cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

vfpsingle.c (29622B)


      1/*
      2 *  linux/arch/arm/vfp/vfpsingle.c
      3 *
      4 * This code is derived in part from John R. Housers softfloat library, which
      5 * carries the following notice:
      6 *
      7 * ===========================================================================
      8 * This C source file is part of the SoftFloat IEC/IEEE Floating-point
      9 * Arithmetic Package, Release 2.
     10 *
     11 * Written by John R. Hauser.  This work was made possible in part by the
     12 * International Computer Science Institute, located at Suite 600, 1947 Center
     13 * Street, Berkeley, California 94704.  Funding was partially provided by the
     14 * National Science Foundation under grant MIP-9311980.  The original version
     15 * of this code was written as part of a project to build a fixed-point vector
     16 * processor in collaboration with the University of California at Berkeley,
     17 * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
     18 * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
     19 * arithmetic/softfloat.html'.
     20 *
     21 * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
     22 * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
     23 * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
     24 * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
     25 * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
     26 *
     27 * Derivative works are acceptable, even for commercial purposes, so long as
     28 * (1) they include prominent notice that the work is derivative, and (2) they
     29 * include prominent notice akin to these three paragraphs for those parts of
     30 * this code that are retained.
     31 * ===========================================================================
     32 */
     33#include <linux/kernel.h>
     34#include <linux/bitops.h>
     35
     36#include <asm/div64.h>
     37#include <asm/vfp.h>
     38
     39#include "vfpinstr.h"
     40#include "vfp.h"
     41
     42static struct vfp_single vfp_single_default_qnan = {
     43	.exponent	= 255,
     44	.sign		= 0,
     45	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
     46};
     47
     48static void vfp_single_dump(const char *str, struct vfp_single *s)
     49{
     50	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
     51		 str, s->sign != 0, s->exponent, s->significand);
     52}
     53
     54static void vfp_single_normalise_denormal(struct vfp_single *vs)
     55{
     56	int bits = 31 - fls(vs->significand);
     57
     58	vfp_single_dump("normalise_denormal: in", vs);
     59
     60	if (bits) {
     61		vs->exponent -= bits - 1;
     62		vs->significand <<= bits;
     63	}
     64
     65	vfp_single_dump("normalise_denormal: out", vs);
     66}
     67
     68#ifndef DEBUG
     69#define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
     70u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
     71#else
     72u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
     73#endif
     74{
     75	u32 significand, incr, rmode;
     76	int exponent, shift, underflow;
     77
     78	vfp_single_dump("pack: in", vs);
     79
     80	/*
     81	 * Infinities and NaNs are a special case.
     82	 */
     83	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
     84		goto pack;
     85
     86	/*
     87	 * Special-case zero.
     88	 */
     89	if (vs->significand == 0) {
     90		vs->exponent = 0;
     91		goto pack;
     92	}
     93
     94	exponent = vs->exponent;
     95	significand = vs->significand;
     96
     97	/*
     98	 * Normalise first.  Note that we shift the significand up to
     99	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
    100	 * significant bit.
    101	 */
    102	shift = 32 - fls(significand);
    103	if (shift < 32 && shift) {
    104		exponent -= shift;
    105		significand <<= shift;
    106	}
    107
    108#ifdef DEBUG
    109	vs->exponent = exponent;
    110	vs->significand = significand;
    111	vfp_single_dump("pack: normalised", vs);
    112#endif
    113
    114	/*
    115	 * Tiny number?
    116	 */
    117	underflow = exponent < 0;
    118	if (underflow) {
    119		significand = vfp_shiftright32jamming(significand, -exponent);
    120		exponent = 0;
    121#ifdef DEBUG
    122		vs->exponent = exponent;
    123		vs->significand = significand;
    124		vfp_single_dump("pack: tiny number", vs);
    125#endif
    126		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
    127			underflow = 0;
    128	}
    129
    130	/*
    131	 * Select rounding increment.
    132	 */
    133	incr = 0;
    134	rmode = fpscr & FPSCR_RMODE_MASK;
    135
    136	if (rmode == FPSCR_ROUND_NEAREST) {
    137		incr = 1 << VFP_SINGLE_LOW_BITS;
    138		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
    139			incr -= 1;
    140	} else if (rmode == FPSCR_ROUND_TOZERO) {
    141		incr = 0;
    142	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
    143		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
    144
    145	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
    146
    147	/*
    148	 * Is our rounding going to overflow?
    149	 */
    150	if ((significand + incr) < significand) {
    151		exponent += 1;
    152		significand = (significand >> 1) | (significand & 1);
    153		incr >>= 1;
    154#ifdef DEBUG
    155		vs->exponent = exponent;
    156		vs->significand = significand;
    157		vfp_single_dump("pack: overflow", vs);
    158#endif
    159	}
    160
    161	/*
    162	 * If any of the low bits (which will be shifted out of the
    163	 * number) are non-zero, the result is inexact.
    164	 */
    165	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
    166		exceptions |= FPSCR_IXC;
    167
    168	/*
    169	 * Do our rounding.
    170	 */
    171	significand += incr;
    172
    173	/*
    174	 * Infinity?
    175	 */
    176	if (exponent >= 254) {
    177		exceptions |= FPSCR_OFC | FPSCR_IXC;
    178		if (incr == 0) {
    179			vs->exponent = 253;
    180			vs->significand = 0x7fffffff;
    181		} else {
    182			vs->exponent = 255;		/* infinity */
    183			vs->significand = 0;
    184		}
    185	} else {
    186		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
    187			exponent = 0;
    188		if (exponent || significand > 0x80000000)
    189			underflow = 0;
    190		if (underflow)
    191			exceptions |= FPSCR_UFC;
    192		vs->exponent = exponent;
    193		vs->significand = significand >> 1;
    194	}
    195
    196 pack:
    197	vfp_single_dump("pack: final", vs);
    198	{
    199		s32 d = vfp_single_pack(vs);
    200#ifdef DEBUG
    201		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
    202			 sd, d, exceptions);
    203#endif
    204		vfp_put_float(d, sd);
    205	}
    206
    207	return exceptions;
    208}
    209
    210/*
    211 * Propagate the NaN, setting exceptions if it is signalling.
    212 * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
    213 */
    214static u32
    215vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
    216		  struct vfp_single *vsm, u32 fpscr)
    217{
    218	struct vfp_single *nan;
    219	int tn, tm = 0;
    220
    221	tn = vfp_single_type(vsn);
    222
    223	if (vsm)
    224		tm = vfp_single_type(vsm);
    225
    226	if (fpscr & FPSCR_DEFAULT_NAN)
    227		/*
    228		 * Default NaN mode - always returns a quiet NaN
    229		 */
    230		nan = &vfp_single_default_qnan;
    231	else {
    232		/*
    233		 * Contemporary mode - select the first signalling
    234		 * NAN, or if neither are signalling, the first
    235		 * quiet NAN.
    236		 */
    237		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
    238			nan = vsn;
    239		else
    240			nan = vsm;
    241		/*
    242		 * Make the NaN quiet.
    243		 */
    244		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
    245	}
    246
    247	*vsd = *nan;
    248
    249	/*
    250	 * If one was a signalling NAN, raise invalid operation.
    251	 */
    252	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
    253}
    254
    255
    256/*
    257 * Extended operations
    258 */
    259static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
    260{
    261	vfp_put_float(vfp_single_packed_abs(m), sd);
    262	return 0;
    263}
    264
    265static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
    266{
    267	vfp_put_float(m, sd);
    268	return 0;
    269}
    270
    271static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
    272{
    273	vfp_put_float(vfp_single_packed_negate(m), sd);
    274	return 0;
    275}
    276
    277static const u16 sqrt_oddadjust[] = {
    278	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
    279	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
    280};
    281
    282static const u16 sqrt_evenadjust[] = {
    283	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
    284	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
    285};
    286
    287u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
    288{
    289	int index;
    290	u32 z, a;
    291
    292	if ((significand & 0xc0000000) != 0x40000000) {
    293		pr_warn("VFP: estimate_sqrt: invalid significand\n");
    294	}
    295
    296	a = significand << 1;
    297	index = (a >> 27) & 15;
    298	if (exponent & 1) {
    299		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
    300		z = ((a / z) << 14) + (z << 15);
    301		a >>= 1;
    302	} else {
    303		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
    304		z = a / z + z;
    305		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
    306		if (z <= a)
    307			return (s32)a >> 1;
    308	}
    309	{
    310		u64 v = (u64)a << 31;
    311		do_div(v, z);
    312		return v + (z >> 1);
    313	}
    314}
    315
    316static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
    317{
    318	struct vfp_single vsm, vsd;
    319	int ret, tm;
    320
    321	vfp_single_unpack(&vsm, m);
    322	tm = vfp_single_type(&vsm);
    323	if (tm & (VFP_NAN|VFP_INFINITY)) {
    324		struct vfp_single *vsp = &vsd;
    325
    326		if (tm & VFP_NAN)
    327			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
    328		else if (vsm.sign == 0) {
    329 sqrt_copy:
    330			vsp = &vsm;
    331			ret = 0;
    332		} else {
    333 sqrt_invalid:
    334			vsp = &vfp_single_default_qnan;
    335			ret = FPSCR_IOC;
    336		}
    337		vfp_put_float(vfp_single_pack(vsp), sd);
    338		return ret;
    339	}
    340
    341	/*
    342	 * sqrt(+/- 0) == +/- 0
    343	 */
    344	if (tm & VFP_ZERO)
    345		goto sqrt_copy;
    346
    347	/*
    348	 * Normalise a denormalised number
    349	 */
    350	if (tm & VFP_DENORMAL)
    351		vfp_single_normalise_denormal(&vsm);
    352
    353	/*
    354	 * sqrt(<0) = invalid
    355	 */
    356	if (vsm.sign)
    357		goto sqrt_invalid;
    358
    359	vfp_single_dump("sqrt", &vsm);
    360
    361	/*
    362	 * Estimate the square root.
    363	 */
    364	vsd.sign = 0;
    365	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
    366	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
    367
    368	vfp_single_dump("sqrt estimate", &vsd);
    369
    370	/*
    371	 * And now adjust.
    372	 */
    373	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
    374		if (vsd.significand < 2) {
    375			vsd.significand = 0xffffffff;
    376		} else {
    377			u64 term;
    378			s64 rem;
    379			vsm.significand <<= !(vsm.exponent & 1);
    380			term = (u64)vsd.significand * vsd.significand;
    381			rem = ((u64)vsm.significand << 32) - term;
    382
    383			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
    384
    385			while (rem < 0) {
    386				vsd.significand -= 1;
    387				rem += ((u64)vsd.significand << 1) | 1;
    388			}
    389			vsd.significand |= rem != 0;
    390		}
    391	}
    392	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
    393
    394	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
    395}
    396
    397/*
    398 * Equal	:= ZC
    399 * Less than	:= N
    400 * Greater than	:= C
    401 * Unordered	:= CV
    402 */
    403static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
    404{
    405	s32 d;
    406	u32 ret = 0;
    407
    408	d = vfp_get_float(sd);
    409	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
    410		ret |= FPSCR_C | FPSCR_V;
    411		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
    412			/*
    413			 * Signalling NaN, or signalling on quiet NaN
    414			 */
    415			ret |= FPSCR_IOC;
    416	}
    417
    418	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
    419		ret |= FPSCR_C | FPSCR_V;
    420		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
    421			/*
    422			 * Signalling NaN, or signalling on quiet NaN
    423			 */
    424			ret |= FPSCR_IOC;
    425	}
    426
    427	if (ret == 0) {
    428		if (d == m || vfp_single_packed_abs(d | m) == 0) {
    429			/*
    430			 * equal
    431			 */
    432			ret |= FPSCR_Z | FPSCR_C;
    433		} else if (vfp_single_packed_sign(d ^ m)) {
    434			/*
    435			 * different signs
    436			 */
    437			if (vfp_single_packed_sign(d))
    438				/*
    439				 * d is negative, so d < m
    440				 */
    441				ret |= FPSCR_N;
    442			else
    443				/*
    444				 * d is positive, so d > m
    445				 */
    446				ret |= FPSCR_C;
    447		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
    448			/*
    449			 * d < m
    450			 */
    451			ret |= FPSCR_N;
    452		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
    453			/*
    454			 * d > m
    455			 */
    456			ret |= FPSCR_C;
    457		}
    458	}
    459	return ret;
    460}
    461
    462static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
    463{
    464	return vfp_compare(sd, 0, m, fpscr);
    465}
    466
    467static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
    468{
    469	return vfp_compare(sd, 1, m, fpscr);
    470}
    471
    472static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
    473{
    474	return vfp_compare(sd, 0, 0, fpscr);
    475}
    476
    477static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
    478{
    479	return vfp_compare(sd, 1, 0, fpscr);
    480}
    481
    482static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
    483{
    484	struct vfp_single vsm;
    485	struct vfp_double vdd;
    486	int tm;
    487	u32 exceptions = 0;
    488
    489	vfp_single_unpack(&vsm, m);
    490
    491	tm = vfp_single_type(&vsm);
    492
    493	/*
    494	 * If we have a signalling NaN, signal invalid operation.
    495	 */
    496	if (tm == VFP_SNAN)
    497		exceptions = FPSCR_IOC;
    498
    499	if (tm & VFP_DENORMAL)
    500		vfp_single_normalise_denormal(&vsm);
    501
    502	vdd.sign = vsm.sign;
    503	vdd.significand = (u64)vsm.significand << 32;
    504
    505	/*
    506	 * If we have an infinity or NaN, the exponent must be 2047.
    507	 */
    508	if (tm & (VFP_INFINITY|VFP_NAN)) {
    509		vdd.exponent = 2047;
    510		if (tm == VFP_QNAN)
    511			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
    512		goto pack_nan;
    513	} else if (tm & VFP_ZERO)
    514		vdd.exponent = 0;
    515	else
    516		vdd.exponent = vsm.exponent + (1023 - 127);
    517
    518	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
    519
    520 pack_nan:
    521	vfp_put_double(vfp_double_pack(&vdd), dd);
    522	return exceptions;
    523}
    524
    525static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
    526{
    527	struct vfp_single vs;
    528
    529	vs.sign = 0;
    530	vs.exponent = 127 + 31 - 1;
    531	vs.significand = (u32)m;
    532
    533	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
    534}
    535
    536static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
    537{
    538	struct vfp_single vs;
    539
    540	vs.sign = (m & 0x80000000) >> 16;
    541	vs.exponent = 127 + 31 - 1;
    542	vs.significand = vs.sign ? -m : m;
    543
    544	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
    545}
    546
    547static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
    548{
    549	struct vfp_single vsm;
    550	u32 d, exceptions = 0;
    551	int rmode = fpscr & FPSCR_RMODE_MASK;
    552	int tm;
    553
    554	vfp_single_unpack(&vsm, m);
    555	vfp_single_dump("VSM", &vsm);
    556
    557	/*
    558	 * Do we have a denormalised number?
    559	 */
    560	tm = vfp_single_type(&vsm);
    561	if (tm & VFP_DENORMAL)
    562		exceptions |= FPSCR_IDC;
    563
    564	if (tm & VFP_NAN)
    565		vsm.sign = 0;
    566
    567	if (vsm.exponent >= 127 + 32) {
    568		d = vsm.sign ? 0 : 0xffffffff;
    569		exceptions = FPSCR_IOC;
    570	} else if (vsm.exponent >= 127 - 1) {
    571		int shift = 127 + 31 - vsm.exponent;
    572		u32 rem, incr = 0;
    573
    574		/*
    575		 * 2^0 <= m < 2^32-2^8
    576		 */
    577		d = (vsm.significand << 1) >> shift;
    578		rem = vsm.significand << (33 - shift);
    579
    580		if (rmode == FPSCR_ROUND_NEAREST) {
    581			incr = 0x80000000;
    582			if ((d & 1) == 0)
    583				incr -= 1;
    584		} else if (rmode == FPSCR_ROUND_TOZERO) {
    585			incr = 0;
    586		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
    587			incr = ~0;
    588		}
    589
    590		if ((rem + incr) < rem) {
    591			if (d < 0xffffffff)
    592				d += 1;
    593			else
    594				exceptions |= FPSCR_IOC;
    595		}
    596
    597		if (d && vsm.sign) {
    598			d = 0;
    599			exceptions |= FPSCR_IOC;
    600		} else if (rem)
    601			exceptions |= FPSCR_IXC;
    602	} else {
    603		d = 0;
    604		if (vsm.exponent | vsm.significand) {
    605			exceptions |= FPSCR_IXC;
    606			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
    607				d = 1;
    608			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
    609				d = 0;
    610				exceptions |= FPSCR_IOC;
    611			}
    612		}
    613	}
    614
    615	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
    616
    617	vfp_put_float(d, sd);
    618
    619	return exceptions;
    620}
    621
    622static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
    623{
    624	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
    625}
    626
    627static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
    628{
    629	struct vfp_single vsm;
    630	u32 d, exceptions = 0;
    631	int rmode = fpscr & FPSCR_RMODE_MASK;
    632	int tm;
    633
    634	vfp_single_unpack(&vsm, m);
    635	vfp_single_dump("VSM", &vsm);
    636
    637	/*
    638	 * Do we have a denormalised number?
    639	 */
    640	tm = vfp_single_type(&vsm);
    641	if (vfp_single_type(&vsm) & VFP_DENORMAL)
    642		exceptions |= FPSCR_IDC;
    643
    644	if (tm & VFP_NAN) {
    645		d = 0;
    646		exceptions |= FPSCR_IOC;
    647	} else if (vsm.exponent >= 127 + 32) {
    648		/*
    649		 * m >= 2^31-2^7: invalid
    650		 */
    651		d = 0x7fffffff;
    652		if (vsm.sign)
    653			d = ~d;
    654		exceptions |= FPSCR_IOC;
    655	} else if (vsm.exponent >= 127 - 1) {
    656		int shift = 127 + 31 - vsm.exponent;
    657		u32 rem, incr = 0;
    658
    659		/* 2^0 <= m <= 2^31-2^7 */
    660		d = (vsm.significand << 1) >> shift;
    661		rem = vsm.significand << (33 - shift);
    662
    663		if (rmode == FPSCR_ROUND_NEAREST) {
    664			incr = 0x80000000;
    665			if ((d & 1) == 0)
    666				incr -= 1;
    667		} else if (rmode == FPSCR_ROUND_TOZERO) {
    668			incr = 0;
    669		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
    670			incr = ~0;
    671		}
    672
    673		if ((rem + incr) < rem && d < 0xffffffff)
    674			d += 1;
    675		if (d > 0x7fffffff + (vsm.sign != 0)) {
    676			d = 0x7fffffff + (vsm.sign != 0);
    677			exceptions |= FPSCR_IOC;
    678		} else if (rem)
    679			exceptions |= FPSCR_IXC;
    680
    681		if (vsm.sign)
    682			d = -d;
    683	} else {
    684		d = 0;
    685		if (vsm.exponent | vsm.significand) {
    686			exceptions |= FPSCR_IXC;
    687			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
    688				d = 1;
    689			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
    690				d = -1;
    691		}
    692	}
    693
    694	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
    695
    696	vfp_put_float((s32)d, sd);
    697
    698	return exceptions;
    699}
    700
    701static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
    702{
    703	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
    704}
    705
    706static struct op fops_ext[32] = {
    707	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },
    708	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },
    709	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },
    710	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },
    711	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },
    712	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },
    713	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },
    714	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },
    715	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },
    716	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },
    717	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },
    718	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },
    719	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },
    720	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },
    721	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },
    722};
    723
    724
    725
    726
    727
    728static u32
    729vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
    730			  struct vfp_single *vsm, u32 fpscr)
    731{
    732	struct vfp_single *vsp;
    733	u32 exceptions = 0;
    734	int tn, tm;
    735
    736	tn = vfp_single_type(vsn);
    737	tm = vfp_single_type(vsm);
    738
    739	if (tn & tm & VFP_INFINITY) {
    740		/*
    741		 * Two infinities.  Are they different signs?
    742		 */
    743		if (vsn->sign ^ vsm->sign) {
    744			/*
    745			 * different signs -> invalid
    746			 */
    747			exceptions = FPSCR_IOC;
    748			vsp = &vfp_single_default_qnan;
    749		} else {
    750			/*
    751			 * same signs -> valid
    752			 */
    753			vsp = vsn;
    754		}
    755	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
    756		/*
    757		 * One infinity and one number -> infinity
    758		 */
    759		vsp = vsn;
    760	} else {
    761		/*
    762		 * 'n' is a NaN of some type
    763		 */
    764		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
    765	}
    766	*vsd = *vsp;
    767	return exceptions;
    768}
    769
    770static u32
    771vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
    772	       struct vfp_single *vsm, u32 fpscr)
    773{
    774	u32 exp_diff, m_sig;
    775
    776	if (vsn->significand & 0x80000000 ||
    777	    vsm->significand & 0x80000000) {
    778		pr_info("VFP: bad FP values in %s\n", __func__);
    779		vfp_single_dump("VSN", vsn);
    780		vfp_single_dump("VSM", vsm);
    781	}
    782
    783	/*
    784	 * Ensure that 'n' is the largest magnitude number.  Note that
    785	 * if 'n' and 'm' have equal exponents, we do not swap them.
    786	 * This ensures that NaN propagation works correctly.
    787	 */
    788	if (vsn->exponent < vsm->exponent) {
    789		struct vfp_single *t = vsn;
    790		vsn = vsm;
    791		vsm = t;
    792	}
    793
    794	/*
    795	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
    796	 * infinity or a NaN here.
    797	 */
    798	if (vsn->exponent == 255)
    799		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
    800
    801	/*
    802	 * We have two proper numbers, where 'vsn' is the larger magnitude.
    803	 *
    804	 * Copy 'n' to 'd' before doing the arithmetic.
    805	 */
    806	*vsd = *vsn;
    807
    808	/*
    809	 * Align both numbers.
    810	 */
    811	exp_diff = vsn->exponent - vsm->exponent;
    812	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
    813
    814	/*
    815	 * If the signs are different, we are really subtracting.
    816	 */
    817	if (vsn->sign ^ vsm->sign) {
    818		m_sig = vsn->significand - m_sig;
    819		if ((s32)m_sig < 0) {
    820			vsd->sign = vfp_sign_negate(vsd->sign);
    821			m_sig = -m_sig;
    822		} else if (m_sig == 0) {
    823			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
    824				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
    825		}
    826	} else {
    827		m_sig = vsn->significand + m_sig;
    828	}
    829	vsd->significand = m_sig;
    830
    831	return 0;
    832}
    833
    834static u32
    835vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
    836{
    837	vfp_single_dump("VSN", vsn);
    838	vfp_single_dump("VSM", vsm);
    839
    840	/*
    841	 * Ensure that 'n' is the largest magnitude number.  Note that
    842	 * if 'n' and 'm' have equal exponents, we do not swap them.
    843	 * This ensures that NaN propagation works correctly.
    844	 */
    845	if (vsn->exponent < vsm->exponent) {
    846		struct vfp_single *t = vsn;
    847		vsn = vsm;
    848		vsm = t;
    849		pr_debug("VFP: swapping M <-> N\n");
    850	}
    851
    852	vsd->sign = vsn->sign ^ vsm->sign;
    853
    854	/*
    855	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
    856	 */
    857	if (vsn->exponent == 255) {
    858		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
    859			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
    860		if ((vsm->exponent | vsm->significand) == 0) {
    861			*vsd = vfp_single_default_qnan;
    862			return FPSCR_IOC;
    863		}
    864		vsd->exponent = vsn->exponent;
    865		vsd->significand = 0;
    866		return 0;
    867	}
    868
    869	/*
    870	 * If 'm' is zero, the result is always zero.  In this case,
    871	 * 'n' may be zero or a number, but it doesn't matter which.
    872	 */
    873	if ((vsm->exponent | vsm->significand) == 0) {
    874		vsd->exponent = 0;
    875		vsd->significand = 0;
    876		return 0;
    877	}
    878
    879	/*
    880	 * We add 2 to the destination exponent for the same reason as
    881	 * the addition case - though this time we have +1 from each
    882	 * input operand.
    883	 */
    884	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
    885	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
    886
    887	vfp_single_dump("VSD", vsd);
    888	return 0;
    889}
    890
    891#define NEG_MULTIPLY	(1 << 0)
    892#define NEG_SUBTRACT	(1 << 1)
    893
    894static u32
    895vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
    896{
    897	struct vfp_single vsd, vsp, vsn, vsm;
    898	u32 exceptions;
    899	s32 v;
    900
    901	v = vfp_get_float(sn);
    902	pr_debug("VFP: s%u = %08x\n", sn, v);
    903	vfp_single_unpack(&vsn, v);
    904	if (vsn.exponent == 0 && vsn.significand)
    905		vfp_single_normalise_denormal(&vsn);
    906
    907	vfp_single_unpack(&vsm, m);
    908	if (vsm.exponent == 0 && vsm.significand)
    909		vfp_single_normalise_denormal(&vsm);
    910
    911	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
    912	if (negate & NEG_MULTIPLY)
    913		vsp.sign = vfp_sign_negate(vsp.sign);
    914
    915	v = vfp_get_float(sd);
    916	pr_debug("VFP: s%u = %08x\n", sd, v);
    917	vfp_single_unpack(&vsn, v);
    918	if (vsn.exponent == 0 && vsn.significand)
    919		vfp_single_normalise_denormal(&vsn);
    920	if (negate & NEG_SUBTRACT)
    921		vsn.sign = vfp_sign_negate(vsn.sign);
    922
    923	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
    924
    925	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
    926}
    927
    928/*
    929 * Standard operations
    930 */
    931
    932/*
    933 * sd = sd + (sn * sm)
    934 */
    935static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
    936{
    937	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
    938}
    939
    940/*
    941 * sd = sd - (sn * sm)
    942 */
    943static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
    944{
    945	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
    946}
    947
    948/*
    949 * sd = -sd + (sn * sm)
    950 */
    951static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
    952{
    953	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
    954}
    955
    956/*
    957 * sd = -sd - (sn * sm)
    958 */
    959static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
    960{
    961	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
    962}
    963
    964/*
    965 * sd = sn * sm
    966 */
    967static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
    968{
    969	struct vfp_single vsd, vsn, vsm;
    970	u32 exceptions;
    971	s32 n = vfp_get_float(sn);
    972
    973	pr_debug("VFP: s%u = %08x\n", sn, n);
    974
    975	vfp_single_unpack(&vsn, n);
    976	if (vsn.exponent == 0 && vsn.significand)
    977		vfp_single_normalise_denormal(&vsn);
    978
    979	vfp_single_unpack(&vsm, m);
    980	if (vsm.exponent == 0 && vsm.significand)
    981		vfp_single_normalise_denormal(&vsm);
    982
    983	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
    984	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
    985}
    986
    987/*
    988 * sd = -(sn * sm)
    989 */
    990static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
    991{
    992	struct vfp_single vsd, vsn, vsm;
    993	u32 exceptions;
    994	s32 n = vfp_get_float(sn);
    995
    996	pr_debug("VFP: s%u = %08x\n", sn, n);
    997
    998	vfp_single_unpack(&vsn, n);
    999	if (vsn.exponent == 0 && vsn.significand)
   1000		vfp_single_normalise_denormal(&vsn);
   1001
   1002	vfp_single_unpack(&vsm, m);
   1003	if (vsm.exponent == 0 && vsm.significand)
   1004		vfp_single_normalise_denormal(&vsm);
   1005
   1006	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
   1007	vsd.sign = vfp_sign_negate(vsd.sign);
   1008	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
   1009}
   1010
   1011/*
   1012 * sd = sn + sm
   1013 */
   1014static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
   1015{
   1016	struct vfp_single vsd, vsn, vsm;
   1017	u32 exceptions;
   1018	s32 n = vfp_get_float(sn);
   1019
   1020	pr_debug("VFP: s%u = %08x\n", sn, n);
   1021
   1022	/*
   1023	 * Unpack and normalise denormals.
   1024	 */
   1025	vfp_single_unpack(&vsn, n);
   1026	if (vsn.exponent == 0 && vsn.significand)
   1027		vfp_single_normalise_denormal(&vsn);
   1028
   1029	vfp_single_unpack(&vsm, m);
   1030	if (vsm.exponent == 0 && vsm.significand)
   1031		vfp_single_normalise_denormal(&vsm);
   1032
   1033	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
   1034
   1035	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
   1036}
   1037
   1038/*
   1039 * sd = sn - sm
   1040 */
   1041static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
   1042{
   1043	/*
   1044	 * Subtraction is addition with one sign inverted.
   1045	 */
   1046	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
   1047}
   1048
   1049/*
   1050 * sd = sn / sm
   1051 */
   1052static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
   1053{
   1054	struct vfp_single vsd, vsn, vsm;
   1055	u32 exceptions = 0;
   1056	s32 n = vfp_get_float(sn);
   1057	int tm, tn;
   1058
   1059	pr_debug("VFP: s%u = %08x\n", sn, n);
   1060
   1061	vfp_single_unpack(&vsn, n);
   1062	vfp_single_unpack(&vsm, m);
   1063
   1064	vsd.sign = vsn.sign ^ vsm.sign;
   1065
   1066	tn = vfp_single_type(&vsn);
   1067	tm = vfp_single_type(&vsm);
   1068
   1069	/*
   1070	 * Is n a NAN?
   1071	 */
   1072	if (tn & VFP_NAN)
   1073		goto vsn_nan;
   1074
   1075	/*
   1076	 * Is m a NAN?
   1077	 */
   1078	if (tm & VFP_NAN)
   1079		goto vsm_nan;
   1080
   1081	/*
   1082	 * If n and m are infinity, the result is invalid
   1083	 * If n and m are zero, the result is invalid
   1084	 */
   1085	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
   1086		goto invalid;
   1087
   1088	/*
   1089	 * If n is infinity, the result is infinity
   1090	 */
   1091	if (tn & VFP_INFINITY)
   1092		goto infinity;
   1093
   1094	/*
   1095	 * If m is zero, raise div0 exception
   1096	 */
   1097	if (tm & VFP_ZERO)
   1098		goto divzero;
   1099
   1100	/*
   1101	 * If m is infinity, or n is zero, the result is zero
   1102	 */
   1103	if (tm & VFP_INFINITY || tn & VFP_ZERO)
   1104		goto zero;
   1105
   1106	if (tn & VFP_DENORMAL)
   1107		vfp_single_normalise_denormal(&vsn);
   1108	if (tm & VFP_DENORMAL)
   1109		vfp_single_normalise_denormal(&vsm);
   1110
   1111	/*
   1112	 * Ok, we have two numbers, we can perform division.
   1113	 */
   1114	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
   1115	vsm.significand <<= 1;
   1116	if (vsm.significand <= (2 * vsn.significand)) {
   1117		vsn.significand >>= 1;
   1118		vsd.exponent++;
   1119	}
   1120	{
   1121		u64 significand = (u64)vsn.significand << 32;
   1122		do_div(significand, vsm.significand);
   1123		vsd.significand = significand;
   1124	}
   1125	if ((vsd.significand & 0x3f) == 0)
   1126		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
   1127
   1128	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
   1129
   1130 vsn_nan:
   1131	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
   1132 pack:
   1133	vfp_put_float(vfp_single_pack(&vsd), sd);
   1134	return exceptions;
   1135
   1136 vsm_nan:
   1137	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
   1138	goto pack;
   1139
   1140 zero:
   1141	vsd.exponent = 0;
   1142	vsd.significand = 0;
   1143	goto pack;
   1144
   1145 divzero:
   1146	exceptions = FPSCR_DZC;
   1147 infinity:
   1148	vsd.exponent = 255;
   1149	vsd.significand = 0;
   1150	goto pack;
   1151
   1152 invalid:
   1153	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
   1154	return FPSCR_IOC;
   1155}
   1156
   1157static struct op fops[16] = {
   1158	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },
   1159	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },
   1160	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },
   1161	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },
   1162	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },
   1163	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },
   1164	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },
   1165	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },
   1166	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },
   1167};
   1168
   1169#define FREG_BANK(x)	((x) & 0x18)
   1170#define FREG_IDX(x)	((x) & 7)
   1171
   1172u32 vfp_single_cpdo(u32 inst, u32 fpscr)
   1173{
   1174	u32 op = inst & FOP_MASK;
   1175	u32 exceptions = 0;
   1176	unsigned int dest;
   1177	unsigned int sn = vfp_get_sn(inst);
   1178	unsigned int sm = vfp_get_sm(inst);
   1179	unsigned int vecitr, veclen, vecstride;
   1180	struct op *fop;
   1181
   1182	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
   1183
   1184	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
   1185
   1186	/*
   1187	 * fcvtsd takes a dN register number as destination, not sN.
   1188	 * Technically, if bit 0 of dd is set, this is an invalid
   1189	 * instruction.  However, we ignore this for efficiency.
   1190	 * It also only operates on scalars.
   1191	 */
   1192	if (fop->flags & OP_DD)
   1193		dest = vfp_get_dd(inst);
   1194	else
   1195		dest = vfp_get_sd(inst);
   1196
   1197	/*
   1198	 * If destination bank is zero, vector length is always '1'.
   1199	 * ARM DDI0100F C5.1.3, C5.3.2.
   1200	 */
   1201	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
   1202		veclen = 0;
   1203	else
   1204		veclen = fpscr & FPSCR_LENGTH_MASK;
   1205
   1206	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
   1207		 (veclen >> FPSCR_LENGTH_BIT) + 1);
   1208
   1209	if (!fop->fn)
   1210		goto invalid;
   1211
   1212	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
   1213		s32 m = vfp_get_float(sm);
   1214		u32 except;
   1215		char type;
   1216
   1217		type = fop->flags & OP_DD ? 'd' : 's';
   1218		if (op == FOP_EXT)
   1219			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
   1220				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
   1221				 sm, m);
   1222		else
   1223			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
   1224				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
   1225				 FOP_TO_IDX(op), sm, m);
   1226
   1227		except = fop->fn(dest, sn, m, fpscr);
   1228		pr_debug("VFP: itr%d: exceptions=%08x\n",
   1229			 vecitr >> FPSCR_LENGTH_BIT, except);
   1230
   1231		exceptions |= except;
   1232
   1233		/*
   1234		 * CHECK: It appears to be undefined whether we stop when
   1235		 * we encounter an exception.  We continue.
   1236		 */
   1237		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
   1238		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
   1239		if (FREG_BANK(sm) != 0)
   1240			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
   1241	}
   1242	return exceptions;
   1243
   1244 invalid:
   1245	return (u32)-1;
   1246}