cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vfp.h (9523B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 *  linux/arch/arm/vfp/vfp.h
      4 *
      5 *  Copyright (C) 2004 ARM Limited.
      6 *  Written by Deep Blue Solutions Limited.
      7 */
      8
      9static inline u32 vfp_shiftright32jamming(u32 val, unsigned int shift)
     10{
     11	if (shift) {
     12		if (shift < 32)
     13			val = val >> shift | ((val << (32 - shift)) != 0);
     14		else
     15			val = val != 0;
     16	}
     17	return val;
     18}
     19
     20static inline u64 vfp_shiftright64jamming(u64 val, unsigned int shift)
     21{
     22	if (shift) {
     23		if (shift < 64)
     24			val = val >> shift | ((val << (64 - shift)) != 0);
     25		else
     26			val = val != 0;
     27	}
     28	return val;
     29}
     30
     31static inline u32 vfp_hi64to32jamming(u64 val)
     32{
     33	u32 v;
     34
     35	asm(
     36	"cmp	%Q1, #1		@ vfp_hi64to32jamming\n\t"
     37	"movcc	%0, %R1\n\t"
     38	"orrcs	%0, %R1, #1"
     39	: "=r" (v) : "r" (val) : "cc");
     40
     41	return v;
     42}
     43
     44static inline void add128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
     45{
     46	asm(	"adds	%Q0, %Q2, %Q4\n\t"
     47		"adcs	%R0, %R2, %R4\n\t"
     48		"adcs	%Q1, %Q3, %Q5\n\t"
     49		"adc	%R1, %R3, %R5"
     50	    : "=r" (nl), "=r" (nh)
     51	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
     52	    : "cc");
     53	*resh = nh;
     54	*resl = nl;
     55}
     56
     57static inline void sub128(u64 *resh, u64 *resl, u64 nh, u64 nl, u64 mh, u64 ml)
     58{
     59	asm(	"subs	%Q0, %Q2, %Q4\n\t"
     60		"sbcs	%R0, %R2, %R4\n\t"
     61		"sbcs	%Q1, %Q3, %Q5\n\t"
     62		"sbc	%R1, %R3, %R5\n\t"
     63	    : "=r" (nl), "=r" (nh)
     64	    : "0" (nl), "1" (nh), "r" (ml), "r" (mh)
     65	    : "cc");
     66	*resh = nh;
     67	*resl = nl;
     68}
     69
     70static inline void mul64to128(u64 *resh, u64 *resl, u64 n, u64 m)
     71{
     72	u32 nh, nl, mh, ml;
     73	u64 rh, rma, rmb, rl;
     74
     75	nl = n;
     76	ml = m;
     77	rl = (u64)nl * ml;
     78
     79	nh = n >> 32;
     80	rma = (u64)nh * ml;
     81
     82	mh = m >> 32;
     83	rmb = (u64)nl * mh;
     84	rma += rmb;
     85
     86	rh = (u64)nh * mh;
     87	rh += ((u64)(rma < rmb) << 32) + (rma >> 32);
     88
     89	rma <<= 32;
     90	rl += rma;
     91	rh += (rl < rma);
     92
     93	*resl = rl;
     94	*resh = rh;
     95}
     96
     97static inline void shift64left(u64 *resh, u64 *resl, u64 n)
     98{
     99	*resh = n >> 63;
    100	*resl = n << 1;
    101}
    102
    103static inline u64 vfp_hi64multiply64(u64 n, u64 m)
    104{
    105	u64 rh, rl;
    106	mul64to128(&rh, &rl, n, m);
    107	return rh | (rl != 0);
    108}
    109
    110static inline u64 vfp_estimate_div128to64(u64 nh, u64 nl, u64 m)
    111{
    112	u64 mh, ml, remh, reml, termh, terml, z;
    113
    114	if (nh >= m)
    115		return ~0ULL;
    116	mh = m >> 32;
    117	if (mh << 32 <= nh) {
    118		z = 0xffffffff00000000ULL;
    119	} else {
    120		z = nh;
    121		do_div(z, mh);
    122		z <<= 32;
    123	}
    124	mul64to128(&termh, &terml, m, z);
    125	sub128(&remh, &reml, nh, nl, termh, terml);
    126	ml = m << 32;
    127	while ((s64)remh < 0) {
    128		z -= 0x100000000ULL;
    129		add128(&remh, &reml, remh, reml, mh, ml);
    130	}
    131	remh = (remh << 32) | (reml >> 32);
    132	if (mh << 32 <= remh) {
    133		z |= 0xffffffff;
    134	} else {
    135		do_div(remh, mh);
    136		z |= remh;
    137	}
    138	return z;
    139}
    140
    141/*
    142 * Operations on unpacked elements
    143 */
    144#define vfp_sign_negate(sign)	(sign ^ 0x8000)
    145
    146/*
    147 * Single-precision
    148 */
    149struct vfp_single {
    150	s16	exponent;
    151	u16	sign;
    152	u32	significand;
    153};
    154
    155asmlinkage s32 vfp_get_float(unsigned int reg);
    156asmlinkage void vfp_put_float(s32 val, unsigned int reg);
    157
    158/*
    159 * VFP_SINGLE_MANTISSA_BITS - number of bits in the mantissa
    160 * VFP_SINGLE_EXPONENT_BITS - number of bits in the exponent
    161 * VFP_SINGLE_LOW_BITS - number of low bits in the unpacked significand
    162 *  which are not propagated to the float upon packing.
    163 */
    164#define VFP_SINGLE_MANTISSA_BITS	(23)
    165#define VFP_SINGLE_EXPONENT_BITS	(8)
    166#define VFP_SINGLE_LOW_BITS		(32 - VFP_SINGLE_MANTISSA_BITS - 2)
    167#define VFP_SINGLE_LOW_BITS_MASK	((1 << VFP_SINGLE_LOW_BITS) - 1)
    168
    169/*
    170 * The bit in an unpacked float which indicates that it is a quiet NaN
    171 */
    172#define VFP_SINGLE_SIGNIFICAND_QNAN	(1 << (VFP_SINGLE_MANTISSA_BITS - 1 + VFP_SINGLE_LOW_BITS))
    173
    174/*
    175 * Operations on packed single-precision numbers
    176 */
    177#define vfp_single_packed_sign(v)	((v) & 0x80000000)
    178#define vfp_single_packed_negate(v)	((v) ^ 0x80000000)
    179#define vfp_single_packed_abs(v)	((v) & ~0x80000000)
    180#define vfp_single_packed_exponent(v)	(((v) >> VFP_SINGLE_MANTISSA_BITS) & ((1 << VFP_SINGLE_EXPONENT_BITS) - 1))
    181#define vfp_single_packed_mantissa(v)	((v) & ((1 << VFP_SINGLE_MANTISSA_BITS) - 1))
    182
    183/*
    184 * Unpack a single-precision float.  Note that this returns the magnitude
    185 * of the single-precision float mantissa with the 1. if necessary,
    186 * aligned to bit 30.
    187 */
    188static inline void vfp_single_unpack(struct vfp_single *s, s32 val)
    189{
    190	u32 significand;
    191
    192	s->sign = vfp_single_packed_sign(val) >> 16,
    193	s->exponent = vfp_single_packed_exponent(val);
    194
    195	significand = (u32) val;
    196	significand = (significand << (32 - VFP_SINGLE_MANTISSA_BITS)) >> 2;
    197	if (s->exponent && s->exponent != 255)
    198		significand |= 0x40000000;
    199	s->significand = significand;
    200}
    201
    202/*
    203 * Re-pack a single-precision float.  This assumes that the float is
    204 * already normalised such that the MSB is bit 30, _not_ bit 31.
    205 */
    206static inline s32 vfp_single_pack(struct vfp_single *s)
    207{
    208	u32 val;
    209	val = (s->sign << 16) +
    210	      (s->exponent << VFP_SINGLE_MANTISSA_BITS) +
    211	      (s->significand >> VFP_SINGLE_LOW_BITS);
    212	return (s32)val;
    213}
    214
    215#define VFP_NUMBER		(1<<0)
    216#define VFP_ZERO		(1<<1)
    217#define VFP_DENORMAL		(1<<2)
    218#define VFP_INFINITY		(1<<3)
    219#define VFP_NAN			(1<<4)
    220#define VFP_NAN_SIGNAL		(1<<5)
    221
    222#define VFP_QNAN		(VFP_NAN)
    223#define VFP_SNAN		(VFP_NAN|VFP_NAN_SIGNAL)
    224
    225static inline int vfp_single_type(struct vfp_single *s)
    226{
    227	int type = VFP_NUMBER;
    228	if (s->exponent == 255) {
    229		if (s->significand == 0)
    230			type = VFP_INFINITY;
    231		else if (s->significand & VFP_SINGLE_SIGNIFICAND_QNAN)
    232			type = VFP_QNAN;
    233		else
    234			type = VFP_SNAN;
    235	} else if (s->exponent == 0) {
    236		if (s->significand == 0)
    237			type |= VFP_ZERO;
    238		else
    239			type |= VFP_DENORMAL;
    240	}
    241	return type;
    242}
    243
    244#ifndef DEBUG
    245#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
    246u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions);
    247#else
    248u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func);
    249#endif
    250
    251/*
    252 * Double-precision
    253 */
    254struct vfp_double {
    255	s16	exponent;
    256	u16	sign;
    257	u64	significand;
    258};
    259
    260/*
    261 * VFP_REG_ZERO is a special register number for vfp_get_double
    262 * which returns (double)0.0.  This is useful for the compare with
    263 * zero instructions.
    264 */
    265#ifdef CONFIG_VFPv3
    266#define VFP_REG_ZERO	32
    267#else
    268#define VFP_REG_ZERO	16
    269#endif
    270asmlinkage u64 vfp_get_double(unsigned int reg);
    271asmlinkage void vfp_put_double(u64 val, unsigned int reg);
    272
    273#define VFP_DOUBLE_MANTISSA_BITS	(52)
    274#define VFP_DOUBLE_EXPONENT_BITS	(11)
    275#define VFP_DOUBLE_LOW_BITS		(64 - VFP_DOUBLE_MANTISSA_BITS - 2)
    276#define VFP_DOUBLE_LOW_BITS_MASK	((1 << VFP_DOUBLE_LOW_BITS) - 1)
    277
    278/*
    279 * The bit in an unpacked double which indicates that it is a quiet NaN
    280 */
    281#define VFP_DOUBLE_SIGNIFICAND_QNAN	(1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1 + VFP_DOUBLE_LOW_BITS))
    282
    283/*
    284 * Operations on packed single-precision numbers
    285 */
    286#define vfp_double_packed_sign(v)	((v) & (1ULL << 63))
    287#define vfp_double_packed_negate(v)	((v) ^ (1ULL << 63))
    288#define vfp_double_packed_abs(v)	((v) & ~(1ULL << 63))
    289#define vfp_double_packed_exponent(v)	(((v) >> VFP_DOUBLE_MANTISSA_BITS) & ((1 << VFP_DOUBLE_EXPONENT_BITS) - 1))
    290#define vfp_double_packed_mantissa(v)	((v) & ((1ULL << VFP_DOUBLE_MANTISSA_BITS) - 1))
    291
    292/*
    293 * Unpack a double-precision float.  Note that this returns the magnitude
    294 * of the double-precision float mantissa with the 1. if necessary,
    295 * aligned to bit 62.
    296 */
    297static inline void vfp_double_unpack(struct vfp_double *s, s64 val)
    298{
    299	u64 significand;
    300
    301	s->sign = vfp_double_packed_sign(val) >> 48;
    302	s->exponent = vfp_double_packed_exponent(val);
    303
    304	significand = (u64) val;
    305	significand = (significand << (64 - VFP_DOUBLE_MANTISSA_BITS)) >> 2;
    306	if (s->exponent && s->exponent != 2047)
    307		significand |= (1ULL << 62);
    308	s->significand = significand;
    309}
    310
    311/*
    312 * Re-pack a double-precision float.  This assumes that the float is
    313 * already normalised such that the MSB is bit 30, _not_ bit 31.
    314 */
    315static inline s64 vfp_double_pack(struct vfp_double *s)
    316{
    317	u64 val;
    318	val = ((u64)s->sign << 48) +
    319	      ((u64)s->exponent << VFP_DOUBLE_MANTISSA_BITS) +
    320	      (s->significand >> VFP_DOUBLE_LOW_BITS);
    321	return (s64)val;
    322}
    323
    324static inline int vfp_double_type(struct vfp_double *s)
    325{
    326	int type = VFP_NUMBER;
    327	if (s->exponent == 2047) {
    328		if (s->significand == 0)
    329			type = VFP_INFINITY;
    330		else if (s->significand & VFP_DOUBLE_SIGNIFICAND_QNAN)
    331			type = VFP_QNAN;
    332		else
    333			type = VFP_SNAN;
    334	} else if (s->exponent == 0) {
    335		if (s->significand == 0)
    336			type |= VFP_ZERO;
    337		else
    338			type |= VFP_DENORMAL;
    339	}
    340	return type;
    341}
    342
    343u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func);
    344
    345u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand);
    346
    347/*
    348 * A special flag to tell the normalisation code not to normalise.
    349 */
    350#define VFP_NAN_FLAG	0x100
    351
    352/*
    353 * A bit pattern used to indicate the initial (unset) value of the
    354 * exception mask, in case nothing handles an instruction.  This
    355 * doesn't include the NAN flag, which get masked out before
    356 * we check for an error.
    357 */
    358#define VFP_EXCEPTION_ERROR	((u32)-1 & ~VFP_NAN_FLAG)
    359
    360/*
    361 * A flag to tell vfp instruction type.
    362 *  OP_SCALAR - this operation always operates in scalar mode
    363 *  OP_SD - the instruction exceptionally writes to a single precision result.
    364 *  OP_DD - the instruction exceptionally writes to a double precision result.
    365 *  OP_SM - the instruction exceptionally reads from a single precision operand.
    366 */
    367#define OP_SCALAR	(1 << 0)
    368#define OP_SD		(1 << 1)
    369#define OP_DD		(1 << 1)
    370#define OP_SM		(1 << 2)
    371
    372struct op {
    373	u32 (* const fn)(int dd, int dn, int dm, u32 fpscr);
    374	u32 flags;
    375};
    376
    377asmlinkage void vfp_save_state(void *location, u32 fpexc);