cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

test-core.c (42014B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * arch/arm/kernel/kprobes-test.c
      4 *
      5 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
      6 */
      7
      8/*
      9 * This file contains test code for ARM kprobes.
     10 *
     11 * The top level function run_all_tests() executes tests for all of the
     12 * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
     13 * fall into two categories; run_api_tests() checks basic functionality of the
     14 * kprobes API, and run_test_cases() is a comprehensive test for kprobes
     15 * instruction decoding and simulation.
     16 *
     17 * run_test_cases() first checks the kprobes decoding table for self consistency
     18 * (using table_test()) then executes a series of test cases for each of the CPU
     19 * instruction forms. coverage_start() and coverage_end() are used to verify
     20 * that these test cases cover all of the possible combinations of instructions
     21 * described by the kprobes decoding tables.
     22 *
     23 * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
     24 * which use the macros defined in kprobes-test.h. The rest of this
     25 * documentation will describe the operation of the framework used by these
     26 * test cases.
     27 */
     28
     29/*
     30 * TESTING METHODOLOGY
     31 * -------------------
     32 *
     33 * The methodology used to test an ARM instruction 'test_insn' is to use
     34 * inline assembler like:
     35 *
     36 * test_before: nop
     37 * test_case:	test_insn
     38 * test_after:	nop
     39 *
     40 * When the test case is run a kprobe is placed of each nop. The
     41 * post-handler of the test_before probe is used to modify the saved CPU
     42 * register context to that which we require for the test case. The
     43 * pre-handler of the of the test_after probe saves a copy of the CPU
     44 * register context. In this way we can execute test_insn with a specific
     45 * register context and see the results afterwards.
     46 *
     47 * To actually test the kprobes instruction emulation we perform the above
     48 * step a second time but with an additional kprobe on the test_case
     49 * instruction itself. If the emulation is accurate then the results seen
     50 * by the test_after probe will be identical to the first run which didn't
     51 * have a probe on test_case.
     52 *
     53 * Each test case is run several times with a variety of variations in the
     54 * flags value of stored in CPSR, and for Thumb code, different ITState.
     55 *
     56 * For instructions which can modify PC, a second test_after probe is used
     57 * like this:
     58 *
     59 * test_before: nop
     60 * test_case:	test_insn
     61 * test_after:	nop
     62 *		b test_done
     63 * test_after2: nop
     64 * test_done:
     65 *
     66 * The test case is constructed such that test_insn branches to
     67 * test_after2, or, if testing a conditional instruction, it may just
     68 * continue to test_after. The probes inserted at both locations let us
     69 * determine which happened. A similar approach is used for testing
     70 * backwards branches...
     71 *
     72 *		b test_before
     73 *		b test_done  @ helps to cope with off by 1 branches
     74 * test_after2: nop
     75 *		b test_done
     76 * test_before: nop
     77 * test_case:	test_insn
     78 * test_after:	nop
     79 * test_done:
     80 *
     81 * The macros used to generate the assembler instructions describe above
     82 * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
     83 * (branch backwards). In these, the local variables numbered 1, 50, 2 and
     84 * 99 represent: test_before, test_case, test_after2 and test_done.
     85 *
     86 * FRAMEWORK
     87 * ---------
     88 *
     89 * Each test case is wrapped between the pair of macros TESTCASE_START and
     90 * TESTCASE_END. As well as performing the inline assembler boilerplate,
     91 * these call out to the kprobes_test_case_start() and
     92 * kprobes_test_case_end() functions which drive the execution of the test
     93 * case. The specific arguments to use for each test case are stored as
     94 * inline data constructed using the various TEST_ARG_* macros. Putting
     95 * this all together, a simple test case may look like:
     96 *
     97 *	TESTCASE_START("Testing mov r0, r7")
     98 *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
     99 *	TEST_ARG_END("")
    100 *	TEST_INSTRUCTION("mov r0, r7")
    101 *	TESTCASE_END
    102 *
    103 * Note, in practice the single convenience macro TEST_R would be used for this
    104 * instead.
    105 *
    106 * The above would expand to assembler looking something like:
    107 *
    108 *	@ TESTCASE_START
    109 *	bl	__kprobes_test_case_start
    110 *	.pushsection .rodata
    111 *	"10:
    112 *	.ascii "mov r0, r7"	@ text title for test case
    113 *	.byte	0
    114 *	.popsection
    115 *	@ start of inline data...
    116 *	.word	10b		@ pointer to title in .rodata section
    117 *
    118 *	@ TEST_ARG_REG
    119 *	.byte	ARG_TYPE_REG
    120 *	.byte	7
    121 *	.short	0
    122 *	.word	0x1234567
    123 *
    124 *	@ TEST_ARG_END
    125 *	.byte	ARG_TYPE_END
    126 *	.byte	TEST_ISA	@ flags, including ISA being tested
    127 *	.short	50f-0f		@ offset of 'test_before'
    128 *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
    129 *	.short	99f-0f		@ offset of 'test_done'
    130 *	@ start of test case code...
    131 *	0:
    132 *	.code	TEST_ISA	@ switch to ISA being tested
    133 *
    134 *	@ TEST_INSTRUCTION
    135 *	50:	nop		@ location for 'test_before' probe
    136 *	1:	mov r0, r7	@ the test case instruction 'test_insn'
    137 *		nop		@ location for 'test_after' probe
    138 *
    139 *	// TESTCASE_END
    140 *	2:
    141 *	99:	bl __kprobes_test_case_end_##TEST_ISA
    142 *	.code	NONMAL_ISA
    143 *
    144 * When the above is execute the following happens...
    145 *
    146 * __kprobes_test_case_start() is an assembler wrapper which sets up space
    147 * for a stack buffer and calls the C function kprobes_test_case_start().
    148 * This C function will do some initial processing of the inline data and
    149 * setup some global state. It then inserts the test_before and test_after
    150 * kprobes and returns a value which causes the assembler wrapper to jump
    151 * to the start of the test case code, (local label '0').
    152 *
    153 * When the test case code executes, the test_before probe will be hit and
    154 * test_before_post_handler will call setup_test_context(). This fills the
    155 * stack buffer and CPU registers with a test pattern and then processes
    156 * the test case arguments. In our example there is one TEST_ARG_REG which
    157 * indicates that R7 should be loaded with the value 0x12345678.
    158 *
    159 * When the test_before probe ends, the test case continues and executes
    160 * the "mov r0, r7" instruction. It then hits the test_after probe and the
    161 * pre-handler for this (test_after_pre_handler) will save a copy of the
    162 * CPU register context. This should now have R0 holding the same value as
    163 * R7.
    164 *
    165 * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
    166 * an assembler wrapper which switches back to the ISA used by the test
    167 * code and calls the C function kprobes_test_case_end().
    168 *
    169 * For each run through the test case, test_case_run_count is incremented
    170 * by one. For even runs, kprobes_test_case_end() saves a copy of the
    171 * register and stack buffer contents from the test case just run. It then
    172 * inserts a kprobe on the test case instruction 'test_insn' and returns a
    173 * value to cause the test case code to be re-run.
    174 *
    175 * For odd numbered runs, kprobes_test_case_end() compares the register and
    176 * stack buffer contents to those that were saved on the previous even
    177 * numbered run (the one without the kprobe on test_insn). These should be
    178 * the same if the kprobe instruction simulation routine is correct.
    179 *
    180 * The pair of test case runs is repeated with different combinations of
    181 * flag values in CPSR and, for Thumb, different ITState. This is
    182 * controlled by test_context_cpsr().
    183 *
    184 * BUILDING TEST CASES
    185 * -------------------
    186 *
    187 *
    188 * As an aid to building test cases, the stack buffer is initialised with
    189 * some special values:
    190 *
    191 *   [SP+13*4]	Contains SP+120. This can be used to test instructions
    192 *		which load a value into SP.
    193 *
    194 *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
    195 *		this holds the target address of the branch, 'test_after2'.
    196 *		This can be used to test instructions which load a PC value
    197 *		from memory.
    198 */
    199
    200#include <linux/kernel.h>
    201#include <linux/module.h>
    202#include <linux/slab.h>
    203#include <linux/sched/clock.h>
    204#include <linux/kprobes.h>
    205#include <linux/errno.h>
    206#include <linux/stddef.h>
    207#include <linux/bug.h>
    208#include <asm/opcodes.h>
    209
    210#include "core.h"
    211#include "test-core.h"
    212#include "../decode-arm.h"
    213#include "../decode-thumb.h"
    214
    215
    216#define BENCHMARKING	1
    217
    218
    219/*
    220 * Test basic API
    221 */
    222
    223static bool test_regs_ok;
    224static int test_func_instance;
    225static int pre_handler_called;
    226static int post_handler_called;
    227static int kretprobe_handler_called;
    228static int tests_failed;
    229
    230#define FUNC_ARG1 0x12345678
    231#define FUNC_ARG2 0xabcdef
    232
    233
    234#ifndef CONFIG_THUMB2_KERNEL
    235
    236#define RET(reg)	"mov	pc, "#reg
    237
    238long arm_func(long r0, long r1);
    239
    240static void __used __naked __arm_kprobes_test_func(void)
    241{
    242	__asm__ __volatile__ (
    243		".arm					\n\t"
    244		".type arm_func, %%function		\n\t"
    245		"arm_func:				\n\t"
    246		"adds	r0, r0, r1			\n\t"
    247		"mov	pc, lr				\n\t"
    248		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
    249		: : : "r0", "r1", "cc"
    250	);
    251}
    252
    253#else /* CONFIG_THUMB2_KERNEL */
    254
    255#define RET(reg)	"bx	"#reg
    256
    257long thumb16_func(long r0, long r1);
    258long thumb32even_func(long r0, long r1);
    259long thumb32odd_func(long r0, long r1);
    260
    261static void __used __naked __thumb_kprobes_test_funcs(void)
    262{
    263	__asm__ __volatile__ (
    264		".type thumb16_func, %%function		\n\t"
    265		"thumb16_func:				\n\t"
    266		"adds.n	r0, r0, r1			\n\t"
    267		"bx	lr				\n\t"
    268
    269		".align					\n\t"
    270		".type thumb32even_func, %%function	\n\t"
    271		"thumb32even_func:			\n\t"
    272		"adds.w	r0, r0, r1			\n\t"
    273		"bx	lr				\n\t"
    274
    275		".align					\n\t"
    276		"nop.n					\n\t"
    277		".type thumb32odd_func, %%function	\n\t"
    278		"thumb32odd_func:			\n\t"
    279		"adds.w	r0, r0, r1			\n\t"
    280		"bx	lr				\n\t"
    281
    282		: : : "r0", "r1", "cc"
    283	);
    284}
    285
    286#endif /* CONFIG_THUMB2_KERNEL */
    287
    288
    289static int call_test_func(long (*func)(long, long), bool check_test_regs)
    290{
    291	long ret;
    292
    293	++test_func_instance;
    294	test_regs_ok = false;
    295
    296	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
    297	if (ret != FUNC_ARG1 + FUNC_ARG2) {
    298		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
    299		return false;
    300	}
    301
    302	if (check_test_regs && !test_regs_ok) {
    303		pr_err("FAIL: test regs not OK\n");
    304		return false;
    305	}
    306
    307	return true;
    308}
    309
    310static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
    311{
    312	pre_handler_called = test_func_instance;
    313	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
    314		test_regs_ok = true;
    315	return 0;
    316}
    317
    318static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
    319				unsigned long flags)
    320{
    321	post_handler_called = test_func_instance;
    322	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
    323		test_regs_ok = false;
    324}
    325
    326static struct kprobe the_kprobe = {
    327	.addr		= 0,
    328	.pre_handler	= pre_handler,
    329	.post_handler	= post_handler
    330};
    331
    332static int test_kprobe(long (*func)(long, long))
    333{
    334	int ret;
    335
    336	the_kprobe.addr = (kprobe_opcode_t *)func;
    337	ret = register_kprobe(&the_kprobe);
    338	if (ret < 0) {
    339		pr_err("FAIL: register_kprobe failed with %d\n", ret);
    340		return ret;
    341	}
    342
    343	ret = call_test_func(func, true);
    344
    345	unregister_kprobe(&the_kprobe);
    346	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
    347
    348	if (!ret)
    349		return -EINVAL;
    350	if (pre_handler_called != test_func_instance) {
    351		pr_err("FAIL: kprobe pre_handler not called\n");
    352		return -EINVAL;
    353	}
    354	if (post_handler_called != test_func_instance) {
    355		pr_err("FAIL: kprobe post_handler not called\n");
    356		return -EINVAL;
    357	}
    358	if (!call_test_func(func, false))
    359		return -EINVAL;
    360	if (pre_handler_called == test_func_instance ||
    361				post_handler_called == test_func_instance) {
    362		pr_err("FAIL: probe called after unregistering\n");
    363		return -EINVAL;
    364	}
    365
    366	return 0;
    367}
    368
    369static int __kprobes
    370kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
    371{
    372	kretprobe_handler_called = test_func_instance;
    373	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
    374		test_regs_ok = true;
    375	return 0;
    376}
    377
    378static struct kretprobe the_kretprobe = {
    379	.handler	= kretprobe_handler,
    380};
    381
    382static int test_kretprobe(long (*func)(long, long))
    383{
    384	int ret;
    385
    386	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
    387	ret = register_kretprobe(&the_kretprobe);
    388	if (ret < 0) {
    389		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
    390		return ret;
    391	}
    392
    393	ret = call_test_func(func, true);
    394
    395	unregister_kretprobe(&the_kretprobe);
    396	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
    397
    398	if (!ret)
    399		return -EINVAL;
    400	if (kretprobe_handler_called != test_func_instance) {
    401		pr_err("FAIL: kretprobe handler not called\n");
    402		return -EINVAL;
    403	}
    404	if (!call_test_func(func, false))
    405		return -EINVAL;
    406	if (kretprobe_handler_called == test_func_instance) {
    407		pr_err("FAIL: kretprobe called after unregistering\n");
    408		return -EINVAL;
    409	}
    410
    411	return 0;
    412}
    413
    414static int run_api_tests(long (*func)(long, long))
    415{
    416	int ret;
    417
    418	pr_info("    kprobe\n");
    419	ret = test_kprobe(func);
    420	if (ret < 0)
    421		return ret;
    422
    423	pr_info("    kretprobe\n");
    424	ret = test_kretprobe(func);
    425	if (ret < 0)
    426		return ret;
    427
    428	return 0;
    429}
    430
    431
    432/*
    433 * Benchmarking
    434 */
    435
    436#if BENCHMARKING
    437
    438static void __naked benchmark_nop(void)
    439{
    440	__asm__ __volatile__ (
    441		"nop		\n\t"
    442		RET(lr)"	\n\t"
    443	);
    444}
    445
    446#ifdef CONFIG_THUMB2_KERNEL
    447#define wide ".w"
    448#else
    449#define wide
    450#endif
    451
    452static void __naked benchmark_pushpop1(void)
    453{
    454	__asm__ __volatile__ (
    455		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
    456		"ldmia"wide"	sp!, {r3-r11,pc}"
    457	);
    458}
    459
    460static void __naked benchmark_pushpop2(void)
    461{
    462	__asm__ __volatile__ (
    463		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
    464		"ldmia"wide"	sp!, {r0-r8,pc}"
    465	);
    466}
    467
    468static void __naked benchmark_pushpop3(void)
    469{
    470	__asm__ __volatile__ (
    471		"stmdb"wide"	sp!, {r4,lr}  \n\t"
    472		"ldmia"wide"	sp!, {r4,pc}"
    473	);
    474}
    475
    476static void __naked benchmark_pushpop4(void)
    477{
    478	__asm__ __volatile__ (
    479		"stmdb"wide"	sp!, {r0,lr}  \n\t"
    480		"ldmia"wide"	sp!, {r0,pc}"
    481	);
    482}
    483
    484
    485#ifdef CONFIG_THUMB2_KERNEL
    486
    487static void __naked benchmark_pushpop_thumb(void)
    488{
    489	__asm__ __volatile__ (
    490		"push.n	{r0-r7,lr}  \n\t"
    491		"pop.n	{r0-r7,pc}"
    492	);
    493}
    494
    495#endif
    496
    497static int __kprobes
    498benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
    499{
    500	return 0;
    501}
    502
    503static int benchmark(void(*fn)(void))
    504{
    505	unsigned n, i, t, t0;
    506
    507	for (n = 1000; ; n *= 2) {
    508		t0 = sched_clock();
    509		for (i = n; i > 0; --i)
    510			fn();
    511		t = sched_clock() - t0;
    512		if (t >= 250000000)
    513			break; /* Stop once we took more than 0.25 seconds */
    514	}
    515	return t / n; /* Time for one iteration in nanoseconds */
    516};
    517
    518static int kprobe_benchmark(void(*fn)(void), unsigned offset)
    519{
    520	struct kprobe k = {
    521		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
    522		.pre_handler	= benchmark_pre_handler,
    523	};
    524
    525	int ret = register_kprobe(&k);
    526	if (ret < 0) {
    527		pr_err("FAIL: register_kprobe failed with %d\n", ret);
    528		return ret;
    529	}
    530
    531	ret = benchmark(fn);
    532
    533	unregister_kprobe(&k);
    534	return ret;
    535};
    536
    537struct benchmarks {
    538	void		(*fn)(void);
    539	unsigned	offset;
    540	const char	*title;
    541};
    542
    543static int run_benchmarks(void)
    544{
    545	int ret;
    546	struct benchmarks list[] = {
    547		{&benchmark_nop, 0, "nop"},
    548		/*
    549		 * benchmark_pushpop{1,3} will have the optimised
    550		 * instruction emulation, whilst benchmark_pushpop{2,4} will
    551		 * be the equivalent unoptimised instructions.
    552		 */
    553		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
    554		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
    555		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
    556		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
    557		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
    558		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
    559		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
    560		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
    561#ifdef CONFIG_THUMB2_KERNEL
    562		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
    563		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
    564#endif
    565		{0}
    566	};
    567
    568	struct benchmarks *b;
    569	for (b = list; b->fn; ++b) {
    570		ret = kprobe_benchmark(b->fn, b->offset);
    571		if (ret < 0)
    572			return ret;
    573		pr_info("    %dns for kprobe %s\n", ret, b->title);
    574	}
    575
    576	pr_info("\n");
    577	return 0;
    578}
    579
    580#endif /* BENCHMARKING */
    581
    582
    583/*
    584 * Decoding table self-consistency tests
    585 */
    586
    587static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
    588	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
    589	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
    590	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
    591	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
    592	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
    593	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
    594};
    595
    596static int table_iter(const union decode_item *table,
    597			int (*fn)(const struct decode_header *, void *),
    598			void *args)
    599{
    600	const struct decode_header *h = (struct decode_header *)table;
    601	int result;
    602
    603	for (;;) {
    604		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
    605
    606		if (type == DECODE_TYPE_END)
    607			return 0;
    608
    609		result = fn(h, args);
    610		if (result)
    611			return result;
    612
    613		h = (struct decode_header *)
    614			((uintptr_t)h + decode_struct_sizes[type]);
    615
    616	}
    617}
    618
    619static int table_test_fail(const struct decode_header *h, const char* message)
    620{
    621
    622	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
    623					message, h->mask.bits, h->value.bits);
    624	return -EINVAL;
    625}
    626
    627struct table_test_args {
    628	const union decode_item *root_table;
    629	u32			parent_mask;
    630	u32			parent_value;
    631};
    632
    633static int table_test_fn(const struct decode_header *h, void *args)
    634{
    635	struct table_test_args *a = (struct table_test_args *)args;
    636	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
    637
    638	if (h->value.bits & ~h->mask.bits)
    639		return table_test_fail(h, "Match value has bits not in mask");
    640
    641	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
    642		return table_test_fail(h, "Mask has bits not in parent mask");
    643
    644	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
    645		return table_test_fail(h, "Value is inconsistent with parent");
    646
    647	if (type == DECODE_TYPE_TABLE) {
    648		struct decode_table *d = (struct decode_table *)h;
    649		struct table_test_args args2 = *a;
    650		args2.parent_mask = h->mask.bits;
    651		args2.parent_value = h->value.bits;
    652		return table_iter(d->table.table, table_test_fn, &args2);
    653	}
    654
    655	return 0;
    656}
    657
    658static int table_test(const union decode_item *table)
    659{
    660	struct table_test_args args = {
    661		.root_table	= table,
    662		.parent_mask	= 0,
    663		.parent_value	= 0
    664	};
    665	return table_iter(args.root_table, table_test_fn, &args);
    666}
    667
    668
    669/*
    670 * Decoding table test coverage analysis
    671 *
    672 * coverage_start() builds a coverage_table which contains a list of
    673 * coverage_entry's to match each entry in the specified kprobes instruction
    674 * decoding table.
    675 *
    676 * When test cases are run, coverage_add() is called to process each case.
    677 * This looks up the corresponding entry in the coverage_table and sets it as
    678 * being matched, as well as clearing the regs flag appropriate for the test.
    679 *
    680 * After all test cases have been run, coverage_end() is called to check that
    681 * all entries in coverage_table have been matched and that all regs flags are
    682 * cleared. I.e. that all possible combinations of instructions described by
    683 * the kprobes decoding tables have had a test case executed for them.
    684 */
    685
    686bool coverage_fail;
    687
    688#define MAX_COVERAGE_ENTRIES 256
    689
    690struct coverage_entry {
    691	const struct decode_header	*header;
    692	unsigned			regs;
    693	unsigned			nesting;
    694	char				matched;
    695};
    696
    697struct coverage_table {
    698	struct coverage_entry	*base;
    699	unsigned		num_entries;
    700	unsigned		nesting;
    701};
    702
    703struct coverage_table coverage;
    704
    705#define COVERAGE_ANY_REG	(1<<0)
    706#define COVERAGE_SP		(1<<1)
    707#define COVERAGE_PC		(1<<2)
    708#define COVERAGE_PCWB		(1<<3)
    709
    710static const char coverage_register_lookup[16] = {
    711	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
    712	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
    713	[REG_TYPE_SP]		= COVERAGE_SP,
    714	[REG_TYPE_PC]		= COVERAGE_PC,
    715	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
    716	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
    717	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
    718	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
    719	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
    720	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
    721};
    722
    723unsigned coverage_start_registers(const struct decode_header *h)
    724{
    725	unsigned regs = 0;
    726	int i;
    727	for (i = 0; i < 20; i += 4) {
    728		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
    729		regs |= coverage_register_lookup[r] << i;
    730	}
    731	return regs;
    732}
    733
    734static int coverage_start_fn(const struct decode_header *h, void *args)
    735{
    736	struct coverage_table *coverage = (struct coverage_table *)args;
    737	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
    738	struct coverage_entry *entry = coverage->base + coverage->num_entries;
    739
    740	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
    741		pr_err("FAIL: Out of space for test coverage data");
    742		return -ENOMEM;
    743	}
    744
    745	++coverage->num_entries;
    746
    747	entry->header = h;
    748	entry->regs = coverage_start_registers(h);
    749	entry->nesting = coverage->nesting;
    750	entry->matched = false;
    751
    752	if (type == DECODE_TYPE_TABLE) {
    753		struct decode_table *d = (struct decode_table *)h;
    754		int ret;
    755		++coverage->nesting;
    756		ret = table_iter(d->table.table, coverage_start_fn, coverage);
    757		--coverage->nesting;
    758		return ret;
    759	}
    760
    761	return 0;
    762}
    763
    764static int coverage_start(const union decode_item *table)
    765{
    766	coverage.base = kmalloc_array(MAX_COVERAGE_ENTRIES,
    767				      sizeof(struct coverage_entry),
    768				      GFP_KERNEL);
    769	coverage.num_entries = 0;
    770	coverage.nesting = 0;
    771	return table_iter(table, coverage_start_fn, &coverage);
    772}
    773
    774static void
    775coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
    776{
    777	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
    778	int i;
    779	for (i = 0; i < 20; i += 4) {
    780		enum decode_reg_type reg_type = (regs >> i) & 0xf;
    781		int reg = (insn >> i) & 0xf;
    782		int flag;
    783
    784		if (!reg_type)
    785			continue;
    786
    787		if (reg == 13)
    788			flag = COVERAGE_SP;
    789		else if (reg == 15)
    790			flag = COVERAGE_PC;
    791		else
    792			flag = COVERAGE_ANY_REG;
    793		entry->regs &= ~(flag << i);
    794
    795		switch (reg_type) {
    796
    797		case REG_TYPE_NONE:
    798		case REG_TYPE_ANY:
    799		case REG_TYPE_SAMEAS16:
    800			break;
    801
    802		case REG_TYPE_SP:
    803			if (reg != 13)
    804				return;
    805			break;
    806
    807		case REG_TYPE_PC:
    808			if (reg != 15)
    809				return;
    810			break;
    811
    812		case REG_TYPE_NOSP:
    813			if (reg == 13)
    814				return;
    815			break;
    816
    817		case REG_TYPE_NOSPPC:
    818		case REG_TYPE_NOSPPCX:
    819			if (reg == 13 || reg == 15)
    820				return;
    821			break;
    822
    823		case REG_TYPE_NOPCWB:
    824			if (!is_writeback(insn))
    825				break;
    826			if (reg == 15) {
    827				entry->regs &= ~(COVERAGE_PCWB << i);
    828				return;
    829			}
    830			break;
    831
    832		case REG_TYPE_NOPC:
    833		case REG_TYPE_NOPCX:
    834			if (reg == 15)
    835				return;
    836			break;
    837		}
    838
    839	}
    840}
    841
    842static void coverage_add(kprobe_opcode_t insn)
    843{
    844	struct coverage_entry *entry = coverage.base;
    845	struct coverage_entry *end = coverage.base + coverage.num_entries;
    846	bool matched = false;
    847	unsigned nesting = 0;
    848
    849	for (; entry < end; ++entry) {
    850		const struct decode_header *h = entry->header;
    851		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
    852
    853		if (entry->nesting > nesting)
    854			continue; /* Skip sub-table we didn't match */
    855
    856		if (entry->nesting < nesting)
    857			break; /* End of sub-table we were scanning */
    858
    859		if (!matched) {
    860			if ((insn & h->mask.bits) != h->value.bits)
    861				continue;
    862			entry->matched = true;
    863		}
    864
    865		switch (type) {
    866
    867		case DECODE_TYPE_TABLE:
    868			++nesting;
    869			break;
    870
    871		case DECODE_TYPE_CUSTOM:
    872		case DECODE_TYPE_SIMULATE:
    873		case DECODE_TYPE_EMULATE:
    874			coverage_add_registers(entry, insn);
    875			return;
    876
    877		case DECODE_TYPE_OR:
    878			matched = true;
    879			break;
    880
    881		case DECODE_TYPE_REJECT:
    882		default:
    883			return;
    884		}
    885
    886	}
    887}
    888
    889static void coverage_end(void)
    890{
    891	struct coverage_entry *entry = coverage.base;
    892	struct coverage_entry *end = coverage.base + coverage.num_entries;
    893
    894	for (; entry < end; ++entry) {
    895		u32 mask = entry->header->mask.bits;
    896		u32 value = entry->header->value.bits;
    897
    898		if (entry->regs) {
    899			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
    900				mask, value, entry->regs);
    901			coverage_fail = true;
    902		}
    903		if (!entry->matched) {
    904			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
    905				mask, value);
    906			coverage_fail = true;
    907		}
    908	}
    909
    910	kfree(coverage.base);
    911}
    912
    913
    914/*
    915 * Framework for instruction set test cases
    916 */
    917
    918void __naked __kprobes_test_case_start(void)
    919{
    920	__asm__ __volatile__ (
    921		"mov	r2, sp					\n\t"
    922		"bic	r3, r2, #7				\n\t"
    923		"mov	sp, r3					\n\t"
    924		"stmdb	sp!, {r2-r11}				\n\t"
    925		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
    926		"bic	r0, lr, #1  @ r0 = inline data		\n\t"
    927		"mov	r1, sp					\n\t"
    928		"bl	kprobes_test_case_start			\n\t"
    929		RET(r0)"					\n\t"
    930	);
    931}
    932
    933#ifndef CONFIG_THUMB2_KERNEL
    934
    935void __naked __kprobes_test_case_end_32(void)
    936{
    937	__asm__ __volatile__ (
    938		"mov	r4, lr					\n\t"
    939		"bl	kprobes_test_case_end			\n\t"
    940		"cmp	r0, #0					\n\t"
    941		"movne	pc, r0					\n\t"
    942		"mov	r0, r4					\n\t"
    943		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
    944		"ldmia	sp!, {r2-r11}				\n\t"
    945		"mov	sp, r2					\n\t"
    946		"mov	pc, r0					\n\t"
    947	);
    948}
    949
    950#else /* CONFIG_THUMB2_KERNEL */
    951
    952void __naked __kprobes_test_case_end_16(void)
    953{
    954	__asm__ __volatile__ (
    955		"mov	r4, lr					\n\t"
    956		"bl	kprobes_test_case_end			\n\t"
    957		"cmp	r0, #0					\n\t"
    958		"bxne	r0					\n\t"
    959		"mov	r0, r4					\n\t"
    960		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
    961		"ldmia	sp!, {r2-r11}				\n\t"
    962		"mov	sp, r2					\n\t"
    963		"bx	r0					\n\t"
    964	);
    965}
    966
    967void __naked __kprobes_test_case_end_32(void)
    968{
    969	__asm__ __volatile__ (
    970		".arm						\n\t"
    971		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
    972		"ldr	pc, 1f					\n\t"
    973		"1:						\n\t"
    974		".word	__kprobes_test_case_end_16		\n\t"
    975	);
    976}
    977
    978#endif
    979
    980
    981int kprobe_test_flags;
    982int kprobe_test_cc_position;
    983
    984static int test_try_count;
    985static int test_pass_count;
    986static int test_fail_count;
    987
    988static struct pt_regs initial_regs;
    989static struct pt_regs expected_regs;
    990static struct pt_regs result_regs;
    991
    992static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
    993
    994static const char *current_title;
    995static struct test_arg *current_args;
    996static u32 *current_stack;
    997static uintptr_t current_branch_target;
    998
    999static uintptr_t current_code_start;
   1000static kprobe_opcode_t current_instruction;
   1001
   1002
   1003#define TEST_CASE_PASSED -1
   1004#define TEST_CASE_FAILED -2
   1005
   1006static int test_case_run_count;
   1007static bool test_case_is_thumb;
   1008static int test_instance;
   1009
   1010static unsigned long test_check_cc(int cc, unsigned long cpsr)
   1011{
   1012	int ret = arm_check_condition(cc << 28, cpsr);
   1013
   1014	return (ret != ARM_OPCODE_CONDTEST_FAIL);
   1015}
   1016
   1017static int is_last_scenario;
   1018static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
   1019static int memory_needs_checking;
   1020
   1021static unsigned long test_context_cpsr(int scenario)
   1022{
   1023	unsigned long cpsr;
   1024
   1025	probe_should_run = 1;
   1026
   1027	/* Default case is that we cycle through 16 combinations of flags */
   1028	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
   1029	cpsr |= (scenario & 0xf) << 16; /* GE flags */
   1030	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
   1031
   1032	if (!test_case_is_thumb) {
   1033		/* Testing ARM code */
   1034		int cc = current_instruction >> 28;
   1035
   1036		probe_should_run = test_check_cc(cc, cpsr) != 0;
   1037		if (scenario == 15)
   1038			is_last_scenario = true;
   1039
   1040	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
   1041		/* Testing Thumb code without setting ITSTATE */
   1042		if (kprobe_test_cc_position) {
   1043			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
   1044			probe_should_run = test_check_cc(cc, cpsr) != 0;
   1045		}
   1046
   1047		if (scenario == 15)
   1048			is_last_scenario = true;
   1049
   1050	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
   1051		/* Testing Thumb code with all combinations of ITSTATE */
   1052		unsigned x = (scenario >> 4);
   1053		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
   1054		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
   1055
   1056		if (mask > 0x1f) {
   1057			/* Finish by testing state from instruction 'itt al' */
   1058			cond_base = 7;
   1059			mask = 0x4;
   1060			if ((scenario & 0xf) == 0xf)
   1061				is_last_scenario = true;
   1062		}
   1063
   1064		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
   1065		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
   1066		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
   1067		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
   1068		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
   1069		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
   1070
   1071		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
   1072
   1073	} else {
   1074		/* Testing Thumb code with several combinations of ITSTATE */
   1075		switch (scenario) {
   1076		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
   1077			cpsr = 0x00000800;
   1078			probe_should_run = 0;
   1079			break;
   1080		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
   1081			cpsr = 0xf0007800;
   1082			probe_should_run = 0;
   1083			break;
   1084		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
   1085			cpsr = 0x00009800;
   1086			break;
   1087		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
   1088			cpsr = 0xf0002800;
   1089			is_last_scenario = true;
   1090			break;
   1091		}
   1092	}
   1093
   1094	return cpsr;
   1095}
   1096
   1097static void setup_test_context(struct pt_regs *regs)
   1098{
   1099	int scenario = test_case_run_count>>1;
   1100	unsigned long val;
   1101	struct test_arg *args;
   1102	int i;
   1103
   1104	is_last_scenario = false;
   1105	memory_needs_checking = false;
   1106
   1107	/* Initialise test memory on stack */
   1108	val = (scenario & 1) ? VALM : ~VALM;
   1109	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
   1110		current_stack[i] = val + (i << 8);
   1111	/* Put target of branch on stack for tests which load PC from memory */
   1112	if (current_branch_target)
   1113		current_stack[15] = current_branch_target;
   1114	/* Put a value for SP on stack for tests which load SP from memory */
   1115	current_stack[13] = (u32)current_stack + 120;
   1116
   1117	/* Initialise register values to their default state */
   1118	val = (scenario & 2) ? VALR : ~VALR;
   1119	for (i = 0; i < 13; ++i)
   1120		regs->uregs[i] = val ^ (i << 8);
   1121	regs->ARM_lr = val ^ (14 << 8);
   1122	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
   1123	regs->ARM_cpsr |= test_context_cpsr(scenario);
   1124
   1125	/* Perform testcase specific register setup  */
   1126	args = current_args;
   1127	for (; args[0].type != ARG_TYPE_END; ++args)
   1128		switch (args[0].type) {
   1129		case ARG_TYPE_REG: {
   1130			struct test_arg_regptr *arg =
   1131				(struct test_arg_regptr *)args;
   1132			regs->uregs[arg->reg] = arg->val;
   1133			break;
   1134		}
   1135		case ARG_TYPE_PTR: {
   1136			struct test_arg_regptr *arg =
   1137				(struct test_arg_regptr *)args;
   1138			regs->uregs[arg->reg] =
   1139				(unsigned long)current_stack + arg->val;
   1140			memory_needs_checking = true;
   1141			/*
   1142			 * Test memory at an address below SP is in danger of
   1143			 * being altered by an interrupt occurring and pushing
   1144			 * data onto the stack. Disable interrupts to stop this.
   1145			 */
   1146			if (arg->reg == 13)
   1147				regs->ARM_cpsr |= PSR_I_BIT;
   1148			break;
   1149		}
   1150		case ARG_TYPE_MEM: {
   1151			struct test_arg_mem *arg = (struct test_arg_mem *)args;
   1152			current_stack[arg->index] = arg->val;
   1153			break;
   1154		}
   1155		default:
   1156			break;
   1157		}
   1158}
   1159
   1160struct test_probe {
   1161	struct kprobe	kprobe;
   1162	bool		registered;
   1163	int		hit;
   1164};
   1165
   1166static void unregister_test_probe(struct test_probe *probe)
   1167{
   1168	if (probe->registered) {
   1169		unregister_kprobe(&probe->kprobe);
   1170		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
   1171	}
   1172	probe->registered = false;
   1173}
   1174
   1175static int register_test_probe(struct test_probe *probe)
   1176{
   1177	int ret;
   1178
   1179	if (probe->registered)
   1180		BUG();
   1181
   1182	ret = register_kprobe(&probe->kprobe);
   1183	if (ret >= 0) {
   1184		probe->registered = true;
   1185		probe->hit = -1;
   1186	}
   1187	return ret;
   1188}
   1189
   1190static int __kprobes
   1191test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
   1192{
   1193	container_of(p, struct test_probe, kprobe)->hit = test_instance;
   1194	return 0;
   1195}
   1196
   1197static void __kprobes
   1198test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
   1199							unsigned long flags)
   1200{
   1201	setup_test_context(regs);
   1202	initial_regs = *regs;
   1203	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
   1204}
   1205
   1206static int __kprobes
   1207test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
   1208{
   1209	container_of(p, struct test_probe, kprobe)->hit = test_instance;
   1210	return 0;
   1211}
   1212
   1213static int __kprobes
   1214test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
   1215{
   1216	struct test_arg *args;
   1217
   1218	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
   1219		return 0; /* Already run for this test instance */
   1220
   1221	result_regs = *regs;
   1222
   1223	/* Mask out results which are indeterminate */
   1224	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
   1225	for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
   1226		if (args[0].type == ARG_TYPE_REG_MASKED) {
   1227			struct test_arg_regptr *arg =
   1228				(struct test_arg_regptr *)args;
   1229			result_regs.uregs[arg->reg] &= arg->val;
   1230		}
   1231
   1232	/* Undo any changes done to SP by the test case */
   1233	regs->ARM_sp = (unsigned long)current_stack;
   1234	/* Enable interrupts in case setup_test_context disabled them */
   1235	regs->ARM_cpsr &= ~PSR_I_BIT;
   1236
   1237	container_of(p, struct test_probe, kprobe)->hit = test_instance;
   1238	return 0;
   1239}
   1240
   1241static struct test_probe test_before_probe = {
   1242	.kprobe.pre_handler	= test_before_pre_handler,
   1243	.kprobe.post_handler	= test_before_post_handler,
   1244};
   1245
   1246static struct test_probe test_case_probe = {
   1247	.kprobe.pre_handler	= test_case_pre_handler,
   1248};
   1249
   1250static struct test_probe test_after_probe = {
   1251	.kprobe.pre_handler	= test_after_pre_handler,
   1252};
   1253
   1254static struct test_probe test_after2_probe = {
   1255	.kprobe.pre_handler	= test_after_pre_handler,
   1256};
   1257
   1258static void test_case_cleanup(void)
   1259{
   1260	unregister_test_probe(&test_before_probe);
   1261	unregister_test_probe(&test_case_probe);
   1262	unregister_test_probe(&test_after_probe);
   1263	unregister_test_probe(&test_after2_probe);
   1264}
   1265
   1266static void print_registers(struct pt_regs *regs)
   1267{
   1268	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
   1269		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
   1270	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
   1271		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
   1272	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
   1273		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
   1274	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
   1275		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
   1276	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
   1277}
   1278
   1279static void print_memory(u32 *mem, size_t size)
   1280{
   1281	int i;
   1282	for (i = 0; i < size / sizeof(u32); i += 4)
   1283		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
   1284						mem[i+2], mem[i+3]);
   1285}
   1286
   1287static size_t expected_memory_size(u32 *sp)
   1288{
   1289	size_t size = sizeof(expected_memory);
   1290	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
   1291	if (offset > 0)
   1292		size -= offset;
   1293	return size;
   1294}
   1295
   1296static void test_case_failed(const char *message)
   1297{
   1298	test_case_cleanup();
   1299
   1300	pr_err("FAIL: %s\n", message);
   1301	pr_err("FAIL: Test %s\n", current_title);
   1302	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
   1303}
   1304
   1305static unsigned long next_instruction(unsigned long pc)
   1306{
   1307#ifdef CONFIG_THUMB2_KERNEL
   1308	if ((pc & 1) &&
   1309	    !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
   1310		return pc + 2;
   1311	else
   1312#endif
   1313	return pc + 4;
   1314}
   1315
   1316static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
   1317{
   1318	struct test_arg *args;
   1319	struct test_arg_end *end_arg;
   1320	unsigned long test_code;
   1321
   1322	current_title = *title++;
   1323	args = (struct test_arg *)title;
   1324	current_args = args;
   1325	current_stack = stack;
   1326
   1327	++test_try_count;
   1328
   1329	while (args->type != ARG_TYPE_END)
   1330		++args;
   1331	end_arg = (struct test_arg_end *)args;
   1332
   1333	test_code = (unsigned long)(args + 1); /* Code starts after args */
   1334
   1335	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
   1336	if (test_case_is_thumb)
   1337		test_code |= 1;
   1338
   1339	current_code_start = test_code;
   1340
   1341	current_branch_target = 0;
   1342	if (end_arg->branch_offset != end_arg->end_offset)
   1343		current_branch_target = test_code + end_arg->branch_offset;
   1344
   1345	test_code += end_arg->code_offset;
   1346	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
   1347
   1348	test_code = next_instruction(test_code);
   1349	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
   1350
   1351	if (test_case_is_thumb) {
   1352		u16 *p = (u16 *)(test_code & ~1);
   1353		current_instruction = __mem_to_opcode_thumb16(p[0]);
   1354		if (is_wide_instruction(current_instruction)) {
   1355			u16 instr2 = __mem_to_opcode_thumb16(p[1]);
   1356			current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
   1357		}
   1358	} else {
   1359		current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
   1360	}
   1361
   1362	if (current_title[0] == '.')
   1363		verbose("%s\n", current_title);
   1364	else
   1365		verbose("%s\t@ %0*x\n", current_title,
   1366					test_case_is_thumb ? 4 : 8,
   1367					current_instruction);
   1368
   1369	test_code = next_instruction(test_code);
   1370	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
   1371
   1372	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
   1373		if (!test_case_is_thumb ||
   1374			is_wide_instruction(current_instruction)) {
   1375				test_case_failed("expected 16-bit instruction");
   1376				goto fail;
   1377		}
   1378	} else {
   1379		if (test_case_is_thumb &&
   1380			!is_wide_instruction(current_instruction)) {
   1381				test_case_failed("expected 32-bit instruction");
   1382				goto fail;
   1383		}
   1384	}
   1385
   1386	coverage_add(current_instruction);
   1387
   1388	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
   1389		if (register_test_probe(&test_case_probe) < 0)
   1390			goto pass;
   1391		test_case_failed("registered probe for unsupported instruction");
   1392		goto fail;
   1393	}
   1394
   1395	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
   1396		if (register_test_probe(&test_case_probe) >= 0)
   1397			goto pass;
   1398		test_case_failed("couldn't register probe for supported instruction");
   1399		goto fail;
   1400	}
   1401
   1402	if (register_test_probe(&test_before_probe) < 0) {
   1403		test_case_failed("register test_before_probe failed");
   1404		goto fail;
   1405	}
   1406	if (register_test_probe(&test_after_probe) < 0) {
   1407		test_case_failed("register test_after_probe failed");
   1408		goto fail;
   1409	}
   1410	if (current_branch_target) {
   1411		test_after2_probe.kprobe.addr =
   1412				(kprobe_opcode_t *)current_branch_target;
   1413		if (register_test_probe(&test_after2_probe) < 0) {
   1414			test_case_failed("register test_after2_probe failed");
   1415			goto fail;
   1416		}
   1417	}
   1418
   1419	/* Start first run of test case */
   1420	test_case_run_count = 0;
   1421	++test_instance;
   1422	return current_code_start;
   1423pass:
   1424	test_case_run_count = TEST_CASE_PASSED;
   1425	return (uintptr_t)test_after_probe.kprobe.addr;
   1426fail:
   1427	test_case_run_count = TEST_CASE_FAILED;
   1428	return (uintptr_t)test_after_probe.kprobe.addr;
   1429}
   1430
   1431static bool check_test_results(void)
   1432{
   1433	size_t mem_size = 0;
   1434	u32 *mem = 0;
   1435
   1436	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
   1437		test_case_failed("registers differ");
   1438		goto fail;
   1439	}
   1440
   1441	if (memory_needs_checking) {
   1442		mem = (u32 *)result_regs.ARM_sp;
   1443		mem_size = expected_memory_size(mem);
   1444		if (memcmp(expected_memory, mem, mem_size)) {
   1445			test_case_failed("test memory differs");
   1446			goto fail;
   1447		}
   1448	}
   1449
   1450	return true;
   1451
   1452fail:
   1453	pr_err("initial_regs:\n");
   1454	print_registers(&initial_regs);
   1455	pr_err("expected_regs:\n");
   1456	print_registers(&expected_regs);
   1457	pr_err("result_regs:\n");
   1458	print_registers(&result_regs);
   1459
   1460	if (mem) {
   1461		pr_err("expected_memory:\n");
   1462		print_memory(expected_memory, mem_size);
   1463		pr_err("result_memory:\n");
   1464		print_memory(mem, mem_size);
   1465	}
   1466
   1467	return false;
   1468}
   1469
   1470static uintptr_t __used kprobes_test_case_end(void)
   1471{
   1472	if (test_case_run_count < 0) {
   1473		if (test_case_run_count == TEST_CASE_PASSED)
   1474			/* kprobes_test_case_start did all the needed testing */
   1475			goto pass;
   1476		else
   1477			/* kprobes_test_case_start failed */
   1478			goto fail;
   1479	}
   1480
   1481	if (test_before_probe.hit != test_instance) {
   1482		test_case_failed("test_before_handler not run");
   1483		goto fail;
   1484	}
   1485
   1486	if (test_after_probe.hit != test_instance &&
   1487				test_after2_probe.hit != test_instance) {
   1488		test_case_failed("test_after_handler not run");
   1489		goto fail;
   1490	}
   1491
   1492	/*
   1493	 * Even numbered test runs ran without a probe on the test case so
   1494	 * we can gather reference results. The subsequent odd numbered run
   1495	 * will have the probe inserted.
   1496	*/
   1497	if ((test_case_run_count & 1) == 0) {
   1498		/* Save results from run without probe */
   1499		u32 *mem = (u32 *)result_regs.ARM_sp;
   1500		expected_regs = result_regs;
   1501		memcpy(expected_memory, mem, expected_memory_size(mem));
   1502
   1503		/* Insert probe onto test case instruction */
   1504		if (register_test_probe(&test_case_probe) < 0) {
   1505			test_case_failed("register test_case_probe failed");
   1506			goto fail;
   1507		}
   1508	} else {
   1509		/* Check probe ran as expected */
   1510		if (probe_should_run == 1) {
   1511			if (test_case_probe.hit != test_instance) {
   1512				test_case_failed("test_case_handler not run");
   1513				goto fail;
   1514			}
   1515		} else if (probe_should_run == 0) {
   1516			if (test_case_probe.hit == test_instance) {
   1517				test_case_failed("test_case_handler ran");
   1518				goto fail;
   1519			}
   1520		}
   1521
   1522		/* Remove probe for any subsequent reference run */
   1523		unregister_test_probe(&test_case_probe);
   1524
   1525		if (!check_test_results())
   1526			goto fail;
   1527
   1528		if (is_last_scenario)
   1529			goto pass;
   1530	}
   1531
   1532	/* Do next test run */
   1533	++test_case_run_count;
   1534	++test_instance;
   1535	return current_code_start;
   1536fail:
   1537	++test_fail_count;
   1538	goto end;
   1539pass:
   1540	++test_pass_count;
   1541end:
   1542	test_case_cleanup();
   1543	return 0;
   1544}
   1545
   1546
   1547/*
   1548 * Top level test functions
   1549 */
   1550
   1551static int run_test_cases(void (*tests)(void), const union decode_item *table)
   1552{
   1553	int ret;
   1554
   1555	pr_info("    Check decoding tables\n");
   1556	ret = table_test(table);
   1557	if (ret)
   1558		return ret;
   1559
   1560	pr_info("    Run test cases\n");
   1561	ret = coverage_start(table);
   1562	if (ret)
   1563		return ret;
   1564
   1565	tests();
   1566
   1567	coverage_end();
   1568	return 0;
   1569}
   1570
   1571
   1572static int __init run_all_tests(void)
   1573{
   1574	int ret = 0;
   1575
   1576	pr_info("Beginning kprobe tests...\n");
   1577
   1578#ifndef CONFIG_THUMB2_KERNEL
   1579
   1580	pr_info("Probe ARM code\n");
   1581	ret = run_api_tests(arm_func);
   1582	if (ret)
   1583		goto out;
   1584
   1585	pr_info("ARM instruction simulation\n");
   1586	ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
   1587	if (ret)
   1588		goto out;
   1589
   1590#else /* CONFIG_THUMB2_KERNEL */
   1591
   1592	pr_info("Probe 16-bit Thumb code\n");
   1593	ret = run_api_tests(thumb16_func);
   1594	if (ret)
   1595		goto out;
   1596
   1597	pr_info("Probe 32-bit Thumb code, even halfword\n");
   1598	ret = run_api_tests(thumb32even_func);
   1599	if (ret)
   1600		goto out;
   1601
   1602	pr_info("Probe 32-bit Thumb code, odd halfword\n");
   1603	ret = run_api_tests(thumb32odd_func);
   1604	if (ret)
   1605		goto out;
   1606
   1607	pr_info("16-bit Thumb instruction simulation\n");
   1608	ret = run_test_cases(kprobe_thumb16_test_cases,
   1609				probes_decode_thumb16_table);
   1610	if (ret)
   1611		goto out;
   1612
   1613	pr_info("32-bit Thumb instruction simulation\n");
   1614	ret = run_test_cases(kprobe_thumb32_test_cases,
   1615				probes_decode_thumb32_table);
   1616	if (ret)
   1617		goto out;
   1618#endif
   1619
   1620	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
   1621		test_try_count, test_pass_count, test_fail_count);
   1622	if (test_fail_count) {
   1623		ret = -EINVAL;
   1624		goto out;
   1625	}
   1626
   1627#if BENCHMARKING
   1628	pr_info("Benchmarks\n");
   1629	ret = run_benchmarks();
   1630	if (ret)
   1631		goto out;
   1632#endif
   1633
   1634#if __LINUX_ARM_ARCH__ >= 7
   1635	/* We are able to run all test cases so coverage should be complete */
   1636	if (coverage_fail) {
   1637		pr_err("FAIL: Test coverage checks failed\n");
   1638		ret = -EINVAL;
   1639		goto out;
   1640	}
   1641#endif
   1642
   1643out:
   1644	if (ret == 0)
   1645		ret = tests_failed;
   1646	if (ret == 0)
   1647		pr_info("Finished kprobe tests OK\n");
   1648	else
   1649		pr_err("kprobe tests failed\n");
   1650
   1651	return ret;
   1652}
   1653
   1654
   1655/*
   1656 * Module setup
   1657 */
   1658
   1659#ifdef MODULE
   1660
   1661static void __exit kprobe_test_exit(void)
   1662{
   1663}
   1664
   1665module_init(run_all_tests)
   1666module_exit(kprobe_test_exit)
   1667MODULE_LICENSE("GPL");
   1668
   1669#else /* !MODULE */
   1670
   1671late_initcall(run_all_tests);
   1672
   1673#endif