cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vfpdouble.c (29217B)


      1/*
      2 *  linux/arch/arm/vfp/vfpdouble.c
      3 *
      4 * This code is derived in part from John R. Housers softfloat library, which
      5 * carries the following notice:
      6 *
      7 * ===========================================================================
      8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
      9 * Arithmetic Package, Release 2.
     10 *
     11 * Written by John R. Hauser.  This work was made possible in part by the
     12 * International Computer Science Institute, located at Suite 600, 1947 Center
     13 * Street, Berkeley, California 94704.  Funding was partially provided by the
     14 * National Science Foundation under grant MIP-9311980.  The original version
     15 * of this code was written as part of a project to build a fixed-point vector
     16 * processor in collaboration with the University of California at Berkeley,
     17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     19 * arithmetic/softfloat.html'.
     20 *
     21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     26 *
     27 * Derivative works are acceptable, even for commercial purposes, so long as
     28 * (1) they include prominent notice that the work is derivative, and (2) they
     29 * include prominent notice akin to these three paragraphs for those parts of
     30 * this code that are retained.
     31 * ===========================================================================
     32 */
     33#include <linux/kernel.h>
     34#include <linux/bitops.h>
     35
     36#include <asm/div64.h>
     37#include <asm/vfp.h>
     38
     39#include "vfpinstr.h"
     40#include "vfp.h"
     41
     42static struct vfp_double vfp_double_default_qnan = {
     43	.exponent	= 2047,
     44	.sign		= 0,
     45	.significand	= VFP_DOUBLE_SIGNIFICAND_QNAN,
     46};
     47
     48static void vfp_double_dump(const char *str, struct vfp_double *d)
     49{
     50	pr_debug("VFP: %s: sign=%d exponent=%d significand=%016llx\n",
     51		 str, d->sign != 0, d->exponent, d->significand);
     52}
     53
     54static void vfp_double_normalise_denormal(struct vfp_double *vd)
     55{
     56	int bits = 31 - fls(vd->significand >> 32);
     57	if (bits == 31)
     58		bits = 63 - fls(vd->significand);
     59
     60	vfp_double_dump("normalise_denormal: in", vd);
     61
     62	if (bits) {
     63		vd->exponent -= bits - 1;
     64		vd->significand <<= bits;
     65	}
     66
     67	vfp_double_dump("normalise_denormal: out", vd);
     68}
     69
     70u32 vfp_double_normaliseround(int dd, struct vfp_double *vd, u32 fpscr, u32 exceptions, const char *func)
     71{
     72	u64 significand, incr;
     73	int exponent, shift, underflow;
     74	u32 rmode;
     75
     76	vfp_double_dump("pack: in", vd);
     77
     78	/*
     79	 * Infinities and NaNs are a special case.
     80	 */
     81	if (vd->exponent == 2047 && (vd->significand == 0 || exceptions))
     82		goto pack;
     83
     84	/*
     85	 * Special-case zero.
     86	 */
     87	if (vd->significand == 0) {
     88		vd->exponent = 0;
     89		goto pack;
     90	}
     91
     92	exponent = vd->exponent;
     93	significand = vd->significand;
     94
     95	shift = 32 - fls(significand >> 32);
     96	if (shift == 32)
     97		shift = 64 - fls(significand);
     98	if (shift) {
     99		exponent -= shift;
    100		significand <<= shift;
    101	}
    102
    103#ifdef DEBUG
    104	vd->exponent = exponent;
    105	vd->significand = significand;
    106	vfp_double_dump("pack: normalised", vd);
    107#endif
    108
    109	/*
    110	 * Tiny number?
    111	 */
    112	underflow = exponent < 0;
    113	if (underflow) {
    114		significand = vfp_shiftright64jamming(significand, -exponent);
    115		exponent = 0;
    116#ifdef DEBUG
    117		vd->exponent = exponent;
    118		vd->significand = significand;
    119		vfp_double_dump("pack: tiny number", vd);
    120#endif
    121		if (!(significand & ((1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1)))
    122			underflow = 0;
    123	}
    124
    125	/*
    126	 * Select rounding increment.
    127	 */
    128	incr = 0;
    129	rmode = fpscr & FPSCR_RMODE_MASK;
    130
    131	if (rmode == FPSCR_ROUND_NEAREST) {
    132		incr = 1ULL << VFP_DOUBLE_LOW_BITS;
    133		if ((significand & (1ULL << (VFP_DOUBLE_LOW_BITS + 1))) == 0)
    134			incr -= 1;
    135	} else if (rmode == FPSCR_ROUND_TOZERO) {
    136		incr = 0;
    137	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vd->sign != 0))
    138		incr = (1ULL << (VFP_DOUBLE_LOW_BITS + 1)) - 1;
    139
    140	pr_debug("VFP: rounding increment = 0x%08llx\n", incr);
    141
    142	/*
    143	 * Is our rounding going to overflow?
    144	 */
    145	if ((significand + incr) < significand) {
    146		exponent += 1;
    147		significand = (significand >> 1) | (significand & 1);
    148		incr >>= 1;
    149#ifdef DEBUG
    150		vd->exponent = exponent;
    151		vd->significand = significand;
    152		vfp_double_dump("pack: overflow", vd);
    153#endif
    154	}
    155
    156	/*
    157	 * If any of the low bits (which will be shifted out of the
    158	 * number) are non-zero, the result is inexact.
    159	 */
    160	if (significand & ((1 << (VFP_DOUBLE_LOW_BITS + 1)) - 1))
    161		exceptions |= FPSCR_IXC;
    162
    163	/*
    164	 * Do our rounding.
    165	 */
    166	significand += incr;
    167
    168	/*
    169	 * Infinity?
    170	 */
    171	if (exponent >= 2046) {
    172		exceptions |= FPSCR_OFC | FPSCR_IXC;
    173		if (incr == 0) {
    174			vd->exponent = 2045;
    175			vd->significand = 0x7fffffffffffffffULL;
    176		} else {
    177			vd->exponent = 2047;		/* infinity */
    178			vd->significand = 0;
    179		}
    180	} else {
    181		if (significand >> (VFP_DOUBLE_LOW_BITS + 1) == 0)
    182			exponent = 0;
    183		if (exponent || significand > 0x8000000000000000ULL)
    184			underflow = 0;
    185		if (underflow)
    186			exceptions |= FPSCR_UFC;
    187		vd->exponent = exponent;
    188		vd->significand = significand >> 1;
    189	}
    190
    191 pack:
    192	vfp_double_dump("pack: final", vd);
    193	{
    194		s64 d = vfp_double_pack(vd);
    195		pr_debug("VFP: %s: d(d%d)=%016llx exceptions=%08x\n", func,
    196			 dd, d, exceptions);
    197		vfp_put_double(d, dd);
    198	}
    199	return exceptions;
    200}
    201
    202/*
    203 * Propagate the NaN, setting exceptions if it is signalling.
    204 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
    205 */
    206static u32
    207vfp_propagate_nan(struct vfp_double *vdd, struct vfp_double *vdn,
    208		  struct vfp_double *vdm, u32 fpscr)
    209{
    210	struct vfp_double *nan;
    211	int tn, tm = 0;
    212
    213	tn = vfp_double_type(vdn);
    214
    215	if (vdm)
    216		tm = vfp_double_type(vdm);
    217
    218	if (fpscr & FPSCR_DEFAULT_NAN)
    219		/*
    220		 * Default NaN mode - always returns a quiet NaN
    221		 */
    222		nan = &vfp_double_default_qnan;
    223	else {
    224		/*
    225		 * Contemporary mode - select the first signalling
    226		 * NAN, or if neither are signalling, the first
    227		 * quiet NAN.
    228		 */
    229		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
    230			nan = vdn;
    231		else
    232			nan = vdm;
    233		/*
    234		 * Make the NaN quiet.
    235		 */
    236		nan->significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
    237	}
    238
    239	*vdd = *nan;
    240
    241	/*
    242	 * If one was a signalling NAN, raise invalid operation.
    243	 */
    244	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
    245}
    246
    247/*
    248 * Extended operations
    249 */
    250static u32 vfp_double_fabs(int dd, int unused, int dm, u32 fpscr)
    251{
    252	vfp_put_double(vfp_double_packed_abs(vfp_get_double(dm)), dd);
    253	return 0;
    254}
    255
    256static u32 vfp_double_fcpy(int dd, int unused, int dm, u32 fpscr)
    257{
    258	vfp_put_double(vfp_get_double(dm), dd);
    259	return 0;
    260}
    261
    262static u32 vfp_double_fneg(int dd, int unused, int dm, u32 fpscr)
    263{
    264	vfp_put_double(vfp_double_packed_negate(vfp_get_double(dm)), dd);
    265	return 0;
    266}
    267
    268static u32 vfp_double_fsqrt(int dd, int unused, int dm, u32 fpscr)
    269{
    270	struct vfp_double vdm, vdd;
    271	int ret, tm;
    272
    273	vfp_double_unpack(&vdm, vfp_get_double(dm));
    274	tm = vfp_double_type(&vdm);
    275	if (tm & (VFP_NAN|VFP_INFINITY)) {
    276		struct vfp_double *vdp = &vdd;
    277
    278		if (tm & VFP_NAN)
    279			ret = vfp_propagate_nan(vdp, &vdm, NULL, fpscr);
    280		else if (vdm.sign == 0) {
    281 sqrt_copy:
    282			vdp = &vdm;
    283			ret = 0;
    284		} else {
    285 sqrt_invalid:
    286			vdp = &vfp_double_default_qnan;
    287			ret = FPSCR_IOC;
    288		}
    289		vfp_put_double(vfp_double_pack(vdp), dd);
    290		return ret;
    291	}
    292
    293	/*
    294	 * sqrt(+/- 0) == +/- 0
    295	 */
    296	if (tm & VFP_ZERO)
    297		goto sqrt_copy;
    298
    299	/*
    300	 * Normalise a denormalised number
    301	 */
    302	if (tm & VFP_DENORMAL)
    303		vfp_double_normalise_denormal(&vdm);
    304
    305	/*
    306	 * sqrt(<0) = invalid
    307	 */
    308	if (vdm.sign)
    309		goto sqrt_invalid;
    310
    311	vfp_double_dump("sqrt", &vdm);
    312
    313	/*
    314	 * Estimate the square root.
    315	 */
    316	vdd.sign = 0;
    317	vdd.exponent = ((vdm.exponent - 1023) >> 1) + 1023;
    318	vdd.significand = (u64)vfp_estimate_sqrt_significand(vdm.exponent, vdm.significand >> 32) << 31;
    319
    320	vfp_double_dump("sqrt estimate1", &vdd);
    321
    322	vdm.significand >>= 1 + (vdm.exponent & 1);
    323	vdd.significand += 2 + vfp_estimate_div128to64(vdm.significand, 0, vdd.significand);
    324
    325	vfp_double_dump("sqrt estimate2", &vdd);
    326
    327	/*
    328	 * And now adjust.
    329	 */
    330	if ((vdd.significand & VFP_DOUBLE_LOW_BITS_MASK) <= 5) {
    331		if (vdd.significand < 2) {
    332			vdd.significand = ~0ULL;
    333		} else {
    334			u64 termh, terml, remh, reml;
    335			vdm.significand <<= 2;
    336			mul64to128(&termh, &terml, vdd.significand, vdd.significand);
    337			sub128(&remh, &reml, vdm.significand, 0, termh, terml);
    338			while ((s64)remh < 0) {
    339				vdd.significand -= 1;
    340				shift64left(&termh, &terml, vdd.significand);
    341				terml |= 1;
    342				add128(&remh, &reml, remh, reml, termh, terml);
    343			}
    344			vdd.significand |= (remh | reml) != 0;
    345		}
    346	}
    347	vdd.significand = vfp_shiftright64jamming(vdd.significand, 1);
    348
    349	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fsqrt");
    350}
    351
    352/*
    353 * Equal	:= ZC
    354 * Less than	:= N
    355 * Greater than	:= C
    356 * Unordered	:= CV
    357 */
    358static u32 vfp_compare(int dd, int signal_on_qnan, int dm, u32 fpscr)
    359{
    360	s64 d, m;
    361	u32 ret = 0;
    362
    363	m = vfp_get_double(dm);
    364	if (vfp_double_packed_exponent(m) == 2047 && vfp_double_packed_mantissa(m)) {
    365		ret |= FPSCR_C | FPSCR_V;
    366		if (signal_on_qnan || !(vfp_double_packed_mantissa(m) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
    367			/*
    368			 * Signalling NaN, or signalling on quiet NaN
    369			 */
    370			ret |= FPSCR_IOC;
    371	}
    372
    373	d = vfp_get_double(dd);
    374	if (vfp_double_packed_exponent(d) == 2047 && vfp_double_packed_mantissa(d)) {
    375		ret |= FPSCR_C | FPSCR_V;
    376		if (signal_on_qnan || !(vfp_double_packed_mantissa(d) & (1ULL << (VFP_DOUBLE_MANTISSA_BITS - 1))))
    377			/*
    378			 * Signalling NaN, or signalling on quiet NaN
    379			 */
    380			ret |= FPSCR_IOC;
    381	}
    382
    383	if (ret == 0) {
    384		if (d == m || vfp_double_packed_abs(d | m) == 0) {
    385			/*
    386			 * equal
    387			 */
    388			ret |= FPSCR_Z | FPSCR_C;
    389		} else if (vfp_double_packed_sign(d ^ m)) {
    390			/*
    391			 * different signs
    392			 */
    393			if (vfp_double_packed_sign(d))
    394				/*
    395				 * d is negative, so d < m
    396				 */
    397				ret |= FPSCR_N;
    398			else
    399				/*
    400				 * d is positive, so d > m
    401				 */
    402				ret |= FPSCR_C;
    403		} else if ((vfp_double_packed_sign(d) != 0) ^ (d < m)) {
    404			/*
    405			 * d < m
    406			 */
    407			ret |= FPSCR_N;
    408		} else if ((vfp_double_packed_sign(d) != 0) ^ (d > m)) {
    409			/*
    410			 * d > m
    411			 */
    412			ret |= FPSCR_C;
    413		}
    414	}
    415
    416	return ret;
    417}
    418
    419static u32 vfp_double_fcmp(int dd, int unused, int dm, u32 fpscr)
    420{
    421	return vfp_compare(dd, 0, dm, fpscr);
    422}
    423
    424static u32 vfp_double_fcmpe(int dd, int unused, int dm, u32 fpscr)
    425{
    426	return vfp_compare(dd, 1, dm, fpscr);
    427}
    428
    429static u32 vfp_double_fcmpz(int dd, int unused, int dm, u32 fpscr)
    430{
    431	return vfp_compare(dd, 0, VFP_REG_ZERO, fpscr);
    432}
    433
    434static u32 vfp_double_fcmpez(int dd, int unused, int dm, u32 fpscr)
    435{
    436	return vfp_compare(dd, 1, VFP_REG_ZERO, fpscr);
    437}
    438
    439static u32 vfp_double_fcvts(int sd, int unused, int dm, u32 fpscr)
    440{
    441	struct vfp_double vdm;
    442	struct vfp_single vsd;
    443	int tm;
    444	u32 exceptions = 0;
    445
    446	vfp_double_unpack(&vdm, vfp_get_double(dm));
    447
    448	tm = vfp_double_type(&vdm);
    449
    450	/*
    451	 * If we have a signalling NaN, signal invalid operation.
    452	 */
    453	if (tm == VFP_SNAN)
    454		exceptions = FPSCR_IOC;
    455
    456	if (tm & VFP_DENORMAL)
    457		vfp_double_normalise_denormal(&vdm);
    458
    459	vsd.sign = vdm.sign;
    460	vsd.significand = vfp_hi64to32jamming(vdm.significand);
    461
    462	/*
    463	 * If we have an infinity or a NaN, the exponent must be 255
    464	 */
    465	if (tm & (VFP_INFINITY|VFP_NAN)) {
    466		vsd.exponent = 255;
    467		if (tm == VFP_QNAN)
    468			vsd.significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
    469		goto pack_nan;
    470	} else if (tm & VFP_ZERO)
    471		vsd.exponent = 0;
    472	else
    473		vsd.exponent = vdm.exponent - (1023 - 127);
    474
    475	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fcvts");
    476
    477 pack_nan:
    478	vfp_put_float(vfp_single_pack(&vsd), sd);
    479	return exceptions;
    480}
    481
    482static u32 vfp_double_fuito(int dd, int unused, int dm, u32 fpscr)
    483{
    484	struct vfp_double vdm;
    485	u32 m = vfp_get_float(dm);
    486
    487	vdm.sign = 0;
    488	vdm.exponent = 1023 + 63 - 1;
    489	vdm.significand = (u64)m;
    490
    491	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fuito");
    492}
    493
    494static u32 vfp_double_fsito(int dd, int unused, int dm, u32 fpscr)
    495{
    496	struct vfp_double vdm;
    497	u32 m = vfp_get_float(dm);
    498
    499	vdm.sign = (m & 0x80000000) >> 16;
    500	vdm.exponent = 1023 + 63 - 1;
    501	vdm.significand = vdm.sign ? -m : m;
    502
    503	return vfp_double_normaliseround(dd, &vdm, fpscr, 0, "fsito");
    504}
    505
    506static u32 vfp_double_ftoui(int sd, int unused, int dm, u32 fpscr)
    507{
    508	struct vfp_double vdm;
    509	u32 d, exceptions = 0;
    510	int rmode = fpscr & FPSCR_RMODE_MASK;
    511	int tm;
    512
    513	vfp_double_unpack(&vdm, vfp_get_double(dm));
    514
    515	/*
    516	 * Do we have a denormalised number?
    517	 */
    518	tm = vfp_double_type(&vdm);
    519	if (tm & VFP_DENORMAL)
    520		exceptions |= FPSCR_IDC;
    521
    522	if (tm & VFP_NAN)
    523		vdm.sign = 0;
    524
    525	if (vdm.exponent >= 1023 + 32) {
    526		d = vdm.sign ? 0 : 0xffffffff;
    527		exceptions = FPSCR_IOC;
    528	} else if (vdm.exponent >= 1023 - 1) {
    529		int shift = 1023 + 63 - vdm.exponent;
    530		u64 rem, incr = 0;
    531
    532		/*
    533		 * 2^0 <= m < 2^32-2^8
    534		 */
    535		d = (vdm.significand << 1) >> shift;
    536		rem = vdm.significand << (65 - shift);
    537
    538		if (rmode == FPSCR_ROUND_NEAREST) {
    539			incr = 0x8000000000000000ULL;
    540			if ((d & 1) == 0)
    541				incr -= 1;
    542		} else if (rmode == FPSCR_ROUND_TOZERO) {
    543			incr = 0;
    544		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
    545			incr = ~0ULL;
    546		}
    547
    548		if ((rem + incr) < rem) {
    549			if (d < 0xffffffff)
    550				d += 1;
    551			else
    552				exceptions |= FPSCR_IOC;
    553		}
    554
    555		if (d && vdm.sign) {
    556			d = 0;
    557			exceptions |= FPSCR_IOC;
    558		} else if (rem)
    559			exceptions |= FPSCR_IXC;
    560	} else {
    561		d = 0;
    562		if (vdm.exponent | vdm.significand) {
    563			exceptions |= FPSCR_IXC;
    564			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
    565				d = 1;
    566			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign) {
    567				d = 0;
    568				exceptions |= FPSCR_IOC;
    569			}
    570		}
    571	}
    572
    573	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
    574
    575	vfp_put_float(d, sd);
    576
    577	return exceptions;
    578}
    579
    580static u32 vfp_double_ftouiz(int sd, int unused, int dm, u32 fpscr)
    581{
    582	return vfp_double_ftoui(sd, unused, dm, FPSCR_ROUND_TOZERO);
    583}
    584
    585static u32 vfp_double_ftosi(int sd, int unused, int dm, u32 fpscr)
    586{
    587	struct vfp_double vdm;
    588	u32 d, exceptions = 0;
    589	int rmode = fpscr & FPSCR_RMODE_MASK;
    590	int tm;
    591
    592	vfp_double_unpack(&vdm, vfp_get_double(dm));
    593	vfp_double_dump("VDM", &vdm);
    594
    595	/*
    596	 * Do we have denormalised number?
    597	 */
    598	tm = vfp_double_type(&vdm);
    599	if (tm & VFP_DENORMAL)
    600		exceptions |= FPSCR_IDC;
    601
    602	if (tm & VFP_NAN) {
    603		d = 0;
    604		exceptions |= FPSCR_IOC;
    605	} else if (vdm.exponent >= 1023 + 32) {
    606		d = 0x7fffffff;
    607		if (vdm.sign)
    608			d = ~d;
    609		exceptions |= FPSCR_IOC;
    610	} else if (vdm.exponent >= 1023 - 1) {
    611		int shift = 1023 + 63 - vdm.exponent;	/* 58 */
    612		u64 rem, incr = 0;
    613
    614		d = (vdm.significand << 1) >> shift;
    615		rem = vdm.significand << (65 - shift);
    616
    617		if (rmode == FPSCR_ROUND_NEAREST) {
    618			incr = 0x8000000000000000ULL;
    619			if ((d & 1) == 0)
    620				incr -= 1;
    621		} else if (rmode == FPSCR_ROUND_TOZERO) {
    622			incr = 0;
    623		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vdm.sign != 0)) {
    624			incr = ~0ULL;
    625		}
    626
    627		if ((rem + incr) < rem && d < 0xffffffff)
    628			d += 1;
    629		if (d > 0x7fffffff + (vdm.sign != 0)) {
    630			d = 0x7fffffff + (vdm.sign != 0);
    631			exceptions |= FPSCR_IOC;
    632		} else if (rem)
    633			exceptions |= FPSCR_IXC;
    634
    635		if (vdm.sign)
    636			d = -d;
    637	} else {
    638		d = 0;
    639		if (vdm.exponent | vdm.significand) {
    640			exceptions |= FPSCR_IXC;
    641			if (rmode == FPSCR_ROUND_PLUSINF && vdm.sign == 0)
    642				d = 1;
    643			else if (rmode == FPSCR_ROUND_MINUSINF && vdm.sign)
    644				d = -1;
    645		}
    646	}
    647
    648	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
    649
    650	vfp_put_float((s32)d, sd);
    651
    652	return exceptions;
    653}
    654
    655static u32 vfp_double_ftosiz(int dd, int unused, int dm, u32 fpscr)
    656{
    657	return vfp_double_ftosi(dd, unused, dm, FPSCR_ROUND_TOZERO);
    658}
    659
    660
    661static struct op fops_ext[32] = {
    662	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_double_fcpy,   0 },
    663	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_double_fabs,   0 },
    664	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_double_fneg,   0 },
    665	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_double_fsqrt,  0 },
    666	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_double_fcmp,   OP_SCALAR },
    667	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_double_fcmpe,  OP_SCALAR },
    668	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_double_fcmpz,  OP_SCALAR },
    669	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_double_fcmpez, OP_SCALAR },
    670	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_double_fcvts,  OP_SCALAR|OP_SD },
    671	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_double_fuito,  OP_SCALAR|OP_SM },
    672	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_double_fsito,  OP_SCALAR|OP_SM },
    673	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_double_ftoui,  OP_SCALAR|OP_SD },
    674	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_double_ftouiz, OP_SCALAR|OP_SD },
    675	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_double_ftosi,  OP_SCALAR|OP_SD },
    676	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_double_ftosiz, OP_SCALAR|OP_SD },
    677};
    678
    679
    680
    681
    682static u32
    683vfp_double_fadd_nonnumber(struct vfp_double *vdd, struct vfp_double *vdn,
    684			  struct vfp_double *vdm, u32 fpscr)
    685{
    686	struct vfp_double *vdp;
    687	u32 exceptions = 0;
    688	int tn, tm;
    689
    690	tn = vfp_double_type(vdn);
    691	tm = vfp_double_type(vdm);
    692
    693	if (tn & tm & VFP_INFINITY) {
    694		/*
    695		 * Two infinities.  Are they different signs?
    696		 */
    697		if (vdn->sign ^ vdm->sign) {
    698			/*
    699			 * different signs -> invalid
    700			 */
    701			exceptions = FPSCR_IOC;
    702			vdp = &vfp_double_default_qnan;
    703		} else {
    704			/*
    705			 * same signs -> valid
    706			 */
    707			vdp = vdn;
    708		}
    709	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
    710		/*
    711		 * One infinity and one number -> infinity
    712		 */
    713		vdp = vdn;
    714	} else {
    715		/*
    716		 * 'n' is a NaN of some type
    717		 */
    718		return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
    719	}
    720	*vdd = *vdp;
    721	return exceptions;
    722}
    723
    724static u32
    725vfp_double_add(struct vfp_double *vdd, struct vfp_double *vdn,
    726	       struct vfp_double *vdm, u32 fpscr)
    727{
    728	u32 exp_diff;
    729	u64 m_sig;
    730
    731	if (vdn->significand & (1ULL << 63) ||
    732	    vdm->significand & (1ULL << 63)) {
    733		pr_info("VFP: bad FP values in %s\n", __func__);
    734		vfp_double_dump("VDN", vdn);
    735		vfp_double_dump("VDM", vdm);
    736	}
    737
    738	/*
    739	 * Ensure that 'n' is the largest magnitude number.  Note that
    740	 * if 'n' and 'm' have equal exponents, we do not swap them.
    741	 * This ensures that NaN propagation works correctly.
    742	 */
    743	if (vdn->exponent < vdm->exponent) {
    744		struct vfp_double *t = vdn;
    745		vdn = vdm;
    746		vdm = t;
    747	}
    748
    749	/*
    750	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
    751	 * infinity or a NaN here.
    752	 */
    753	if (vdn->exponent == 2047)
    754		return vfp_double_fadd_nonnumber(vdd, vdn, vdm, fpscr);
    755
    756	/*
    757	 * We have two proper numbers, where 'vdn' is the larger magnitude.
    758	 *
    759	 * Copy 'n' to 'd' before doing the arithmetic.
    760	 */
    761	*vdd = *vdn;
    762
    763	/*
    764	 * Align 'm' with the result.
    765	 */
    766	exp_diff = vdn->exponent - vdm->exponent;
    767	m_sig = vfp_shiftright64jamming(vdm->significand, exp_diff);
    768
    769	/*
    770	 * If the signs are different, we are really subtracting.
    771	 */
    772	if (vdn->sign ^ vdm->sign) {
    773		m_sig = vdn->significand - m_sig;
    774		if ((s64)m_sig < 0) {
    775			vdd->sign = vfp_sign_negate(vdd->sign);
    776			m_sig = -m_sig;
    777		} else if (m_sig == 0) {
    778			vdd->sign = (fpscr & FPSCR_RMODE_MASK) ==
    779				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
    780		}
    781	} else {
    782		m_sig += vdn->significand;
    783	}
    784	vdd->significand = m_sig;
    785
    786	return 0;
    787}
    788
    789static u32
    790vfp_double_multiply(struct vfp_double *vdd, struct vfp_double *vdn,
    791		    struct vfp_double *vdm, u32 fpscr)
    792{
    793	vfp_double_dump("VDN", vdn);
    794	vfp_double_dump("VDM", vdm);
    795
    796	/*
    797	 * Ensure that 'n' is the largest magnitude number.  Note that
    798	 * if 'n' and 'm' have equal exponents, we do not swap them.
    799	 * This ensures that NaN propagation works correctly.
    800	 */
    801	if (vdn->exponent < vdm->exponent) {
    802		struct vfp_double *t = vdn;
    803		vdn = vdm;
    804		vdm = t;
    805		pr_debug("VFP: swapping M <-> N\n");
    806	}
    807
    808	vdd->sign = vdn->sign ^ vdm->sign;
    809
    810	/*
    811	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
    812	 */
    813	if (vdn->exponent == 2047) {
    814		if (vdn->significand || (vdm->exponent == 2047 && vdm->significand))
    815			return vfp_propagate_nan(vdd, vdn, vdm, fpscr);
    816		if ((vdm->exponent | vdm->significand) == 0) {
    817			*vdd = vfp_double_default_qnan;
    818			return FPSCR_IOC;
    819		}
    820		vdd->exponent = vdn->exponent;
    821		vdd->significand = 0;
    822		return 0;
    823	}
    824
    825	/*
    826	 * If 'm' is zero, the result is always zero.  In this case,
    827	 * 'n' may be zero or a number, but it doesn't matter which.
    828	 */
    829	if ((vdm->exponent | vdm->significand) == 0) {
    830		vdd->exponent = 0;
    831		vdd->significand = 0;
    832		return 0;
    833	}
    834
    835	/*
    836	 * We add 2 to the destination exponent for the same reason
    837	 * as the addition case - though this time we have +1 from
    838	 * each input operand.
    839	 */
    840	vdd->exponent = vdn->exponent + vdm->exponent - 1023 + 2;
    841	vdd->significand = vfp_hi64multiply64(vdn->significand, vdm->significand);
    842
    843	vfp_double_dump("VDD", vdd);
    844	return 0;
    845}
    846
    847#define NEG_MULTIPLY	(1 << 0)
    848#define NEG_SUBTRACT	(1 << 1)
    849
    850static u32
    851vfp_double_multiply_accumulate(int dd, int dn, int dm, u32 fpscr, u32 negate, char *func)
    852{
    853	struct vfp_double vdd, vdp, vdn, vdm;
    854	u32 exceptions;
    855
    856	vfp_double_unpack(&vdn, vfp_get_double(dn));
    857	if (vdn.exponent == 0 && vdn.significand)
    858		vfp_double_normalise_denormal(&vdn);
    859
    860	vfp_double_unpack(&vdm, vfp_get_double(dm));
    861	if (vdm.exponent == 0 && vdm.significand)
    862		vfp_double_normalise_denormal(&vdm);
    863
    864	exceptions = vfp_double_multiply(&vdp, &vdn, &vdm, fpscr);
    865	if (negate & NEG_MULTIPLY)
    866		vdp.sign = vfp_sign_negate(vdp.sign);
    867
    868	vfp_double_unpack(&vdn, vfp_get_double(dd));
    869	if (vdn.exponent == 0 && vdn.significand)
    870		vfp_double_normalise_denormal(&vdn);
    871	if (negate & NEG_SUBTRACT)
    872		vdn.sign = vfp_sign_negate(vdn.sign);
    873
    874	exceptions |= vfp_double_add(&vdd, &vdn, &vdp, fpscr);
    875
    876	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, func);
    877}
    878
    879/*
    880 * Standard operations
    881 */
    882
    883/*
    884 * sd = sd + (sn * sm)
    885 */
    886static u32 vfp_double_fmac(int dd, int dn, int dm, u32 fpscr)
    887{
    888	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, 0, "fmac");
    889}
    890
    891/*
    892 * sd = sd - (sn * sm)
    893 */
    894static u32 vfp_double_fnmac(int dd, int dn, int dm, u32 fpscr)
    895{
    896	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_MULTIPLY, "fnmac");
    897}
    898
    899/*
    900 * sd = -sd + (sn * sm)
    901 */
    902static u32 vfp_double_fmsc(int dd, int dn, int dm, u32 fpscr)
    903{
    904	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT, "fmsc");
    905}
    906
    907/*
    908 * sd = -sd - (sn * sm)
    909 */
    910static u32 vfp_double_fnmsc(int dd, int dn, int dm, u32 fpscr)
    911{
    912	return vfp_double_multiply_accumulate(dd, dn, dm, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
    913}
    914
    915/*
    916 * sd = sn * sm
    917 */
    918static u32 vfp_double_fmul(int dd, int dn, int dm, u32 fpscr)
    919{
    920	struct vfp_double vdd, vdn, vdm;
    921	u32 exceptions;
    922
    923	vfp_double_unpack(&vdn, vfp_get_double(dn));
    924	if (vdn.exponent == 0 && vdn.significand)
    925		vfp_double_normalise_denormal(&vdn);
    926
    927	vfp_double_unpack(&vdm, vfp_get_double(dm));
    928	if (vdm.exponent == 0 && vdm.significand)
    929		vfp_double_normalise_denormal(&vdm);
    930
    931	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
    932	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fmul");
    933}
    934
    935/*
    936 * sd = -(sn * sm)
    937 */
    938static u32 vfp_double_fnmul(int dd, int dn, int dm, u32 fpscr)
    939{
    940	struct vfp_double vdd, vdn, vdm;
    941	u32 exceptions;
    942
    943	vfp_double_unpack(&vdn, vfp_get_double(dn));
    944	if (vdn.exponent == 0 && vdn.significand)
    945		vfp_double_normalise_denormal(&vdn);
    946
    947	vfp_double_unpack(&vdm, vfp_get_double(dm));
    948	if (vdm.exponent == 0 && vdm.significand)
    949		vfp_double_normalise_denormal(&vdm);
    950
    951	exceptions = vfp_double_multiply(&vdd, &vdn, &vdm, fpscr);
    952	vdd.sign = vfp_sign_negate(vdd.sign);
    953
    954	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fnmul");
    955}
    956
    957/*
    958 * sd = sn + sm
    959 */
    960static u32 vfp_double_fadd(int dd, int dn, int dm, u32 fpscr)
    961{
    962	struct vfp_double vdd, vdn, vdm;
    963	u32 exceptions;
    964
    965	vfp_double_unpack(&vdn, vfp_get_double(dn));
    966	if (vdn.exponent == 0 && vdn.significand)
    967		vfp_double_normalise_denormal(&vdn);
    968
    969	vfp_double_unpack(&vdm, vfp_get_double(dm));
    970	if (vdm.exponent == 0 && vdm.significand)
    971		vfp_double_normalise_denormal(&vdm);
    972
    973	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
    974
    975	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fadd");
    976}
    977
    978/*
    979 * sd = sn - sm
    980 */
    981static u32 vfp_double_fsub(int dd, int dn, int dm, u32 fpscr)
    982{
    983	struct vfp_double vdd, vdn, vdm;
    984	u32 exceptions;
    985
    986	vfp_double_unpack(&vdn, vfp_get_double(dn));
    987	if (vdn.exponent == 0 && vdn.significand)
    988		vfp_double_normalise_denormal(&vdn);
    989
    990	vfp_double_unpack(&vdm, vfp_get_double(dm));
    991	if (vdm.exponent == 0 && vdm.significand)
    992		vfp_double_normalise_denormal(&vdm);
    993
    994	/*
    995	 * Subtraction is like addition, but with a negated operand.
    996	 */
    997	vdm.sign = vfp_sign_negate(vdm.sign);
    998
    999	exceptions = vfp_double_add(&vdd, &vdn, &vdm, fpscr);
   1000
   1001	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fsub");
   1002}
   1003
   1004/*
   1005 * sd = sn / sm
   1006 */
   1007static u32 vfp_double_fdiv(int dd, int dn, int dm, u32 fpscr)
   1008{
   1009	struct vfp_double vdd, vdn, vdm;
   1010	u32 exceptions = 0;
   1011	int tm, tn;
   1012
   1013	vfp_double_unpack(&vdn, vfp_get_double(dn));
   1014	vfp_double_unpack(&vdm, vfp_get_double(dm));
   1015
   1016	vdd.sign = vdn.sign ^ vdm.sign;
   1017
   1018	tn = vfp_double_type(&vdn);
   1019	tm = vfp_double_type(&vdm);
   1020
   1021	/*
   1022	 * Is n a NAN?
   1023	 */
   1024	if (tn & VFP_NAN)
   1025		goto vdn_nan;
   1026
   1027	/*
   1028	 * Is m a NAN?
   1029	 */
   1030	if (tm & VFP_NAN)
   1031		goto vdm_nan;
   1032
   1033	/*
   1034	 * If n and m are infinity, the result is invalid
   1035	 * If n and m are zero, the result is invalid
   1036	 */
   1037	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
   1038		goto invalid;
   1039
   1040	/*
   1041	 * If n is infinity, the result is infinity
   1042	 */
   1043	if (tn & VFP_INFINITY)
   1044		goto infinity;
   1045
   1046	/*
   1047	 * If m is zero, raise div0 exceptions
   1048	 */
   1049	if (tm & VFP_ZERO)
   1050		goto divzero;
   1051
   1052	/*
   1053	 * If m is infinity, or n is zero, the result is zero
   1054	 */
   1055	if (tm & VFP_INFINITY || tn & VFP_ZERO)
   1056		goto zero;
   1057
   1058	if (tn & VFP_DENORMAL)
   1059		vfp_double_normalise_denormal(&vdn);
   1060	if (tm & VFP_DENORMAL)
   1061		vfp_double_normalise_denormal(&vdm);
   1062
   1063	/*
   1064	 * Ok, we have two numbers, we can perform division.
   1065	 */
   1066	vdd.exponent = vdn.exponent - vdm.exponent + 1023 - 1;
   1067	vdm.significand <<= 1;
   1068	if (vdm.significand <= (2 * vdn.significand)) {
   1069		vdn.significand >>= 1;
   1070		vdd.exponent++;
   1071	}
   1072	vdd.significand = vfp_estimate_div128to64(vdn.significand, 0, vdm.significand);
   1073	if ((vdd.significand & 0x1ff) <= 2) {
   1074		u64 termh, terml, remh, reml;
   1075		mul64to128(&termh, &terml, vdm.significand, vdd.significand);
   1076		sub128(&remh, &reml, vdn.significand, 0, termh, terml);
   1077		while ((s64)remh < 0) {
   1078			vdd.significand -= 1;
   1079			add128(&remh, &reml, remh, reml, 0, vdm.significand);
   1080		}
   1081		vdd.significand |= (reml != 0);
   1082	}
   1083	return vfp_double_normaliseround(dd, &vdd, fpscr, 0, "fdiv");
   1084
   1085 vdn_nan:
   1086	exceptions = vfp_propagate_nan(&vdd, &vdn, &vdm, fpscr);
   1087 pack:
   1088	vfp_put_double(vfp_double_pack(&vdd), dd);
   1089	return exceptions;
   1090
   1091 vdm_nan:
   1092	exceptions = vfp_propagate_nan(&vdd, &vdm, &vdn, fpscr);
   1093	goto pack;
   1094
   1095 zero:
   1096	vdd.exponent = 0;
   1097	vdd.significand = 0;
   1098	goto pack;
   1099
   1100 divzero:
   1101	exceptions = FPSCR_DZC;
   1102 infinity:
   1103	vdd.exponent = 2047;
   1104	vdd.significand = 0;
   1105	goto pack;
   1106
   1107 invalid:
   1108	vfp_put_double(vfp_double_pack(&vfp_double_default_qnan), dd);
   1109	return FPSCR_IOC;
   1110}
   1111
   1112static struct op fops[16] = {
   1113	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_double_fmac,  0 },
   1114	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_double_fnmac, 0 },
   1115	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_double_fmsc,  0 },
   1116	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_double_fnmsc, 0 },
   1117	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_double_fmul,  0 },
   1118	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_double_fnmul, 0 },
   1119	[FOP_TO_IDX(FOP_FADD)]	= { vfp_double_fadd,  0 },
   1120	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_double_fsub,  0 },
   1121	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_double_fdiv,  0 },
   1122};
   1123
   1124#define FREG_BANK(x)	((x) & 0x0c)
   1125#define FREG_IDX(x)	((x) & 3)
   1126
   1127u32 vfp_double_cpdo(u32 inst, u32 fpscr)
   1128{
   1129	u32 op = inst & FOP_MASK;
   1130	u32 exceptions = 0;
   1131	unsigned int dest;
   1132	unsigned int dn = vfp_get_dn(inst);
   1133	unsigned int dm;
   1134	unsigned int vecitr, veclen, vecstride;
   1135	struct op *fop;
   1136
   1137	vecstride = (1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK));
   1138
   1139	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
   1140
   1141	/*
   1142	 * fcvtds takes an sN register number as destination, not dN.
   1143	 * It also always operates on scalars.
   1144	 */
   1145	if (fop->flags & OP_SD)
   1146		dest = vfp_get_sd(inst);
   1147	else
   1148		dest = vfp_get_dd(inst);
   1149
   1150	/*
   1151	 * f[us]ito takes a sN operand, not a dN operand.
   1152	 */
   1153	if (fop->flags & OP_SM)
   1154		dm = vfp_get_sm(inst);
   1155	else
   1156		dm = vfp_get_dm(inst);
   1157
   1158	/*
   1159	 * If destination bank is zero, vector length is always '1'.
   1160	 * ARM DDI0100F C5.1.3, C5.3.2.
   1161	 */
   1162	if ((fop->flags & OP_SCALAR) || (FREG_BANK(dest) == 0))
   1163		veclen = 0;
   1164	else
   1165		veclen = fpscr & FPSCR_LENGTH_MASK;
   1166
   1167	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
   1168		 (veclen >> FPSCR_LENGTH_BIT) + 1);
   1169
   1170	if (!fop->fn)
   1171		goto invalid;
   1172
   1173	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
   1174		u32 except;
   1175		char type;
   1176
   1177		type = fop->flags & OP_SD ? 's' : 'd';
   1178		if (op == FOP_EXT)
   1179			pr_debug("VFP: itr%d (%c%u) = op[%u] (d%u)\n",
   1180				 vecitr >> FPSCR_LENGTH_BIT,
   1181				 type, dest, dn, dm);
   1182		else
   1183			pr_debug("VFP: itr%d (%c%u) = (d%u) op[%u] (d%u)\n",
   1184				 vecitr >> FPSCR_LENGTH_BIT,
   1185				 type, dest, dn, FOP_TO_IDX(op), dm);
   1186
   1187		except = fop->fn(dest, dn, dm, fpscr);
   1188		pr_debug("VFP: itr%d: exceptions=%08x\n",
   1189			 vecitr >> FPSCR_LENGTH_BIT, except);
   1190
   1191		exceptions |= except;
   1192
   1193		/*
   1194		 * CHECK: It appears to be undefined whether we stop when
   1195		 * we encounter an exception.  We continue.
   1196		 */
   1197		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 3);
   1198		dn = FREG_BANK(dn) + ((FREG_IDX(dn) + vecstride) & 3);
   1199		if (FREG_BANK(dm) != 0)
   1200			dm = FREG_BANK(dm) + ((FREG_IDX(dm) + vecstride) & 3);
   1201	}
   1202	return exceptions;
   1203
   1204 invalid:
   1205	return ~0;
   1206}