption disabled, as under
    384 * stop_machine().
    385 */
    386void __set_fixmap(enum fixed_addresses idx, phys_addr_t phys, pgprot_t prot)
    387{
    388	unsigned long vaddr = __fix_to_virt(idx);
    389	pte_t *pte = pte_offset_fixmap(pmd_off_k(vaddr), vaddr);
    390
    391	/* Make sure fixmap region does not exceed available allocation. */
    392	BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) < FIXADDR_START);
    393	BUG_ON(idx >= __end_of_fixed_addresses);
    394
    395	/* We support only device mappings before pgprot_kernel is set. */
    396	if (WARN_ON(pgprot_val(prot) != pgprot_val(FIXMAP_PAGE_IO) &&
    397		    pgprot_val(prot) && pgprot_val(pgprot_kernel) == 0))
    398		return;
    399
    400	if (pgprot_val(prot))
    401		set_pte_at(NULL, vaddr, pte,
    402			pfn_pte(phys >> PAGE_SHIFT, prot));
    403	else
    404		pte_clear(NULL, vaddr, pte);
    405	local_flush_tlb_kernel_range(vaddr, vaddr + PAGE_SIZE);
    406}
    407
    408/*
    409 * Adjust the PMD section entries according to the CPU in use.
    410 */
    411static void __init build_mem_type_table(void)
    412{
    413	struct cachepolicy *cp;
    414	unsigned int cr = get_cr();
    415	pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
    416	int cpu_arch = cpu_architecture();
    417	int i;
    418
    419	if (cpu_arch < CPU_ARCH_ARMv6) {
    420#if defined(CONFIG_CPU_DCACHE_DISABLE)
    421		if (cachepolicy > CPOLICY_BUFFERED)
    422			cachepolicy = CPOLICY_BUFFERED;
    423#elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
    424		if (cachepolicy > CPOLICY_WRITETHROUGH)
    425			cachepolicy = CPOLICY_WRITETHROUGH;
    426#endif
    427	}
    428	if (cpu_arch < CPU_ARCH_ARMv5) {
    429		if (cachepolicy >= CPOLICY_WRITEALLOC)
    430			cachepolicy = CPOLICY_WRITEBACK;
    431		ecc_mask = 0;
    432	}
    433
    434	if (is_smp()) {
    435		if (cachepolicy != CPOLICY_WRITEALLOC) {
    436			pr_warn("Forcing write-allocate cache policy for SMP\n");
    437			cachepolicy = CPOLICY_WRITEALLOC;
    438		}
    439		if (!(initial_pmd_value & PMD_SECT_S)) {
    440			pr_warn("Forcing shared mappings for SMP\n");
    441			initial_pmd_value |= PMD_SECT_S;
    442		}
    443	}
    444
    445	/*
    446	 * Strip out features not present on earlier architectures.
    447	 * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
    448	 * without extended page tables don't have the 'Shared' bit.
    449	 */
    450	if (cpu_arch < CPU_ARCH_ARMv5)
    451		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
    452			mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
    453	if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
    454		for (i = 0; i < ARRAY_SIZE(mem_types); i++)
    455			mem_types[i].prot_sect &= ~PMD_SECT_S;
    456
    457	/*
    458	 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
    459	 * "update-able on write" bit on ARM610).  However, Xscale and
    460	 * Xscale3 require this bit to be cleared.
    461	 */
    462	if (cpu_is_xscale_family()) {
    463		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    464			mem_types[i].prot_sect &= ~PMD_BIT4;
    465			mem_types[i].prot_l1 &= ~PMD_BIT4;
    466		}
    467	} else if (cpu_arch < CPU_ARCH_ARMv6) {
    468		for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    469			if (mem_types[i].prot_l1)
    470				mem_types[i].prot_l1 |= PMD_BIT4;
    471			if (mem_types[i].prot_sect)
    472				mem_types[i].prot_sect |= PMD_BIT4;
    473		}
    474	}
    475
    476	/*
    477	 * Mark the device areas according to the CPU/architecture.
    478	 */
    479	if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
    480		if (!cpu_is_xsc3()) {
    481			/*
    482			 * Mark device regions on ARMv6+ as execute-never
    483			 * to prevent speculative instruction fetches.
    484			 */
    485			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
    486			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
    487			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
    488			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
    489
    490			/* Also setup NX memory mapping */
    491			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
    492		}
    493		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
    494			/*
    495			 * For ARMv7 with TEX remapping,
    496			 * - shared device is SXCB=1100
    497			 * - nonshared device is SXCB=0100
    498			 * - write combine device mem is SXCB=0001
    499			 * (Uncached Normal memory)
    500			 */
    501			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
    502			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
    503			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
    504		} else if (cpu_is_xsc3()) {
    505			/*
    506			 * For Xscale3,
    507			 * - shared device is TEXCB=00101
    508			 * - nonshared device is TEXCB=01000
    509			 * - write combine device mem is TEXCB=00100
    510			 * (Inner/Outer Uncacheable in xsc3 parlance)
    511			 */
    512			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
    513			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
    514			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
    515		} else {
    516			/*
    517			 * For ARMv6 and ARMv7 without TEX remapping,
    518			 * - shared device is TEXCB=00001
    519			 * - nonshared device is TEXCB=01000
    520			 * - write combine device mem is TEXCB=00100
    521			 * (Uncached Normal in ARMv6 parlance).
    522			 */
    523			mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
    524			mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
    525			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
    526		}
    527	} else {
    528		/*
    529		 * On others, write combining is "Uncached/Buffered"
    530		 */
    531		mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
    532	}
    533
    534	/*
    535	 * Now deal with the memory-type mappings
    536	 */
    537	cp = &cache_policies[cachepolicy];
    538	vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
    539
    540#ifndef CONFIG_ARM_LPAE
    541	/*
    542	 * We don't use domains on ARMv6 (since this causes problems with
    543	 * v6/v7 kernels), so we must use a separate memory type for user
    544	 * r/o, kernel r/w to map the vectors page.
    545	 */
    546	if (cpu_arch == CPU_ARCH_ARMv6)
    547		vecs_pgprot |= L_PTE_MT_VECTORS;
    548
    549	/*
    550	 * Check is it with support for the PXN bit
    551	 * in the Short-descriptor translation table format descriptors.
    552	 */
    553	if (cpu_arch == CPU_ARCH_ARMv7 &&
    554		(read_cpuid_ext(CPUID_EXT_MMFR0) & 0xF) >= 4) {
    555		user_pmd_table |= PMD_PXNTABLE;
    556	}
    557#endif
    558
    559	/*
    560	 * ARMv6 and above have extended page tables.
    561	 */
    562	if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
    563#ifndef CONFIG_ARM_LPAE
    564		/*
    565		 * Mark cache clean areas and XIP ROM read only
    566		 * from SVC mode and no access from userspace.
    567		 */
    568		mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    569		mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    570		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
    571#endif
    572
    573		/*
    574		 * If the initial page tables were created with the S bit
    575		 * set, then we need to do the same here for the same
    576		 * reasons given in early_cachepolicy().
    577		 */
    578		if (initial_pmd_value & PMD_SECT_S) {
    579			user_pgprot |= L_PTE_SHARED;
    580			kern_pgprot |= L_PTE_SHARED;
    581			vecs_pgprot |= L_PTE_SHARED;
    582			mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
    583			mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
    584			mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
    585			mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
    586			mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
    587			mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
    588			mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
    589			mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
    590			mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
    591			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
    592			mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
    593		}
    594	}
    595
    596	/*
    597	 * Non-cacheable Normal - intended for memory areas that must
    598	 * not cause dirty cache line writebacks when used
    599	 */
    600	if (cpu_arch >= CPU_ARCH_ARMv6) {
    601		if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
    602			/* Non-cacheable Normal is XCB = 001 */
    603			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
    604				PMD_SECT_BUFFERED;
    605		} else {
    606			/* For both ARMv6 and non-TEX-remapping ARMv7 */
    607			mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
    608				PMD_SECT_TEX(1);
    609		}
    610	} else {
    611		mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
    612	}
    613
    614#ifdef CONFIG_ARM_LPAE
    615	/*
    616	 * Do not generate access flag faults for the kernel mappings.
    617	 */
    618	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    619		mem_types[i].prot_pte |= PTE_EXT_AF;
    620		if (mem_types[i].prot_sect)
    621			mem_types[i].prot_sect |= PMD_SECT_AF;
    622	}
    623	kern_pgprot |= PTE_EXT_AF;
    624	vecs_pgprot |= PTE_EXT_AF;
    625
    626	/*
    627	 * Set PXN for user mappings
    628	 */
    629	user_pgprot |= PTE_EXT_PXN;
    630#endif
    631
    632	for (i = 0; i < 16; i++) {
    633		pteval_t v = pgprot_val(protection_map[i]);
    634		protection_map[i] = __pgprot(v | user_pgprot);
    635	}
    636
    637	mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
    638	mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
    639
    640	pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
    641	pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
    642				 L_PTE_DIRTY | kern_pgprot);
    643
    644	mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
    645	mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
    646	mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
    647	mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
    648	mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
    649	mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
    650	mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
    651	mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
    652	mem_types[MT_ROM].prot_sect |= cp->pmd;
    653
    654	switch (cp->pmd) {
    655	case PMD_SECT_WT:
    656		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
    657		break;
    658	case PMD_SECT_WB:
    659	case PMD_SECT_WBWA:
    660		mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
    661		break;
    662	}
    663	pr_info("Memory policy: %sData cache %s\n",
    664		ecc_mask ? "ECC enabled, " : "", cp->policy);
    665
    666	for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
    667		struct mem_type *t = &mem_types[i];
    668		if (t->prot_l1)
    669			t->prot_l1 |= PMD_DOMAIN(t->domain);
    670		if (t->prot_sect)
    671			t->prot_sect |= PMD_DOMAIN(t->domain);
    672	}
    673}
    674
    675#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
    676pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    677			      unsigned long size, pgprot_t vma_prot)
    678{
    679	if (!pfn_valid(pfn))
    680		return pgprot_noncached(vma_prot);
    681	else if (file->f_flags & O_SYNC)
    682		return pgprot_writecombine(vma_prot);
    683	return vma_prot;
    684}
    685EXPORT_SYMBOL(phys_mem_access_prot);
    686#endif
    687
    688#define vectors_base()	(vectors_high() ? 0xffff0000 : 0)
    689
    690static void __init *early_alloc(unsigned long sz)
    691{
    692	void *ptr = memblock_alloc(sz, sz);
    693
    694	if (!ptr)
    695		panic("%s: Failed to allocate %lu bytes align=0x%lx\n",
    696		      __func__, sz, sz);
    697
    698	return ptr;
    699}
    700
    701static void *__init late_alloc(unsigned long sz)
    702{
    703	void *ptr = (void *)__get_free_pages(GFP_PGTABLE_KERNEL, get_order(sz));
    704
    705	if (!ptr || !pgtable_pte_page_ctor(virt_to_page(ptr)))
    706		BUG();
    707	return ptr;
    708}
    709
    710static pte_t * __init arm_pte_alloc(pmd_t *pmd, unsigned long addr,
    711				unsigned long prot,
    712				void *(*alloc)(unsigned long sz))
    713{
    714	if (pmd_none(*pmd)) {
    715		pte_t *pte = alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
    716		__pmd_populate(pmd, __pa(pte), prot);
    717	}
    718	BUG_ON(pmd_bad(*pmd));
    719	return pte_offset_kernel(pmd, addr);
    720}
    721
    722static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr,
    723				      unsigned long prot)
    724{
    725	return arm_pte_alloc(pmd, addr, prot, early_alloc);
    726}
    727
    728static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
    729				  unsigned long end, unsigned long pfn,
    730				  const struct mem_type *type,
    731				  void *(*alloc)(unsigned long sz),
    732				  bool ng)
    733{
    734	pte_t *pte = arm_pte_alloc(pmd, addr, type->prot_l1, alloc);
    735	do {
    736		set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)),
    737			    ng ? PTE_EXT_NG : 0);
    738		pfn++;
    739	} while (pte++, addr += PAGE_SIZE, addr != end);
    740}
    741
    742static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
    743			unsigned long end, phys_addr_t phys,
    744			const struct mem_type *type, bool ng)
    745{
    746	pmd_t *p = pmd;
    747
    748#ifndef CONFIG_ARM_LPAE
    749	/*
    750	 * In classic MMU format, puds and pmds are folded in to
    751	 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
    752	 * group of L1 entries making up one logical pointer to
    753	 * an L2 table (2MB), where as PMDs refer to the individual
    754	 * L1 entries (1MB). Hence increment to get the correct
    755	 * offset for odd 1MB sections.
    756	 * (See arch/arm/include/asm/pgtable-2level.h)
    757	 */
    758	if (addr & SECTION_SIZE)
    759		pmd++;
    760#endif
    761	do {
    762		*pmd = __pmd(phys | type->prot_sect | (ng ? PMD_SECT_nG : 0));
    763		phys += SECTION_SIZE;
    764	} while (pmd++, addr += SECTION_SIZE, addr != end);
    765
    766	flush_pmd_entry(p);
    767}
    768
    769static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
    770				      unsigned long end, phys_addr_t phys,
    771				      const struct mem_type *type,
    772				      void *(*alloc)(unsigned long sz), bool ng)
    773{
    774	pmd_t *pmd = pmd_offset(pud, addr);
    775	unsigned long next;
    776
    777	do {
    778		/*
    779		 * With LPAE, we must loop over to map
    780		 * all the pmds for the given range.
    781		 */
    782		next = pmd_addr_end(addr, end);
    783
    784		/*
    785		 * Try a section mapping - addr, next and phys must all be
    786		 * aligned to a section boundary.
    787		 */
    788		if (type->prot_sect &&
    789				((addr | next | phys) & ~SECTION_MASK) == 0) {
    790			__map_init_section(pmd, addr, next, phys, type, ng);
    791		} else {
    792			alloc_init_pte(pmd, addr, next,
    793				       __phys_to_pfn(phys), type, alloc, ng);
    794		}
    795
    796		phys += next - addr;
    797
    798	} while (pmd++, addr = next, addr != end);
    799}
    800
    801static void __init alloc_init_pud(p4d_t *p4d, unsigned long addr,
    802				  unsigned long end, phys_addr_t phys,
    803				  const struct mem_type *type,
    804				  void *(*alloc)(unsigned long sz), bool ng)
    805{
    806	pud_t *pud = pud_offset(p4d, addr);
    807	unsigned long next;
    808
    809	do {
    810		next = pud_addr_end(addr, end);
    811		alloc_init_pmd(pud, addr, next, phys, type, alloc, ng);
    812		phys += next - addr;
    813	} while (pud++, addr = next, addr != end);
    814}
    815
    816static void __init alloc_init_p4d(pgd_t *pgd, unsigned long addr,
    817				  unsigned long end, phys_addr_t phys,
    818				  const struct mem_type *type,
    819				  void *(*alloc)(unsigned long sz), bool ng)
    820{
    821	p4d_t *p4d = p4d_offset(pgd, addr);
    822	unsigned long next;
    823
    824	do {
    825		next = p4d_addr_end(addr, end);
    826		alloc_init_pud(p4d, addr, next, phys, type, alloc, ng);
    827		phys += next - addr;
    828	} while (p4d++, addr = next, addr != end);
    829}
    830
    831#ifndef CONFIG_ARM_LPAE
    832static void __init create_36bit_mapping(struct mm_struct *mm,
    833					struct map_desc *md,
    834					const struct mem_type *type,
    835					bool ng)
    836{
    837	unsigned long addr, length, end;
    838	phys_addr_t phys;
    839	pgd_t *pgd;
    840
    841	addr = md->virtual;
    842	phys = __pfn_to_phys(md->pfn);
    843	length = PAGE_ALIGN(md->length);
    844
    845	if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
    846		pr_err("MM: CPU does not support supersection mapping for 0x%08llx at 0x%08lx\n",
    847		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    848		return;
    849	}
    850
    851	/* N.B.	ARMv6 supersections are only defined to work with domain 0.
    852	 *	Since domain assignments can in fact be arbitrary, the
    853	 *	'domain == 0' check below is required to insure that ARMv6
    854	 *	supersections are only allocated for domain 0 regardless
    855	 *	of the actual domain assignments in use.
    856	 */
    857	if (type->domain) {
    858		pr_err("MM: invalid domain in supersection mapping for 0x%08llx at 0x%08lx\n",
    859		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    860		return;
    861	}
    862
    863	if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
    864		pr_err("MM: cannot create mapping for 0x%08llx at 0x%08lx invalid alignment\n",
    865		       (long long)__pfn_to_phys((u64)md->pfn), addr);
    866		return;
    867	}
    868
    869	/*
    870	 * Shift bits [35:32] of address into bits [23:20] of PMD
    871	 * (See ARMv6 spec).
    872	 */
    873	phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
    874
    875	pgd = pgd_offset(mm, addr);
    876	end = addr + length;
    877	do {
    878		p4d_t *p4d = p4d_offset(pgd, addr);
    879		pud_t *pud = pud_offset(p4d, addr);
    880		pmd_t *pmd = pmd_offset(pud, addr);
    881		int i;
    882
    883		for (i = 0; i < 16; i++)
    884			*pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER |
    885				       (ng ? PMD_SECT_nG : 0));
    886
    887		addr += SUPERSECTION_SIZE;
    888		phys += SUPERSECTION_SIZE;
    889		pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
    890	} while (addr != end);
    891}
    892#endif	/* !CONFIG_ARM_LPAE */
    893
    894static void __init __create_mapping(struct mm_struct *mm, struct map_desc *md,
    895				    void *(*alloc)(unsigned long sz),
    896				    bool ng)
    897{
    898	unsigned long addr, length, end;
    899	phys_addr_t phys;
    900	const struct mem_type *type;
    901	pgd_t *pgd;
    902
    903	type = &mem_types[md->type];
    904
    905#ifndef CONFIG_ARM_LPAE
    906	/*
    907	 * Catch 36-bit addresses
    908	 */
    909	if (md->pfn >= 0x100000) {
    910		create_36bit_mapping(mm, md, type, ng);
    911		return;
    912	}
    913#endif
    914
    915	addr = md->virtual & PAGE_MASK;
    916	phys = __pfn_to_phys(md->pfn);
    917	length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
    918
    919	if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
    920		pr_warn("BUG: map for 0x%08llx at 0x%08lx can not be mapped using pages, ignoring.\n",
    921			(long long)__pfn_to_phys(md->pfn), addr);
    922		return;
    923	}
    924
    925	pgd = pgd_offset(mm, addr);
    926	end = addr + length;
    927	do {
    928		unsigned long next = pgd_addr_end(addr, end);
    929
    930		alloc_init_p4d(pgd, addr, next, phys, type, alloc, ng);
    931
    932		phys += next - addr;
    933		addr = next;
    934	} while (pgd++, addr != end);
    935}
    936
    937/*
    938 * Create the page directory entries and any necessary
    939 * page tables for the mapping specified by `md'.  We
    940 * are able to cope here with varying sizes and address
    941 * offsets, and we take full advantage of sections and
    942 * supersections.
    943 */
    944static void __init create_mapping(struct map_desc *md)
    945{
    946	if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
    947		pr_warn("BUG: not creating mapping for 0x%08llx at 0x%08lx in user region\n",
    948			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
    949		return;
    950	}
    951
    952	if (md->type == MT_DEVICE &&
    953	    md->virtual >= PAGE_OFFSET && md->virtual < FIXADDR_START &&
    954	    (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
    955		pr_warn("BUG: mapping for 0x%08llx at 0x%08lx out of vmalloc space\n",
    956			(long long)__pfn_to_phys((u64)md->pfn), md->virtual);
    957	}
    958
    959	__create_mapping(&init_mm, md, early_alloc, false);
    960}
    961
    962void __init create_mapping_late(struct mm_struct *mm, struct map_desc *md,
    963				bool ng)
    964{
    965#ifdef CONFIG_ARM_LPAE
    966	p4d_t *p4d;
    967	pud_t *pud;
    968
    969	p4d = p4d_alloc(mm, pgd_offset(mm, md->virtual), md->virtual);
    970	if (WARN_ON(!p4d))
    971		return;
    972	pud = pud_alloc(mm, p4d, md->virtual);
    973	if (WARN_ON(!pud))
    974		return;
    975	pmd_alloc(mm, pud, 0);
    976#endif
    977	__create_mapping(mm, md, late_alloc, ng);
    978}
    979
    980/*
    981 * Create the architecture specific mappings
    982 */
    983void __init iotable_init(struct map_desc *io_desc, int nr)
    984{
    985	struct map_desc *md;
    986	struct vm_struct *vm;
    987	struct static_vm *svm;
    988
    989	if (!nr)
    990		return;
    991
    992	svm = memblock_alloc(sizeof(*svm) * nr, __alignof__(*svm));
    993	if (!svm)
    994		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
    995		      __func__, sizeof(*svm) * nr, __alignof__(*svm));
    996
    997	for (md = io_desc; nr; md++, nr--) {
    998		create_mapping(md);
    999
   1000		vm = &svm->vm;
   1001		vm->addr = (void *)(md->virtual & PAGE_MASK);
   1002		vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
   1003		vm->phys_addr = __pfn_to_phys(md->pfn);
   1004		vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
   1005		vm->flags |= VM_ARM_MTYPE(md->type);
   1006		vm->caller = iotable_init;
   1007		add_static_vm_early(svm++);
   1008	}
   1009}
   1010
   1011void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
   1012				  void *caller)
   1013{
   1014	struct vm_struct *vm;
   1015	struct static_vm *svm;
   1016
   1017	svm = memblock_alloc(sizeof(*svm), __alignof__(*svm));
   1018	if (!svm)
   1019		panic("%s: Failed to allocate %zu bytes align=0x%zx\n",
   1020		      __func__, sizeof(*svm), __alignof__(*svm));
   1021
   1022	vm = &svm->vm;
   1023	vm->addr = (void *)addr;
   1024	vm->size = size;
   1025	vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
   1026	vm->caller = caller;
   1027	add_static_vm_early(svm);
   1028}
   1029
   1030#ifndef CONFIG_ARM_LPAE
   1031
   1032/*
   1033 * The Linux PMD is made of two consecutive section entries covering 2MB
   1034 * (see definition in include/asm/pgtable-2level.h).  However a call to
   1035 * create_mapping() may optimize static mappings by using individual
   1036 * 1MB section mappings.  This leaves the actual PMD potentially half
   1037 * initialized if the top or bottom section entry isn't used, leaving it
   1038 * open to problems if a subsequent ioremap() or vmalloc() tries to use
   1039 * the virtual space left free by that unused section entry.
   1040 *
   1041 * Let's avoid the issue by inserting dummy vm entries covering the unused
   1042 * PMD halves once the static mappings are in place.
   1043 */
   1044
   1045static void __init pmd_empty_section_gap(unsigned long addr)
   1046{
   1047	vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
   1048}
   1049
   1050static void __init fill_pmd_gaps(void)
   1051{
   1052	struct static_vm *svm;
   1053	struct vm_struct *vm;
   1054	unsigned long addr, next = 0;
   1055	pmd_t *pmd;
   1056
   1057	list_for_each_entry(svm, &static_vmlist, list) {
   1058		vm = &svm->vm;
   1059		addr = (unsigned long)vm->addr;
   1060		if (addr < next)
   1061			continue;
   1062
   1063		/*
   1064		 * Check if this vm starts on an odd section boundary.
   1065		 * If so and the first section entry for this PMD is free
   1066		 * then we block the corresponding virtual address.
   1067		 */
   1068		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
   1069			pmd = pmd_off_k(addr);
   1070			if (pmd_none(*pmd))
   1071				pmd_empty_section_gap(addr & PMD_MASK);
   1072		}
   1073
   1074		/*
   1075		 * Then check if this vm ends on an odd section boundary.
   1076		 * If so and the second section entry for this PMD is empty
   1077		 * then we block the corresponding virtual address.
   1078		 */
   1079		addr += vm->size;
   1080		if ((addr & ~PMD_MASK) == SECTION_SIZE) {
   1081			pmd = pmd_off_k(addr) + 1;
   1082			if (pmd_none(*pmd))
   1083				pmd_empty_section_gap(addr);
   1084		}
   1085
   1086		/* no need to look at any vm entry until we hit the next PMD */
   1087		next = (addr + PMD_SIZE - 1) & PMD_MASK;
   1088	}
   1089}
   1090
   1091#else
   1092#define fill_pmd_gaps() do { } while (0)
   1093#endif
   1094
   1095#if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
   1096static void __init pci_reserve_io(void)
   1097{
   1098	struct static_vm *svm;
   1099
   1100	svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
   1101	if (svm)
   1102		return;
   1103
   1104	vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
   1105}
   1106#else
   1107#define pci_reserve_io() do { } while (0)
   1108#endif
   1109
   1110#ifdef CONFIG_DEBUG_LL
   1111void __init debug_ll_io_init(void)
   1112{
   1113	struct map_desc map;
   1114
   1115	debug_ll_addr(&map.pfn, &map.virtual);
   1116	if (!map.pfn || !map.virtual)
   1117		return;
   1118	map.pfn = __phys_to_pfn(map.pfn);
   1119	map.virtual &= PAGE_MASK;
   1120	map.length = PAGE_SIZE;
   1121	map.type = MT_DEVICE;
   1122	iotable_init(&map, 1);
   1123}
   1124#endif
   1125
   1126static unsigned long __initdata vmalloc_size = 240 * SZ_1M;
   1127
   1128/*
   1129 * vmalloc=size forces the vmalloc area to be exactly 'size'
   1130 * bytes. This can be used to increase (or decrease) the vmalloc
   1131 * area - the default is 240MiB.
   1132 */
   1133static int __init early_vmalloc(char *arg)
   1134{
   1135	unsigned long vmalloc_reserve = memparse(arg, NULL);
   1136	unsigned long vmalloc_max;
   1137
   1138	if (vmalloc_reserve < SZ_16M) {
   1139		vmalloc_reserve = SZ_16M;
   1140		pr_warn("vmalloc area is too small, limiting to %luMiB\n",
   1141			vmalloc_reserve >> 20);
   1142	}
   1143
   1144	vmalloc_max = VMALLOC_END - (PAGE_OFFSET + SZ_32M + VMALLOC_OFFSET);
   1145	if (vmalloc_reserve > vmalloc_max) {
   1146		vmalloc_reserve = vmalloc_max;
   1147		pr_warn("vmalloc area is too big, limiting to %luMiB\n",
   1148			vmalloc_reserve >> 20);
   1149	}
   1150
   1151	vmalloc_size = vmalloc_reserve;
   1152	return 0;
   1153}
   1154early_param("vmalloc", early_vmalloc);
   1155
   1156phys_addr_t arm_lowmem_limit __initdata = 0;
   1157
   1158void __init adjust_lowmem_bounds(void)
   1159{
   1160	phys_addr_t block_start, block_end, memblock_limit = 0;
   1161	u64 vmalloc_limit, i;
   1162	phys_addr_t lowmem_limit = 0;
   1163
   1164	/*
   1165	 * Let's use our own (unoptimized) equivalent of __pa() that is
   1166	 * not affected by wrap-arounds when sizeof(phys_addr_t) == 4.
   1167	 * The result is used as the upper bound on physical memory address
   1168	 * and may itself be outside the valid range for which phys_addr_t
   1169	 * and therefore __pa() is defined.
   1170	 */
   1171	vmalloc_limit = (u64)VMALLOC_END - vmalloc_size - VMALLOC_OFFSET -
   1172			PAGE_OFFSET + PHYS_OFFSET;
   1173
   1174	/*
   1175	 * The first usable region must be PMD aligned. Mark its start
   1176	 * as MEMBLOCK_NOMAP if it isn't
   1177	 */
   1178	for_each_mem_range(i, &block_start, &block_end) {
   1179		if (!IS_ALIGNED(block_start, PMD_SIZE)) {
   1180			phys_addr_t len;
   1181
   1182			len = round_up(block_start, PMD_SIZE) - block_start;
   1183			memblock_mark_nomap(block_start, len);
   1184		}
   1185		break;
   1186	}
   1187
   1188	for_each_mem_range(i, &block_start, &block_end) {
   1189		if (block_start < vmalloc_limit) {
   1190			if (block_end > lowmem_limit)
   1191				/*
   1192				 * Compare as u64 to ensure vmalloc_limit does
   1193				 * not get truncated. block_end should always
   1194				 * fit in phys_addr_t so there should be no
   1195				 * issue with assignment.
   1196				 */
   1197				lowmem_limit = min_t(u64,
   1198							 vmalloc_limit,
   1199							 block_end);
   1200
   1201			/*
   1202			 * Find the first non-pmd-aligned page, and point
   1203			 * memblock_limit at it. This relies on rounding the
   1204			 * limit down to be pmd-aligned, which happens at the
   1205			 * end of this function.
   1206			 *
   1207			 * With this algorithm, the start or end of almost any
   1208			 * bank can be non-pmd-aligned. The only exception is
   1209			 * that the start of the bank 0 must be section-
   1210			 * aligned, since otherwise memory would need to be
   1211			 * allocated when mapping the start of bank 0, which
   1212			 * occurs before any free memory is mapped.
   1213			 */
   1214			if (!memblock_limit) {
   1215				if (!IS_ALIGNED(block_start, PMD_SIZE))
   1216					memblock_limit = block_start;
   1217				else if (!IS_ALIGNED(block_end, PMD_SIZE))
   1218					memblock_limit = lowmem_limit;
   1219			}
   1220
   1221		}
   1222	}
   1223
   1224	arm_lowmem_limit = lowmem_limit;
   1225
   1226	high_memory = __va(arm_lowmem_limit - 1) + 1;
   1227
   1228	if (!memblock_limit)
   1229		memblock_limit = arm_lowmem_limit;
   1230
   1231	/*
   1232	 * Round the memblock limit down to a pmd size.  This
   1233	 * helps to ensure that we will allocate memory from the
   1234	 * last full pmd, which should be mapped.
   1235	 */
   1236	memblock_limit = round_down(memblock_limit, PMD_SIZE);
   1237
   1238	if (!IS_ENABLED(CONFIG_HIGHMEM) || cache_is_vipt_aliasing()) {
   1239		if (memblock_end_of_DRAM() > arm_lowmem_limit) {
   1240			phys_addr_t end = memblock_end_of_DRAM();
   1241
   1242			pr_notice("Ignoring RAM at %pa-%pa\n",
   1243				  &memblock_limit, &end);
   1244			pr_notice("Consider using a HIGHMEM enabled kernel.\n");
   1245
   1246			memblock_remove(memblock_limit, end - memblock_limit);
   1247		}
   1248	}
   1249
   1250	memblock_set_current_limit(memblock_limit);
   1251}
   1252
   1253static __init void prepare_page_table(void)
   1254{
   1255	unsigned long addr;
   1256	phys_addr_t end;
   1257
   1258	/*
   1259	 * Clear out all the mappings below the kernel image.
   1260	 */
   1261#ifdef CONFIG_KASAN
   1262	/*
   1263	 * KASan's shadow memory inserts itself between the TASK_SIZE
   1264	 * and MODULES_VADDR. Do not clear the KASan shadow memory mappings.
   1265	 */
   1266	for (addr = 0; addr < KASAN_SHADOW_START; addr += PMD_SIZE)
   1267		pmd_clear(pmd_off_k(addr));
   1268	/*
   1269	 * Skip over the KASan shadow area. KASAN_SHADOW_END is sometimes
   1270	 * equal to MODULES_VADDR and then we exit the pmd clearing. If we
   1271	 * are using a thumb-compiled kernel, there there will be 8MB more
   1272	 * to clear as KASan always offset to 16 MB below MODULES_VADDR.
   1273	 */
   1274	for (addr = KASAN_SHADOW_END; addr < MODULES_VADDR; addr += PMD_SIZE)
   1275		pmd_clear(pmd_off_k(addr));
   1276#else
   1277	for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
   1278		pmd_clear(pmd_off_k(addr));
   1279#endif
   1280
   1281#ifdef CONFIG_XIP_KERNEL
   1282	/* The XIP kernel is mapped in the module area -- skip over it */
   1283	addr = ((unsigned long)_exiprom + PMD_SIZE - 1) & PMD_MASK;
   1284#endif
   1285	for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
   1286		pmd_clear(pmd_off_k(addr));
   1287
   1288	/*
   1289	 * Find the end of the first block of lowmem.
   1290	 */
   1291	end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
   1292	if (end >= arm_lowmem_limit)
   1293		end = arm_lowmem_limit;
   1294
   1295	/*
   1296	 * Clear out all the kernel space mappings, except for the first
   1297	 * memory bank, up to the vmalloc region.
   1298	 */
   1299	for (addr = __phys_to_virt(end);
   1300	     addr < VMALLOC_START; addr += PMD_SIZE)
   1301		pmd_clear(pmd_off_k(addr));
   1302}
   1303
   1304#ifdef CONFIG_ARM_LPAE
   1305/* the first page is reserved for pgd */
   1306#define SWAPPER_PG_DIR_SIZE	(PAGE_SIZE + \
   1307				 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
   1308#else
   1309#define SWAPPER_PG_DIR_SIZE	(PTRS_PER_PGD * sizeof(pgd_t))
   1310#endif
   1311
   1312/*
   1313 * Reserve the special regions of memory
   1314 */
   1315void __init arm_mm_memblock_reserve(void)
   1316{
   1317	/*
   1318	 * Reserve the page tables.  These are already in use,
   1319	 * and can only be in node 0.
   1320	 */
   1321	memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
   1322
   1323#ifdef CONFIG_SA1111
   1324	/*
   1325	 * Because of the SA1111 DMA bug, we want to preserve our
   1326	 * precious DMA-able memory...
   1327	 */
   1328	memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
   1329#endif
   1330}
   1331
   1332/*
   1333 * Set up the device mappings.  Since we clear out the page tables for all
   1334 * mappings above VMALLOC_START, except early fixmap, we might remove debug
   1335 * device mappings.  This means earlycon can be used to debug this function
   1336 * Any other function or debugging method which may touch any device _will_
   1337 * crash the kernel.
   1338 */
   1339static void __init devicemaps_init(const struct machine_desc *mdesc)
   1340{
   1341	struct map_desc map;
   1342	unsigned long addr;
   1343	void *vectors;
   1344
   1345	/*
   1346	 * Allocate the vector page early.
   1347	 */
   1348	vectors = early_alloc(PAGE_SIZE * 2);
   1349
   1350	early_trap_init(vectors);
   1351
   1352	/*
   1353	 * Clear page table except top pmd used by early fixmaps
   1354	 */
   1355	for (addr = VMALLOC_START; addr < (FIXADDR_TOP & PMD_MASK); addr += PMD_SIZE)
   1356		pmd_clear(pmd_off_k(addr));
   1357
   1358	if (__atags_pointer) {
   1359		/* create a read-only mapping of the device tree */
   1360		map.pfn = __phys_to_pfn(__atags_pointer & SECTION_MASK);
   1361		map.virtual = FDT_FIXED_BASE;
   1362		map.length = FDT_FIXED_SIZE;
   1363		map.type = MT_ROM;
   1364		create_mapping(&map);
   1365	}
   1366
   1367	/*
   1368	 * Map the kernel if it is XIP.
   1369	 * It is always first in the modulearea.
   1370	 */
   1371#ifdef CONFIG_XIP_KERNEL
   1372	map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
   1373	map.virtual = MODULES_VADDR;
   1374	map.length = ((unsigned long)_exiprom - map.virtual + ~SECTION_MASK) & SECTION_MASK;
   1375	map.type = MT_ROM;
   1376	create_mapping(&map);
   1377#endif
   1378
   1379	/*
   1380	 * Map the cache flushing regions.
   1381	 */
   1382#ifdef FLUSH_BASE
   1383	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
   1384	map.virtual = FLUSH_BASE;
   1385	map.length = SZ_1M;
   1386	map.type = MT_CACHECLEAN;
   1387	create_mapping(&map);
   1388#endif
   1389#ifdef FLUSH_BASE_MINICACHE
   1390	map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
   1391	map.virtual = FLUSH_BASE_MINICACHE;
   1392	map.length = SZ_1M;
   1393	map.type = MT_MINICLEAN;
   1394	create_mapping(&map);
   1395#endif
   1396
   1397	/*
   1398	 * Create a mapping for the machine vectors at the high-vectors
   1399	 * location (0xffff0000).  If we aren't using high-vectors, also
   1400	 * create a mapping at the low-vectors virtual address.
   1401	 */
   1402	map.pfn = __phys_to_pfn(virt_to_phys(vectors));
   1403	map.virtual = 0xffff0000;
   1404	map.length = PAGE_SIZE;
   1405#ifdef CONFIG_KUSER_HELPERS
   1406	map.type = MT_HIGH_VECTORS;
   1407#else
   1408	map.type = MT_LOW_VECTORS;
   1409#endif
   1410	create_mapping(&map);
   1411
   1412	if (!vectors_high()) {
   1413		map.virtual = 0;
   1414		map.length = PAGE_SIZE * 2;
   1415		map.type = MT_LOW_VECTORS;
   1416		create_mapping(&map);
   1417	}
   1418
   1419	/* Now create a kernel read-only mapping */
   1420	map.pfn += 1;
   1421	map.virtual = 0xffff0000 + PAGE_SIZE;
   1422	map.length = PAGE_SIZE;
   1423	map.type = MT_LOW_VECTORS;
   1424	create_mapping(&map);
   1425
   1426	/*
   1427	 * Ask the machine support to map in the statically mapped devices.
   1428	 */
   1429	if (mdesc->map_io)
   1430		mdesc->map_io();
   1431	else
   1432		debug_ll_io_init();
   1433	fill_pmd_gaps();
   1434
   1435	/* Reserve fixed i/o space in VMALLOC region */
   1436	pci_reserve_io();
   1437
   1438	/*
   1439	 * Finally flush the caches and tlb to ensure that we're in a
   1440	 * consistent state wrt the writebuffer.  This also ensures that
   1441	 * any write-allocated cache lines in the vector page are written
   1442	 * back.  After this point, we can start to touch devices again.
   1443	 */
   1444	local_flush_tlb_all();
   1445	flush_cache_all();
   1446
   1447	/* Enable asynchronous aborts */
   1448	early_abt_enable();
   1449}
   1450
   1451static void __init kmap_init(void)
   1452{
   1453#ifdef CONFIG_HIGHMEM
   1454	pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
   1455		PKMAP_BASE, _PAGE_KERNEL_TABLE);
   1456#endif
   1457
   1458	early_pte_alloc(pmd_off_k(FIXADDR_START), FIXADDR_START,
   1459			_PAGE_KERNEL_TABLE);
   1460}
   1461
   1462static void __init map_lowmem(void)
   1463{
   1464	phys_addr_t start, end;
   1465	u64 i;
   1466
   1467	/* Map all the lowmem memory banks. */
   1468	for_each_mem_range(i, &start, &end) {
   1469		struct map_desc map;
   1470
   1471		pr_debug("map lowmem start: 0x%08llx, end: 0x%08llx\n",
   1472			 (long long)start, (long long)end);
   1473		if (end > arm_lowmem_limit)
   1474			end = arm_lowmem_limit;
   1475		if (start >= end)
   1476			break;
   1477
   1478		/*
   1479		 * If our kernel image is in the VMALLOC area we need to remove
   1480		 * the kernel physical memory from lowmem since the kernel will
   1481		 * be mapped separately.
   1482		 *
   1483		 * The kernel will typically be at the very start of lowmem,
   1484		 * but any placement relative to memory ranges is possible.
   1485		 *
   1486		 * If the memblock contains the kernel, we have to chisel out
   1487		 * the kernel memory from it and map each part separately. We
   1488		 * get 6 different theoretical cases:
   1489		 *
   1490		 *                            +--------+ +--------+
   1491		 *  +-- start --+  +--------+ | Kernel | | Kernel |
   1492		 *  |           |  | Kernel | | case 2 | | case 5 |
   1493		 *  |           |  | case 1 | +--------+ |        | +--------+
   1494		 *  |  Memory   |  +--------+            |        | | Kernel |
   1495		 *  |  range    |  +--------+            |        | | case 6 |
   1496		 *  |           |  | Kernel | +--------+ |        | +--------+
   1497		 *  |           |  | case 3 | | Kernel | |        |
   1498		 *  +-- end ----+  +--------+ | case 4 | |        |
   1499		 *                            +--------+ +--------+
   1500		 */
   1501
   1502		/* Case 5: kernel covers range, don't map anything, should be rare */
   1503		if ((start > kernel_sec_start) && (end < kernel_sec_end))
   1504			break;
   1505
   1506		/* Cases where the kernel is starting inside the range */
   1507		if ((kernel_sec_start >= start) && (kernel_sec_start <= end)) {
   1508			/* Case 6: kernel is embedded in the range, we need two mappings */
   1509			if ((start < kernel_sec_start) && (end > kernel_sec_end)) {
   1510				/* Map memory below the kernel */
   1511				map.pfn = __phys_to_pfn(start);
   1512				map.virtual = __phys_to_virt(start);
   1513				map.length = kernel_sec_start - start;
   1514				map.type = MT_MEMORY_RW;
   1515				create_mapping(&map);
   1516				/* Map memory above the kernel */
   1517				map.pfn = __phys_to_pfn(kernel_sec_end);
   1518				map.virtual = __phys_to_virt(kernel_sec_end);
   1519				map.length = end - kernel_sec_end;
   1520				map.type = MT_MEMORY_RW;
   1521				create_mapping(&map);
   1522				break;
   1523			}
   1524			/* Case 1: kernel and range start at the same address, should be common */
   1525			if (kernel_sec_start == start)
   1526				start = kernel_sec_end;
   1527			/* Case 3: kernel and range end at the same address, should be rare */
   1528			if (kernel_sec_end == end)
   1529				end = kernel_sec_start;
   1530		} else if ((kernel_sec_start < start) && (kernel_sec_end > start) && (kernel_sec_end < end)) {
   1531			/* Case 2: kernel ends inside range, starts below it */
   1532			start = kernel_sec_end;
   1533		} else if ((kernel_sec_start > start) && (kernel_sec_start < end) && (kernel_sec_end > end)) {
   1534			/* Case 4: kernel starts inside range, ends above it */
   1535			end = kernel_sec_start;
   1536		}
   1537		map.pfn = __phys_to_pfn(start);
   1538		map.virtual = __phys_to_virt(start);
   1539		map.length = end - start;
   1540		map.type = MT_MEMORY_RW;
   1541		create_mapping(&map);
   1542	}
   1543}
   1544
   1545static void __init map_kernel(void)
   1546{
   1547	/*
   1548	 * We use the well known kernel section start and end and split the area in the
   1549	 * middle like this:
   1550	 *  .                .
   1551	 *  | RW memory      |
   1552	 *  +----------------+ kernel_x_start
   1553	 *  | Executable     |
   1554	 *  | kernel memory  |
   1555	 *  +----------------+ kernel_x_end / kernel_nx_start
   1556	 *  | Non-executable |
   1557	 *  | kernel memory  |
   1558	 *  +----------------+ kernel_nx_end
   1559	 *  | RW memory      |
   1560	 *  .                .
   1561	 *
   1562	 * Notice that we are dealing with section sized mappings here so all of this
   1563	 * will be bumped to the closest section boundary. This means that some of the
   1564	 * non-executable part of the kernel memory is actually mapped as executable.
   1565	 * This will only persist until we turn on proper memory management later on
   1566	 * and we remap the whole kernel with page granularity.
   1567	 */
   1568	phys_addr_t kernel_x_start = kernel_sec_start;
   1569	phys_addr_t kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
   1570	phys_addr_t kernel_nx_start = kernel_x_end;
   1571	phys_addr_t kernel_nx_end = kernel_sec_end;
   1572	struct map_desc map;
   1573
   1574	map.pfn = __phys_to_pfn(kernel_x_start);
   1575	map.virtual = __phys_to_virt(kernel_x_start);
   1576	map.length = kernel_x_end - kernel_x_start;
   1577	map.type = MT_MEMORY_RWX;
   1578	create_mapping(&map);
   1579
   1580	/* If the nx part is small it may end up covered by the tail of the RWX section */
   1581	if (kernel_x_end == kernel_nx_end)
   1582		return;
   1583
   1584	map.pfn = __phys_to_pfn(kernel_nx_start);
   1585	map.virtual = __phys_to_virt(kernel_nx_start);
   1586	map.length = kernel_nx_end - kernel_nx_start;
   1587	map.type = MT_MEMORY_RW;
   1588	create_mapping(&map);
   1589}
   1590
   1591#ifdef CONFIG_ARM_PV_FIXUP
   1592typedef void pgtables_remap(long long offset, unsigned long pgd);
   1593pgtables_remap lpae_pgtables_remap_asm;
   1594
   1595/*
   1596 * early_paging_init() recreates boot time page table setup, allowing machines
   1597 * to switch over to a high (>4G) address space on LPAE systems
   1598 */
   1599static void __init early_paging_init(const struct machine_desc *mdesc)
   1600{
   1601	pgtables_remap *lpae_pgtables_remap;
   1602	unsigned long pa_pgd;
   1603	unsigned int cr, ttbcr;
   1604	long long offset;
   1605
   1606	if (!mdesc->pv_fixup)
   1607		return;
   1608
   1609	offset = mdesc->pv_fixup();
   1610	if (offset == 0)
   1611		return;
   1612
   1613	/*
   1614	 * Offset the kernel section physical offsets so that the kernel
   1615	 * mapping will work out later on.
   1616	 */
   1617	kernel_sec_start += offset;
   1618	kernel_sec_end += offset;
   1619
   1620	/*
   1621	 * Get the address of the remap function in the 1:1 identity
   1622	 * mapping setup by the early page table assembly code.  We
   1623	 * must get this prior to the pv update.  The following barrier
   1624	 * ensures that this is complete before we fixup any P:V offsets.
   1625	 */
   1626	lpae_pgtables_remap = (pgtables_remap *)(unsigned long)__pa(lpae_pgtables_remap_asm);
   1627	pa_pgd = __pa(swapper_pg_dir);
   1628	barrier();
   1629
   1630	pr_info("Switching physical address space to 0x%08llx\n",
   1631		(u64)PHYS_OFFSET + offset);
   1632
   1633	/* Re-set the phys pfn offset, and the pv offset */
   1634	__pv_offset += offset;
   1635	__pv_phys_pfn_offset += PFN_DOWN(offset);
   1636
   1637	/* Run the patch stub to update the constants */
   1638	fixup_pv_table(&__pv_table_begin,
   1639		(&__pv_table_end - &__pv_table_begin) << 2);
   1640
   1641	/*
   1642	 * We changing not only the virtual to physical mapping, but also
   1643	 * the physical addresses used to access memory.  We need to flush
   1644	 * all levels of cache in the system with caching disabled to
   1645	 * ensure that all data is written back, and nothing is prefetched
   1646	 * into the caches.  We also need to prevent the TLB walkers
   1647	 * allocating into the caches too.  Note that this is ARMv7 LPAE
   1648	 * specific.
   1649	 */
   1650	cr = get_cr();
   1651	set_cr(cr & ~(CR_I | CR_C));
   1652	asm("mrc p15, 0, %0, c2, c0, 2" : "=r" (ttbcr));
   1653	asm volatile("mcr p15, 0, %0, c2, c0, 2"
   1654		: : "r" (ttbcr & ~(3 << 8 | 3 << 10)));
   1655	flush_cache_all();
   1656
   1657	/*
   1658	 * Fixup the page tables - this must be in the idmap region as
   1659	 * we need to disable the MMU to do this safely, and hence it
   1660	 * needs to be assembly.  It's fairly simple, as we're using the
   1661	 * temporary tables setup by the initial assembly code.
   1662	 */
   1663	lpae_pgtables_remap(offset, pa_pgd);
   1664
   1665	/* Re-enable the caches and cacheable TLB walks */
   1666	asm volatile("mcr p15, 0, %0, c2, c0, 2" : : "r" (ttbcr));
   1667	set_cr(cr);
   1668}
   1669
   1670#else
   1671
   1672static void __init early_paging_init(const struct machine_desc *mdesc)
   1673{
   1674	long long offset;
   1675
   1676	if (!mdesc->pv_fixup)
   1677		return;
   1678
   1679	offset = mdesc->pv_fixup();
   1680	if (offset == 0)
   1681		return;
   1682
   1683	pr_crit("Physical address space modification is only to support Keystone2.\n");
   1684	pr_crit("Please enable ARM_LPAE and ARM_PATCH_PHYS_VIRT support to use this\n");
   1685	pr_crit("feature. Your kernel may crash now, have a good day.\n");
   1686	add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
   1687}
   1688
   1689#endif
   1690
   1691static void __init early_fixmap_shutdown(void)
   1692{
   1693	int i;
   1694	unsigned long va = fix_to_virt(__end_of_permanent_fixed_addresses - 1);
   1695
   1696	pte_offset_fixmap = pte_offset_late_fixmap;
   1697	pmd_clear(fixmap_pmd(va));
   1698	local_flush_tlb_kernel_page(va);
   1699
   1700	for (i = 0; i < __end_of_permanent_fixed_addresses; i++) {
   1701		pte_t *pte;
   1702		struct map_desc map;
   1703
   1704		map.virtual = fix_to_virt(i);
   1705		pte = pte_offset_early_fixmap(pmd_off_k(map.virtual), map.virtual);
   1706
   1707		/* Only i/o device mappings are supported ATM */
   1708		if (pte_none(*pte) ||
   1709		    (pte_val(*pte) & L_PTE_MT_MASK) != L_PTE_MT_DEV_SHARED)
   1710			continue;
   1711
   1712		map.pfn = pte_pfn(*pte);
   1713		map.type = MT_DEVICE;
   1714		map.length = PAGE_SIZE;
   1715
   1716		create_mapping(&map);
   1717	}
   1718}
   1719
   1720/*
   1721 * paging_init() sets up the page tables, initialises the zone memory
   1722 * maps, and sets up the zero page, bad page and bad page tables.
   1723 */
   1724void __init paging_init(const struct machine_desc *mdesc)
   1725{
   1726	void *zero_page;
   1727
   1728	pr_debug("physical kernel sections: 0x%08llx-0x%08llx\n",
   1729		 kernel_sec_start, kernel_sec_end);
   1730
   1731	prepare_page_table();
   1732	map_lowmem();
   1733	memblock_set_current_limit(arm_lowmem_limit);
   1734	pr_debug("lowmem limit is %08llx\n", (long long)arm_lowmem_limit);
   1735	/*
   1736	 * After this point early_alloc(), i.e. the memblock allocator, can
   1737	 * be used
   1738	 */
   1739	map_kernel();
   1740	dma_contiguous_remap();
   1741	early_fixmap_shutdown();
   1742	devicemaps_init(mdesc);
   1743	kmap_init();
   1744	tcm_init();
   1745
   1746	top_pmd = pmd_off_k(0xffff0000);
   1747
   1748	/* allocate the zero page. */
   1749	zero_page = early_alloc(PAGE_SIZE);
   1750
   1751	bootmem_init();
   1752
   1753	empty_zero_page = virt_to_page(zero_page);
   1754	__flush_dcache_page(NULL, empty_zero_page);
   1755}
   1756
   1757void __init early_mm_init(const struct machine_desc *mdesc)
   1758{
   1759	build_mem_type_table();
   1760	early_paging_init(mdesc);
   1761}
   1762
   1763void set_pte_at(struct mm_struct *mm, unsigned long addr,
   1764			      pte_t *ptep, pte_t pteval)
   1765{
   1766	unsigned long ext = 0;
   1767
   1768	if (addr < TASK_SIZE && pte_valid_user(pteval)) {
   1769		if (!pte_special(pteval))
   1770			__sync_icache_dcache(pteval);
   1771		ext |= PTE_EXT_NG;
   1772	}
   1773
   1774	set_pte_ext(ptep, pteval, ext);
   1775}