cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vfpmodule.c (22291B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 *  linux/arch/arm/vfp/vfpmodule.c
      4 *
      5 *  Copyright (C) 2004 ARM Limited.
      6 *  Written by Deep Blue Solutions Limited.
      7 */
      8#include <linux/types.h>
      9#include <linux/cpu.h>
     10#include <linux/cpu_pm.h>
     11#include <linux/hardirq.h>
     12#include <linux/kernel.h>
     13#include <linux/notifier.h>
     14#include <linux/signal.h>
     15#include <linux/sched/signal.h>
     16#include <linux/smp.h>
     17#include <linux/init.h>
     18#include <linux/uaccess.h>
     19#include <linux/user.h>
     20#include <linux/export.h>
     21
     22#include <asm/cp15.h>
     23#include <asm/cputype.h>
     24#include <asm/system_info.h>
     25#include <asm/thread_notify.h>
     26#include <asm/traps.h>
     27#include <asm/vfp.h>
     28
     29#include "vfpinstr.h"
     30#include "vfp.h"
     31
     32/*
     33 * Our undef handlers (in entry.S)
     34 */
     35asmlinkage void vfp_support_entry(void);
     36asmlinkage void vfp_null_entry(void);
     37
     38asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
     39
     40/*
     41 * Dual-use variable.
     42 * Used in startup: set to non-zero if VFP checks fail
     43 * After startup, holds VFP architecture
     44 */
     45static unsigned int __initdata VFP_arch;
     46
     47/*
     48 * The pointer to the vfpstate structure of the thread which currently
     49 * owns the context held in the VFP hardware, or NULL if the hardware
     50 * context is invalid.
     51 *
     52 * For UP, this is sufficient to tell which thread owns the VFP context.
     53 * However, for SMP, we also need to check the CPU number stored in the
     54 * saved state too to catch migrations.
     55 */
     56union vfp_state *vfp_current_hw_state[NR_CPUS];
     57
     58/*
     59 * Is 'thread's most up to date state stored in this CPUs hardware?
     60 * Must be called from non-preemptible context.
     61 */
     62static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
     63{
     64#ifdef CONFIG_SMP
     65	if (thread->vfpstate.hard.cpu != cpu)
     66		return false;
     67#endif
     68	return vfp_current_hw_state[cpu] == &thread->vfpstate;
     69}
     70
     71/*
     72 * Force a reload of the VFP context from the thread structure.  We do
     73 * this by ensuring that access to the VFP hardware is disabled, and
     74 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
     75 */
     76static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
     77{
     78	if (vfp_state_in_hw(cpu, thread)) {
     79		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
     80		vfp_current_hw_state[cpu] = NULL;
     81	}
     82#ifdef CONFIG_SMP
     83	thread->vfpstate.hard.cpu = NR_CPUS;
     84#endif
     85}
     86
     87/*
     88 * Per-thread VFP initialization.
     89 */
     90static void vfp_thread_flush(struct thread_info *thread)
     91{
     92	union vfp_state *vfp = &thread->vfpstate;
     93	unsigned int cpu;
     94
     95	/*
     96	 * Disable VFP to ensure we initialize it first.  We must ensure
     97	 * that the modification of vfp_current_hw_state[] and hardware
     98	 * disable are done for the same CPU and without preemption.
     99	 *
    100	 * Do this first to ensure that preemption won't overwrite our
    101	 * state saving should access to the VFP be enabled at this point.
    102	 */
    103	cpu = get_cpu();
    104	if (vfp_current_hw_state[cpu] == vfp)
    105		vfp_current_hw_state[cpu] = NULL;
    106	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
    107	put_cpu();
    108
    109	memset(vfp, 0, sizeof(union vfp_state));
    110
    111	vfp->hard.fpexc = FPEXC_EN;
    112	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
    113#ifdef CONFIG_SMP
    114	vfp->hard.cpu = NR_CPUS;
    115#endif
    116}
    117
    118static void vfp_thread_exit(struct thread_info *thread)
    119{
    120	/* release case: Per-thread VFP cleanup. */
    121	union vfp_state *vfp = &thread->vfpstate;
    122	unsigned int cpu = get_cpu();
    123
    124	if (vfp_current_hw_state[cpu] == vfp)
    125		vfp_current_hw_state[cpu] = NULL;
    126	put_cpu();
    127}
    128
    129static void vfp_thread_copy(struct thread_info *thread)
    130{
    131	struct thread_info *parent = current_thread_info();
    132
    133	vfp_sync_hwstate(parent);
    134	thread->vfpstate = parent->vfpstate;
    135#ifdef CONFIG_SMP
    136	thread->vfpstate.hard.cpu = NR_CPUS;
    137#endif
    138}
    139
    140/*
    141 * When this function is called with the following 'cmd's, the following
    142 * is true while this function is being run:
    143 *  THREAD_NOFTIFY_SWTICH:
    144 *   - the previously running thread will not be scheduled onto another CPU.
    145 *   - the next thread to be run (v) will not be running on another CPU.
    146 *   - thread->cpu is the local CPU number
    147 *   - not preemptible as we're called in the middle of a thread switch
    148 *  THREAD_NOTIFY_FLUSH:
    149 *   - the thread (v) will be running on the local CPU, so
    150 *	v === current_thread_info()
    151 *   - thread->cpu is the local CPU number at the time it is accessed,
    152 *	but may change at any time.
    153 *   - we could be preempted if tree preempt rcu is enabled, so
    154 *	it is unsafe to use thread->cpu.
    155 *  THREAD_NOTIFY_EXIT
    156 *   - we could be preempted if tree preempt rcu is enabled, so
    157 *	it is unsafe to use thread->cpu.
    158 */
    159static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
    160{
    161	struct thread_info *thread = v;
    162	u32 fpexc;
    163#ifdef CONFIG_SMP
    164	unsigned int cpu;
    165#endif
    166
    167	switch (cmd) {
    168	case THREAD_NOTIFY_SWITCH:
    169		fpexc = fmrx(FPEXC);
    170
    171#ifdef CONFIG_SMP
    172		cpu = thread->cpu;
    173
    174		/*
    175		 * On SMP, if VFP is enabled, save the old state in
    176		 * case the thread migrates to a different CPU. The
    177		 * restoring is done lazily.
    178		 */
    179		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
    180			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
    181#endif
    182
    183		/*
    184		 * Always disable VFP so we can lazily save/restore the
    185		 * old state.
    186		 */
    187		fmxr(FPEXC, fpexc & ~FPEXC_EN);
    188		break;
    189
    190	case THREAD_NOTIFY_FLUSH:
    191		vfp_thread_flush(thread);
    192		break;
    193
    194	case THREAD_NOTIFY_EXIT:
    195		vfp_thread_exit(thread);
    196		break;
    197
    198	case THREAD_NOTIFY_COPY:
    199		vfp_thread_copy(thread);
    200		break;
    201	}
    202
    203	return NOTIFY_DONE;
    204}
    205
    206static struct notifier_block vfp_notifier_block = {
    207	.notifier_call	= vfp_notifier,
    208};
    209
    210/*
    211 * Raise a SIGFPE for the current process.
    212 * sicode describes the signal being raised.
    213 */
    214static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
    215{
    216	/*
    217	 * This is the same as NWFPE, because it's not clear what
    218	 * this is used for
    219	 */
    220	current->thread.error_code = 0;
    221	current->thread.trap_no = 6;
    222
    223	send_sig_fault(SIGFPE, sicode,
    224		       (void __user *)(instruction_pointer(regs) - 4),
    225		       current);
    226}
    227
    228static void vfp_panic(char *reason, u32 inst)
    229{
    230	int i;
    231
    232	pr_err("VFP: Error: %s\n", reason);
    233	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
    234		fmrx(FPEXC), fmrx(FPSCR), inst);
    235	for (i = 0; i < 32; i += 2)
    236		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
    237		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
    238}
    239
    240/*
    241 * Process bitmask of exception conditions.
    242 */
    243static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
    244{
    245	int si_code = 0;
    246
    247	pr_debug("VFP: raising exceptions %08x\n", exceptions);
    248
    249	if (exceptions == VFP_EXCEPTION_ERROR) {
    250		vfp_panic("unhandled bounce", inst);
    251		vfp_raise_sigfpe(FPE_FLTINV, regs);
    252		return;
    253	}
    254
    255	/*
    256	 * If any of the status flags are set, update the FPSCR.
    257	 * Comparison instructions always return at least one of
    258	 * these flags set.
    259	 */
    260	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
    261		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
    262
    263	fpscr |= exceptions;
    264
    265	fmxr(FPSCR, fpscr);
    266
    267#define RAISE(stat,en,sig)				\
    268	if (exceptions & stat && fpscr & en)		\
    269		si_code = sig;
    270
    271	/*
    272	 * These are arranged in priority order, least to highest.
    273	 */
    274	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
    275	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
    276	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
    277	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
    278	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
    279
    280	if (si_code)
    281		vfp_raise_sigfpe(si_code, regs);
    282}
    283
    284/*
    285 * Emulate a VFP instruction.
    286 */
    287static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
    288{
    289	u32 exceptions = VFP_EXCEPTION_ERROR;
    290
    291	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
    292
    293	if (INST_CPRTDO(inst)) {
    294		if (!INST_CPRT(inst)) {
    295			/*
    296			 * CPDO
    297			 */
    298			if (vfp_single(inst)) {
    299				exceptions = vfp_single_cpdo(inst, fpscr);
    300			} else {
    301				exceptions = vfp_double_cpdo(inst, fpscr);
    302			}
    303		} else {
    304			/*
    305			 * A CPRT instruction can not appear in FPINST2, nor
    306			 * can it cause an exception.  Therefore, we do not
    307			 * have to emulate it.
    308			 */
    309		}
    310	} else {
    311		/*
    312		 * A CPDT instruction can not appear in FPINST2, nor can
    313		 * it cause an exception.  Therefore, we do not have to
    314		 * emulate it.
    315		 */
    316	}
    317	return exceptions & ~VFP_NAN_FLAG;
    318}
    319
    320/*
    321 * Package up a bounce condition.
    322 */
    323void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
    324{
    325	u32 fpscr, orig_fpscr, fpsid, exceptions;
    326
    327	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
    328
    329	/*
    330	 * At this point, FPEXC can have the following configuration:
    331	 *
    332	 *  EX DEX IXE
    333	 *  0   1   x   - synchronous exception
    334	 *  1   x   0   - asynchronous exception
    335	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
    336	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
    337	 *                implementation), undefined otherwise
    338	 *
    339	 * Clear various bits and enable access to the VFP so we can
    340	 * handle the bounce.
    341	 */
    342	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
    343
    344	fpsid = fmrx(FPSID);
    345	orig_fpscr = fpscr = fmrx(FPSCR);
    346
    347	/*
    348	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
    349	 */
    350	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
    351	    && (fpscr & FPSCR_IXE)) {
    352		/*
    353		 * Synchronous exception, emulate the trigger instruction
    354		 */
    355		goto emulate;
    356	}
    357
    358	if (fpexc & FPEXC_EX) {
    359#ifndef CONFIG_CPU_FEROCEON
    360		/*
    361		 * Asynchronous exception. The instruction is read from FPINST
    362		 * and the interrupted instruction has to be restarted.
    363		 */
    364		trigger = fmrx(FPINST);
    365		regs->ARM_pc -= 4;
    366#endif
    367	} else if (!(fpexc & FPEXC_DEX)) {
    368		/*
    369		 * Illegal combination of bits. It can be caused by an
    370		 * unallocated VFP instruction but with FPSCR.IXE set and not
    371		 * on VFP subarch 1.
    372		 */
    373		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
    374		goto exit;
    375	}
    376
    377	/*
    378	 * Modify fpscr to indicate the number of iterations remaining.
    379	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
    380	 * whether FPEXC.VECITR or FPSCR.LEN is used.
    381	 */
    382	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
    383		u32 len;
    384
    385		len = fpexc + (1 << FPEXC_LENGTH_BIT);
    386
    387		fpscr &= ~FPSCR_LENGTH_MASK;
    388		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
    389	}
    390
    391	/*
    392	 * Handle the first FP instruction.  We used to take note of the
    393	 * FPEXC bounce reason, but this appears to be unreliable.
    394	 * Emulate the bounced instruction instead.
    395	 */
    396	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
    397	if (exceptions)
    398		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
    399
    400	/*
    401	 * If there isn't a second FP instruction, exit now. Note that
    402	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
    403	 */
    404	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
    405		goto exit;
    406
    407	/*
    408	 * The barrier() here prevents fpinst2 being read
    409	 * before the condition above.
    410	 */
    411	barrier();
    412	trigger = fmrx(FPINST2);
    413
    414 emulate:
    415	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
    416	if (exceptions)
    417		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
    418 exit:
    419	preempt_enable();
    420}
    421
    422static void vfp_enable(void *unused)
    423{
    424	u32 access;
    425
    426	BUG_ON(preemptible());
    427	access = get_copro_access();
    428
    429	/*
    430	 * Enable full access to VFP (cp10 and cp11)
    431	 */
    432	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
    433}
    434
    435/* Called by platforms on which we want to disable VFP because it may not be
    436 * present on all CPUs within a SMP complex. Needs to be called prior to
    437 * vfp_init().
    438 */
    439void __init vfp_disable(void)
    440{
    441	if (VFP_arch) {
    442		pr_debug("%s: should be called prior to vfp_init\n", __func__);
    443		return;
    444	}
    445	VFP_arch = 1;
    446}
    447
    448#ifdef CONFIG_CPU_PM
    449static int vfp_pm_suspend(void)
    450{
    451	struct thread_info *ti = current_thread_info();
    452	u32 fpexc = fmrx(FPEXC);
    453
    454	/* if vfp is on, then save state for resumption */
    455	if (fpexc & FPEXC_EN) {
    456		pr_debug("%s: saving vfp state\n", __func__);
    457		vfp_save_state(&ti->vfpstate, fpexc);
    458
    459		/* disable, just in case */
    460		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
    461	} else if (vfp_current_hw_state[ti->cpu]) {
    462#ifndef CONFIG_SMP
    463		fmxr(FPEXC, fpexc | FPEXC_EN);
    464		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
    465		fmxr(FPEXC, fpexc);
    466#endif
    467	}
    468
    469	/* clear any information we had about last context state */
    470	vfp_current_hw_state[ti->cpu] = NULL;
    471
    472	return 0;
    473}
    474
    475static void vfp_pm_resume(void)
    476{
    477	/* ensure we have access to the vfp */
    478	vfp_enable(NULL);
    479
    480	/* and disable it to ensure the next usage restores the state */
    481	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
    482}
    483
    484static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
    485	void *v)
    486{
    487	switch (cmd) {
    488	case CPU_PM_ENTER:
    489		vfp_pm_suspend();
    490		break;
    491	case CPU_PM_ENTER_FAILED:
    492	case CPU_PM_EXIT:
    493		vfp_pm_resume();
    494		break;
    495	}
    496	return NOTIFY_OK;
    497}
    498
    499static struct notifier_block vfp_cpu_pm_notifier_block = {
    500	.notifier_call = vfp_cpu_pm_notifier,
    501};
    502
    503static void vfp_pm_init(void)
    504{
    505	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
    506}
    507
    508#else
    509static inline void vfp_pm_init(void) { }
    510#endif /* CONFIG_CPU_PM */
    511
    512/*
    513 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
    514 * with the hardware state.
    515 */
    516void vfp_sync_hwstate(struct thread_info *thread)
    517{
    518	unsigned int cpu = get_cpu();
    519
    520	if (vfp_state_in_hw(cpu, thread)) {
    521		u32 fpexc = fmrx(FPEXC);
    522
    523		/*
    524		 * Save the last VFP state on this CPU.
    525		 */
    526		fmxr(FPEXC, fpexc | FPEXC_EN);
    527		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
    528		fmxr(FPEXC, fpexc);
    529	}
    530
    531	put_cpu();
    532}
    533
    534/* Ensure that the thread reloads the hardware VFP state on the next use. */
    535void vfp_flush_hwstate(struct thread_info *thread)
    536{
    537	unsigned int cpu = get_cpu();
    538
    539	vfp_force_reload(cpu, thread);
    540
    541	put_cpu();
    542}
    543
    544/*
    545 * Save the current VFP state into the provided structures and prepare
    546 * for entry into a new function (signal handler).
    547 */
    548int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
    549				    struct user_vfp_exc *ufp_exc)
    550{
    551	struct thread_info *thread = current_thread_info();
    552	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
    553
    554	/* Ensure that the saved hwstate is up-to-date. */
    555	vfp_sync_hwstate(thread);
    556
    557	/*
    558	 * Copy the floating point registers. There can be unused
    559	 * registers see asm/hwcap.h for details.
    560	 */
    561	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
    562
    563	/*
    564	 * Copy the status and control register.
    565	 */
    566	ufp->fpscr = hwstate->fpscr;
    567
    568	/*
    569	 * Copy the exception registers.
    570	 */
    571	ufp_exc->fpexc = hwstate->fpexc;
    572	ufp_exc->fpinst = hwstate->fpinst;
    573	ufp_exc->fpinst2 = hwstate->fpinst2;
    574
    575	/* Ensure that VFP is disabled. */
    576	vfp_flush_hwstate(thread);
    577
    578	/*
    579	 * As per the PCS, clear the length and stride bits for function
    580	 * entry.
    581	 */
    582	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
    583	return 0;
    584}
    585
    586/* Sanitise and restore the current VFP state from the provided structures. */
    587int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
    588{
    589	struct thread_info *thread = current_thread_info();
    590	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
    591	unsigned long fpexc;
    592
    593	/* Disable VFP to avoid corrupting the new thread state. */
    594	vfp_flush_hwstate(thread);
    595
    596	/*
    597	 * Copy the floating point registers. There can be unused
    598	 * registers see asm/hwcap.h for details.
    599	 */
    600	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
    601	/*
    602	 * Copy the status and control register.
    603	 */
    604	hwstate->fpscr = ufp->fpscr;
    605
    606	/*
    607	 * Sanitise and restore the exception registers.
    608	 */
    609	fpexc = ufp_exc->fpexc;
    610
    611	/* Ensure the VFP is enabled. */
    612	fpexc |= FPEXC_EN;
    613
    614	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
    615	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
    616	hwstate->fpexc = fpexc;
    617
    618	hwstate->fpinst = ufp_exc->fpinst;
    619	hwstate->fpinst2 = ufp_exc->fpinst2;
    620
    621	return 0;
    622}
    623
    624/*
    625 * VFP hardware can lose all context when a CPU goes offline.
    626 * As we will be running in SMP mode with CPU hotplug, we will save the
    627 * hardware state at every thread switch.  We clear our held state when
    628 * a CPU has been killed, indicating that the VFP hardware doesn't contain
    629 * a threads VFP state.  When a CPU starts up, we re-enable access to the
    630 * VFP hardware. The callbacks below are called on the CPU which
    631 * is being offlined/onlined.
    632 */
    633static int vfp_dying_cpu(unsigned int cpu)
    634{
    635	vfp_current_hw_state[cpu] = NULL;
    636	return 0;
    637}
    638
    639static int vfp_starting_cpu(unsigned int unused)
    640{
    641	vfp_enable(NULL);
    642	return 0;
    643}
    644
    645#ifdef CONFIG_KERNEL_MODE_NEON
    646
    647static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
    648{
    649	/*
    650	 * If we reach this point, a floating point exception has been raised
    651	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
    652	 * time, it means a VFP instruction has been issued that requires
    653	 * software assistance to complete, something which is not currently
    654	 * supported in kernel mode.
    655	 * If the NEON/VFP unit was disabled, and the location pointed to below
    656	 * is properly preceded by a call to kernel_neon_begin(), something has
    657	 * caused the task to be scheduled out and back in again. In this case,
    658	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
    659	 * be helpful in localizing the problem.
    660	 */
    661	if (fmrx(FPEXC) & FPEXC_EN)
    662		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
    663	else
    664		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
    665	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
    666	return 1;
    667}
    668
    669static struct undef_hook vfp_kmode_exception_hook[] = {{
    670	.instr_mask	= 0xfe000000,
    671	.instr_val	= 0xf2000000,
    672	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
    673	.cpsr_val	= SVC_MODE,
    674	.fn		= vfp_kmode_exception,
    675}, {
    676	.instr_mask	= 0xff100000,
    677	.instr_val	= 0xf4000000,
    678	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
    679	.cpsr_val	= SVC_MODE,
    680	.fn		= vfp_kmode_exception,
    681}, {
    682	.instr_mask	= 0xef000000,
    683	.instr_val	= 0xef000000,
    684	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
    685	.cpsr_val	= SVC_MODE | PSR_T_BIT,
    686	.fn		= vfp_kmode_exception,
    687}, {
    688	.instr_mask	= 0xff100000,
    689	.instr_val	= 0xf9000000,
    690	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
    691	.cpsr_val	= SVC_MODE | PSR_T_BIT,
    692	.fn		= vfp_kmode_exception,
    693}, {
    694	.instr_mask	= 0x0c000e00,
    695	.instr_val	= 0x0c000a00,
    696	.cpsr_mask	= MODE_MASK,
    697	.cpsr_val	= SVC_MODE,
    698	.fn		= vfp_kmode_exception,
    699}};
    700
    701static int __init vfp_kmode_exception_hook_init(void)
    702{
    703	int i;
    704
    705	for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
    706		register_undef_hook(&vfp_kmode_exception_hook[i]);
    707	return 0;
    708}
    709subsys_initcall(vfp_kmode_exception_hook_init);
    710
    711/*
    712 * Kernel-side NEON support functions
    713 */
    714void kernel_neon_begin(void)
    715{
    716	struct thread_info *thread = current_thread_info();
    717	unsigned int cpu;
    718	u32 fpexc;
    719
    720	/*
    721	 * Kernel mode NEON is only allowed outside of interrupt context
    722	 * with preemption disabled. This will make sure that the kernel
    723	 * mode NEON register contents never need to be preserved.
    724	 */
    725	BUG_ON(in_interrupt());
    726	cpu = get_cpu();
    727
    728	fpexc = fmrx(FPEXC) | FPEXC_EN;
    729	fmxr(FPEXC, fpexc);
    730
    731	/*
    732	 * Save the userland NEON/VFP state. Under UP,
    733	 * the owner could be a task other than 'current'
    734	 */
    735	if (vfp_state_in_hw(cpu, thread))
    736		vfp_save_state(&thread->vfpstate, fpexc);
    737#ifndef CONFIG_SMP
    738	else if (vfp_current_hw_state[cpu] != NULL)
    739		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
    740#endif
    741	vfp_current_hw_state[cpu] = NULL;
    742}
    743EXPORT_SYMBOL(kernel_neon_begin);
    744
    745void kernel_neon_end(void)
    746{
    747	/* Disable the NEON/VFP unit. */
    748	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
    749	put_cpu();
    750}
    751EXPORT_SYMBOL(kernel_neon_end);
    752
    753#endif /* CONFIG_KERNEL_MODE_NEON */
    754
    755static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
    756{
    757	VFP_arch = UINT_MAX;	/* mark as not present */
    758	regs->ARM_pc += 4;
    759	return 0;
    760}
    761
    762static struct undef_hook vfp_detect_hook __initdata = {
    763	.instr_mask	= 0x0c000e00,
    764	.instr_val	= 0x0c000a00,
    765	.cpsr_mask	= MODE_MASK,
    766	.cpsr_val	= SVC_MODE,
    767	.fn		= vfp_detect,
    768};
    769
    770/*
    771 * VFP support code initialisation.
    772 */
    773static int __init vfp_init(void)
    774{
    775	unsigned int vfpsid;
    776	unsigned int cpu_arch = cpu_architecture();
    777
    778	/*
    779	 * Enable the access to the VFP on all online CPUs so the
    780	 * following test on FPSID will succeed.
    781	 */
    782	if (cpu_arch >= CPU_ARCH_ARMv6)
    783		on_each_cpu(vfp_enable, NULL, 1);
    784
    785	/*
    786	 * First check that there is a VFP that we can use.
    787	 * The handler is already setup to just log calls, so
    788	 * we just need to read the VFPSID register.
    789	 */
    790	register_undef_hook(&vfp_detect_hook);
    791	barrier();
    792	vfpsid = fmrx(FPSID);
    793	barrier();
    794	unregister_undef_hook(&vfp_detect_hook);
    795	vfp_vector = vfp_null_entry;
    796
    797	pr_info("VFP support v0.3: ");
    798	if (VFP_arch) {
    799		pr_cont("not present\n");
    800		return 0;
    801	/* Extract the architecture on CPUID scheme */
    802	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
    803		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
    804		VFP_arch >>= FPSID_ARCH_BIT;
    805		/*
    806		 * Check for the presence of the Advanced SIMD
    807		 * load/store instructions, integer and single
    808		 * precision floating point operations. Only check
    809		 * for NEON if the hardware has the MVFR registers.
    810		 */
    811		if (IS_ENABLED(CONFIG_NEON) &&
    812		   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
    813			elf_hwcap |= HWCAP_NEON;
    814
    815		if (IS_ENABLED(CONFIG_VFPv3)) {
    816			u32 mvfr0 = fmrx(MVFR0);
    817			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
    818			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
    819				elf_hwcap |= HWCAP_VFPv3;
    820				/*
    821				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
    822				 * this configuration only have 16 x 64bit
    823				 * registers.
    824				 */
    825				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
    826					/* also v4-D16 */
    827					elf_hwcap |= HWCAP_VFPv3D16;
    828				else
    829					elf_hwcap |= HWCAP_VFPD32;
    830			}
    831
    832			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
    833				elf_hwcap |= HWCAP_VFPv4;
    834		}
    835	/* Extract the architecture version on pre-cpuid scheme */
    836	} else {
    837		if (vfpsid & FPSID_NODOUBLE) {
    838			pr_cont("no double precision support\n");
    839			return 0;
    840		}
    841
    842		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
    843	}
    844
    845	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
    846				  "arm/vfp:starting", vfp_starting_cpu,
    847				  vfp_dying_cpu);
    848
    849	vfp_vector = vfp_support_entry;
    850
    851	thread_register_notifier(&vfp_notifier_block);
    852	vfp_pm_init();
    853
    854	/*
    855	 * We detected VFP, and the support code is
    856	 * in place; report VFP support to userspace.
    857	 */
    858	elf_hwcap |= HWCAP_VFP;
    859
    860	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
    861		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
    862		VFP_arch,
    863		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
    864		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
    865		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
    866
    867	return 0;
    868}
    869
    870core_initcall(vfp_init);