cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

Kconfig (75913B)


      1# SPDX-License-Identifier: GPL-2.0-only
      2config ARM64
      3	def_bool y
      4	select ACPI_CCA_REQUIRED if ACPI
      5	select ACPI_GENERIC_GSI if ACPI
      6	select ACPI_GTDT if ACPI
      7	select ACPI_IORT if ACPI
      8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
      9	select ACPI_MCFG if (ACPI && PCI)
     10	select ACPI_SPCR_TABLE if ACPI
     11	select ACPI_PPTT if ACPI
     12	select ARCH_HAS_DEBUG_WX
     13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
     14	select ARCH_BINFMT_ELF_STATE
     15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
     16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
     17	select ARCH_ENABLE_MEMORY_HOTPLUG
     18	select ARCH_ENABLE_MEMORY_HOTREMOVE
     19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
     20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
     21	select ARCH_HAS_CACHE_LINE_SIZE
     22	select ARCH_HAS_CURRENT_STACK_POINTER
     23	select ARCH_HAS_DEBUG_VIRTUAL
     24	select ARCH_HAS_DEBUG_VM_PGTABLE
     25	select ARCH_HAS_DMA_PREP_COHERENT
     26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
     27	select ARCH_HAS_FAST_MULTIPLIER
     28	select ARCH_HAS_FORTIFY_SOURCE
     29	select ARCH_HAS_GCOV_PROFILE_ALL
     30	select ARCH_HAS_GIGANTIC_PAGE
     31	select ARCH_HAS_KCOV
     32	select ARCH_HAS_KEEPINITRD
     33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
     34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
     35	select ARCH_HAS_PTE_DEVMAP
     36	select ARCH_HAS_PTE_SPECIAL
     37	select ARCH_HAS_SETUP_DMA_OPS
     38	select ARCH_HAS_SET_DIRECT_MAP
     39	select ARCH_HAS_SET_MEMORY
     40	select ARCH_STACKWALK
     41	select ARCH_HAS_STRICT_KERNEL_RWX
     42	select ARCH_HAS_STRICT_MODULE_RWX
     43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
     44	select ARCH_HAS_SYNC_DMA_FOR_CPU
     45	select ARCH_HAS_SYSCALL_WRAPPER
     46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
     47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
     48	select ARCH_HAS_VM_GET_PAGE_PROT
     49	select ARCH_HAS_ZONE_DMA_SET if EXPERT
     50	select ARCH_HAVE_ELF_PROT
     51	select ARCH_HAVE_NMI_SAFE_CMPXCHG
     52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
     53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
     54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
     55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
     56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
     57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
     58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
     59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
     60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
     61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
     62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
     63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
     64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
     65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
     66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
     67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
     68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
     69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
     70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
     71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
     72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
     73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
     74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
     75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
     76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
     77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
     78	select ARCH_KEEP_MEMBLOCK
     79	select ARCH_USE_CMPXCHG_LOCKREF
     80	select ARCH_USE_GNU_PROPERTY
     81	select ARCH_USE_MEMTEST
     82	select ARCH_USE_QUEUED_RWLOCKS
     83	select ARCH_USE_QUEUED_SPINLOCKS
     84	select ARCH_USE_SYM_ANNOTATIONS
     85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
     86	select ARCH_SUPPORTS_HUGETLBFS
     87	select ARCH_SUPPORTS_MEMORY_FAILURE
     88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
     89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
     90	select ARCH_SUPPORTS_LTO_CLANG_THIN
     91	select ARCH_SUPPORTS_CFI_CLANG
     92	select ARCH_SUPPORTS_ATOMIC_RMW
     93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
     94	select ARCH_SUPPORTS_NUMA_BALANCING
     95	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
     96	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
     97	select ARCH_WANT_DEFAULT_BPF_JIT
     98	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
     99	select ARCH_WANT_FRAME_POINTERS
    100	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
    101	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
    102	select ARCH_WANT_LD_ORPHAN_WARN
    103	select ARCH_WANTS_NO_INSTR
    104	select ARCH_HAS_UBSAN_SANITIZE_ALL
    105	select ARM_AMBA
    106	select ARM_ARCH_TIMER
    107	select ARM_GIC
    108	select AUDIT_ARCH_COMPAT_GENERIC
    109	select ARM_GIC_V2M if PCI
    110	select ARM_GIC_V3
    111	select ARM_GIC_V3_ITS if PCI
    112	select ARM_PSCI_FW
    113	select BUILDTIME_TABLE_SORT
    114	select CLONE_BACKWARDS
    115	select COMMON_CLK
    116	select CPU_PM if (SUSPEND || CPU_IDLE)
    117	select CRC32
    118	select DCACHE_WORD_ACCESS
    119	select DMA_DIRECT_REMAP
    120	select EDAC_SUPPORT
    121	select FRAME_POINTER
    122	select GENERIC_ALLOCATOR
    123	select GENERIC_ARCH_TOPOLOGY
    124	select GENERIC_CLOCKEVENTS_BROADCAST
    125	select GENERIC_CPU_AUTOPROBE
    126	select GENERIC_CPU_VULNERABILITIES
    127	select GENERIC_EARLY_IOREMAP
    128	select GENERIC_IDLE_POLL_SETUP
    129	select GENERIC_IRQ_IPI
    130	select GENERIC_IRQ_PROBE
    131	select GENERIC_IRQ_SHOW
    132	select GENERIC_IRQ_SHOW_LEVEL
    133	select GENERIC_LIB_DEVMEM_IS_ALLOWED
    134	select GENERIC_PCI_IOMAP
    135	select GENERIC_PTDUMP
    136	select GENERIC_SCHED_CLOCK
    137	select GENERIC_SMP_IDLE_THREAD
    138	select GENERIC_TIME_VSYSCALL
    139	select GENERIC_GETTIMEOFDAY
    140	select GENERIC_VDSO_TIME_NS
    141	select HARDIRQS_SW_RESEND
    142	select HAVE_MOVE_PMD
    143	select HAVE_MOVE_PUD
    144	select HAVE_PCI
    145	select HAVE_ACPI_APEI if (ACPI && EFI)
    146	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
    147	select HAVE_ARCH_AUDITSYSCALL
    148	select HAVE_ARCH_BITREVERSE
    149	select HAVE_ARCH_COMPILER_H
    150	select HAVE_ARCH_HUGE_VMAP
    151	select HAVE_ARCH_JUMP_LABEL
    152	select HAVE_ARCH_JUMP_LABEL_RELATIVE
    153	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
    154	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
    155	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
    156	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
    157	# Some instrumentation may be unsound, hence EXPERT
    158	select HAVE_ARCH_KCSAN if EXPERT
    159	select HAVE_ARCH_KFENCE
    160	select HAVE_ARCH_KGDB
    161	select HAVE_ARCH_MMAP_RND_BITS
    162	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
    163	select HAVE_ARCH_PREL32_RELOCATIONS
    164	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
    165	select HAVE_ARCH_SECCOMP_FILTER
    166	select HAVE_ARCH_STACKLEAK
    167	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
    168	select HAVE_ARCH_TRACEHOOK
    169	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
    170	select HAVE_ARCH_VMAP_STACK
    171	select HAVE_ARM_SMCCC
    172	select HAVE_ASM_MODVERSIONS
    173	select HAVE_EBPF_JIT
    174	select HAVE_C_RECORDMCOUNT
    175	select HAVE_CMPXCHG_DOUBLE
    176	select HAVE_CMPXCHG_LOCAL
    177	select HAVE_CONTEXT_TRACKING
    178	select HAVE_DEBUG_KMEMLEAK
    179	select HAVE_DMA_CONTIGUOUS
    180	select HAVE_DYNAMIC_FTRACE
    181	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
    182		if DYNAMIC_FTRACE_WITH_REGS
    183	select HAVE_EFFICIENT_UNALIGNED_ACCESS
    184	select HAVE_FAST_GUP
    185	select HAVE_FTRACE_MCOUNT_RECORD
    186	select HAVE_FUNCTION_TRACER
    187	select HAVE_FUNCTION_ERROR_INJECTION
    188	select HAVE_FUNCTION_GRAPH_TRACER
    189	select HAVE_GCC_PLUGINS
    190	select HAVE_HW_BREAKPOINT if PERF_EVENTS
    191	select HAVE_IRQ_TIME_ACCOUNTING
    192	select HAVE_KVM
    193	select HAVE_NMI
    194	select HAVE_PATA_PLATFORM
    195	select HAVE_PERF_EVENTS
    196	select HAVE_PERF_REGS
    197	select HAVE_PERF_USER_STACK_DUMP
    198	select HAVE_PREEMPT_DYNAMIC_KEY
    199	select HAVE_REGS_AND_STACK_ACCESS_API
    200	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
    201	select HAVE_FUNCTION_ARG_ACCESS_API
    202	select MMU_GATHER_RCU_TABLE_FREE
    203	select HAVE_RSEQ
    204	select HAVE_STACKPROTECTOR
    205	select HAVE_SYSCALL_TRACEPOINTS
    206	select HAVE_KPROBES
    207	select HAVE_KRETPROBES
    208	select HAVE_GENERIC_VDSO
    209	select IOMMU_DMA if IOMMU_SUPPORT
    210	select IRQ_DOMAIN
    211	select IRQ_FORCED_THREADING
    212	select KASAN_VMALLOC if KASAN
    213	select MODULES_USE_ELF_RELA
    214	select NEED_DMA_MAP_STATE
    215	select NEED_SG_DMA_LENGTH
    216	select OF
    217	select OF_EARLY_FLATTREE
    218	select PCI_DOMAINS_GENERIC if PCI
    219	select PCI_ECAM if (ACPI && PCI)
    220	select PCI_SYSCALL if PCI
    221	select POWER_RESET
    222	select POWER_SUPPLY
    223	select SPARSE_IRQ
    224	select SWIOTLB
    225	select SYSCTL_EXCEPTION_TRACE
    226	select THREAD_INFO_IN_TASK
    227	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
    228	select TRACE_IRQFLAGS_SUPPORT
    229	help
    230	  ARM 64-bit (AArch64) Linux support.
    231
    232config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
    233	def_bool CC_IS_CLANG
    234	# https://github.com/ClangBuiltLinux/linux/issues/1507
    235	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
    236	select HAVE_DYNAMIC_FTRACE_WITH_REGS
    237
    238config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
    239	def_bool CC_IS_GCC
    240	depends on $(cc-option,-fpatchable-function-entry=2)
    241	select HAVE_DYNAMIC_FTRACE_WITH_REGS
    242
    243config 64BIT
    244	def_bool y
    245
    246config MMU
    247	def_bool y
    248
    249config ARM64_PAGE_SHIFT
    250	int
    251	default 16 if ARM64_64K_PAGES
    252	default 14 if ARM64_16K_PAGES
    253	default 12
    254
    255config ARM64_CONT_PTE_SHIFT
    256	int
    257	default 5 if ARM64_64K_PAGES
    258	default 7 if ARM64_16K_PAGES
    259	default 4
    260
    261config ARM64_CONT_PMD_SHIFT
    262	int
    263	default 5 if ARM64_64K_PAGES
    264	default 5 if ARM64_16K_PAGES
    265	default 4
    266
    267config ARCH_MMAP_RND_BITS_MIN
    268	default 14 if ARM64_64K_PAGES
    269	default 16 if ARM64_16K_PAGES
    270	default 18
    271
    272# max bits determined by the following formula:
    273#  VA_BITS - PAGE_SHIFT - 3
    274config ARCH_MMAP_RND_BITS_MAX
    275	default 19 if ARM64_VA_BITS=36
    276	default 24 if ARM64_VA_BITS=39
    277	default 27 if ARM64_VA_BITS=42
    278	default 30 if ARM64_VA_BITS=47
    279	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
    280	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
    281	default 33 if ARM64_VA_BITS=48
    282	default 14 if ARM64_64K_PAGES
    283	default 16 if ARM64_16K_PAGES
    284	default 18
    285
    286config ARCH_MMAP_RND_COMPAT_BITS_MIN
    287	default 7 if ARM64_64K_PAGES
    288	default 9 if ARM64_16K_PAGES
    289	default 11
    290
    291config ARCH_MMAP_RND_COMPAT_BITS_MAX
    292	default 16
    293
    294config NO_IOPORT_MAP
    295	def_bool y if !PCI
    296
    297config STACKTRACE_SUPPORT
    298	def_bool y
    299
    300config ILLEGAL_POINTER_VALUE
    301	hex
    302	default 0xdead000000000000
    303
    304config LOCKDEP_SUPPORT
    305	def_bool y
    306
    307config GENERIC_BUG
    308	def_bool y
    309	depends on BUG
    310
    311config GENERIC_BUG_RELATIVE_POINTERS
    312	def_bool y
    313	depends on GENERIC_BUG
    314
    315config GENERIC_HWEIGHT
    316	def_bool y
    317
    318config GENERIC_CSUM
    319	def_bool y
    320
    321config GENERIC_CALIBRATE_DELAY
    322	def_bool y
    323
    324config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
    325	def_bool y
    326
    327config SMP
    328	def_bool y
    329
    330config KERNEL_MODE_NEON
    331	def_bool y
    332
    333config FIX_EARLYCON_MEM
    334	def_bool y
    335
    336config PGTABLE_LEVELS
    337	int
    338	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
    339	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
    340	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
    341	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
    342	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
    343	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
    344
    345config ARCH_SUPPORTS_UPROBES
    346	def_bool y
    347
    348config ARCH_PROC_KCORE_TEXT
    349	def_bool y
    350
    351config BROKEN_GAS_INST
    352	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
    353
    354config KASAN_SHADOW_OFFSET
    355	hex
    356	depends on KASAN_GENERIC || KASAN_SW_TAGS
    357	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
    358	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
    359	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
    360	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
    361	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
    362	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
    363	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
    364	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
    365	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
    366	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
    367	default 0xffffffffffffffff
    368
    369source "arch/arm64/Kconfig.platforms"
    370
    371menu "Kernel Features"
    372
    373menu "ARM errata workarounds via the alternatives framework"
    374
    375config ARM64_WORKAROUND_CLEAN_CACHE
    376	bool
    377
    378config ARM64_ERRATUM_826319
    379	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
    380	default y
    381	select ARM64_WORKAROUND_CLEAN_CACHE
    382	help
    383	  This option adds an alternative code sequence to work around ARM
    384	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
    385	  AXI master interface and an L2 cache.
    386
    387	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
    388	  and is unable to accept a certain write via this interface, it will
    389	  not progress on read data presented on the read data channel and the
    390	  system can deadlock.
    391
    392	  The workaround promotes data cache clean instructions to
    393	  data cache clean-and-invalidate.
    394	  Please note that this does not necessarily enable the workaround,
    395	  as it depends on the alternative framework, which will only patch
    396	  the kernel if an affected CPU is detected.
    397
    398	  If unsure, say Y.
    399
    400config ARM64_ERRATUM_827319
    401	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
    402	default y
    403	select ARM64_WORKAROUND_CLEAN_CACHE
    404	help
    405	  This option adds an alternative code sequence to work around ARM
    406	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
    407	  master interface and an L2 cache.
    408
    409	  Under certain conditions this erratum can cause a clean line eviction
    410	  to occur at the same time as another transaction to the same address
    411	  on the AMBA 5 CHI interface, which can cause data corruption if the
    412	  interconnect reorders the two transactions.
    413
    414	  The workaround promotes data cache clean instructions to
    415	  data cache clean-and-invalidate.
    416	  Please note that this does not necessarily enable the workaround,
    417	  as it depends on the alternative framework, which will only patch
    418	  the kernel if an affected CPU is detected.
    419
    420	  If unsure, say Y.
    421
    422config ARM64_ERRATUM_824069
    423	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
    424	default y
    425	select ARM64_WORKAROUND_CLEAN_CACHE
    426	help
    427	  This option adds an alternative code sequence to work around ARM
    428	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
    429	  to a coherent interconnect.
    430
    431	  If a Cortex-A53 processor is executing a store or prefetch for
    432	  write instruction at the same time as a processor in another
    433	  cluster is executing a cache maintenance operation to the same
    434	  address, then this erratum might cause a clean cache line to be
    435	  incorrectly marked as dirty.
    436
    437	  The workaround promotes data cache clean instructions to
    438	  data cache clean-and-invalidate.
    439	  Please note that this option does not necessarily enable the
    440	  workaround, as it depends on the alternative framework, which will
    441	  only patch the kernel if an affected CPU is detected.
    442
    443	  If unsure, say Y.
    444
    445config ARM64_ERRATUM_819472
    446	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
    447	default y
    448	select ARM64_WORKAROUND_CLEAN_CACHE
    449	help
    450	  This option adds an alternative code sequence to work around ARM
    451	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
    452	  present when it is connected to a coherent interconnect.
    453
    454	  If the processor is executing a load and store exclusive sequence at
    455	  the same time as a processor in another cluster is executing a cache
    456	  maintenance operation to the same address, then this erratum might
    457	  cause data corruption.
    458
    459	  The workaround promotes data cache clean instructions to
    460	  data cache clean-and-invalidate.
    461	  Please note that this does not necessarily enable the workaround,
    462	  as it depends on the alternative framework, which will only patch
    463	  the kernel if an affected CPU is detected.
    464
    465	  If unsure, say Y.
    466
    467config ARM64_ERRATUM_832075
    468	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
    469	default y
    470	help
    471	  This option adds an alternative code sequence to work around ARM
    472	  erratum 832075 on Cortex-A57 parts up to r1p2.
    473
    474	  Affected Cortex-A57 parts might deadlock when exclusive load/store
    475	  instructions to Write-Back memory are mixed with Device loads.
    476
    477	  The workaround is to promote device loads to use Load-Acquire
    478	  semantics.
    479	  Please note that this does not necessarily enable the workaround,
    480	  as it depends on the alternative framework, which will only patch
    481	  the kernel if an affected CPU is detected.
    482
    483	  If unsure, say Y.
    484
    485config ARM64_ERRATUM_834220
    486	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
    487	depends on KVM
    488	default y
    489	help
    490	  This option adds an alternative code sequence to work around ARM
    491	  erratum 834220 on Cortex-A57 parts up to r1p2.
    492
    493	  Affected Cortex-A57 parts might report a Stage 2 translation
    494	  fault as the result of a Stage 1 fault for load crossing a
    495	  page boundary when there is a permission or device memory
    496	  alignment fault at Stage 1 and a translation fault at Stage 2.
    497
    498	  The workaround is to verify that the Stage 1 translation
    499	  doesn't generate a fault before handling the Stage 2 fault.
    500	  Please note that this does not necessarily enable the workaround,
    501	  as it depends on the alternative framework, which will only patch
    502	  the kernel if an affected CPU is detected.
    503
    504	  If unsure, say Y.
    505
    506config ARM64_ERRATUM_845719
    507	bool "Cortex-A53: 845719: a load might read incorrect data"
    508	depends on COMPAT
    509	default y
    510	help
    511	  This option adds an alternative code sequence to work around ARM
    512	  erratum 845719 on Cortex-A53 parts up to r0p4.
    513
    514	  When running a compat (AArch32) userspace on an affected Cortex-A53
    515	  part, a load at EL0 from a virtual address that matches the bottom 32
    516	  bits of the virtual address used by a recent load at (AArch64) EL1
    517	  might return incorrect data.
    518
    519	  The workaround is to write the contextidr_el1 register on exception
    520	  return to a 32-bit task.
    521	  Please note that this does not necessarily enable the workaround,
    522	  as it depends on the alternative framework, which will only patch
    523	  the kernel if an affected CPU is detected.
    524
    525	  If unsure, say Y.
    526
    527config ARM64_ERRATUM_843419
    528	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
    529	default y
    530	select ARM64_MODULE_PLTS if MODULES
    531	help
    532	  This option links the kernel with '--fix-cortex-a53-843419' and
    533	  enables PLT support to replace certain ADRP instructions, which can
    534	  cause subsequent memory accesses to use an incorrect address on
    535	  Cortex-A53 parts up to r0p4.
    536
    537	  If unsure, say Y.
    538
    539config ARM64_LD_HAS_FIX_ERRATUM_843419
    540	def_bool $(ld-option,--fix-cortex-a53-843419)
    541
    542config ARM64_ERRATUM_1024718
    543	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
    544	default y
    545	help
    546	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
    547
    548	  Affected Cortex-A55 cores (all revisions) could cause incorrect
    549	  update of the hardware dirty bit when the DBM/AP bits are updated
    550	  without a break-before-make. The workaround is to disable the usage
    551	  of hardware DBM locally on the affected cores. CPUs not affected by
    552	  this erratum will continue to use the feature.
    553
    554	  If unsure, say Y.
    555
    556config ARM64_ERRATUM_1418040
    557	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
    558	default y
    559	depends on COMPAT
    560	help
    561	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
    562	  errata 1188873 and 1418040.
    563
    564	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
    565	  cause register corruption when accessing the timer registers
    566	  from AArch32 userspace.
    567
    568	  If unsure, say Y.
    569
    570config ARM64_WORKAROUND_SPECULATIVE_AT
    571	bool
    572
    573config ARM64_ERRATUM_1165522
    574	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
    575	default y
    576	select ARM64_WORKAROUND_SPECULATIVE_AT
    577	help
    578	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
    579
    580	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
    581	  corrupted TLBs by speculating an AT instruction during a guest
    582	  context switch.
    583
    584	  If unsure, say Y.
    585
    586config ARM64_ERRATUM_1319367
    587	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
    588	default y
    589	select ARM64_WORKAROUND_SPECULATIVE_AT
    590	help
    591	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
    592	  and A72 erratum 1319367
    593
    594	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
    595	  speculating an AT instruction during a guest context switch.
    596
    597	  If unsure, say Y.
    598
    599config ARM64_ERRATUM_1530923
    600	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
    601	default y
    602	select ARM64_WORKAROUND_SPECULATIVE_AT
    603	help
    604	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
    605
    606	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
    607	  corrupted TLBs by speculating an AT instruction during a guest
    608	  context switch.
    609
    610	  If unsure, say Y.
    611
    612config ARM64_WORKAROUND_REPEAT_TLBI
    613	bool
    614
    615config ARM64_ERRATUM_1286807
    616	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
    617	default y
    618	select ARM64_WORKAROUND_REPEAT_TLBI
    619	help
    620	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
    621
    622	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
    623	  address for a cacheable mapping of a location is being
    624	  accessed by a core while another core is remapping the virtual
    625	  address to a new physical page using the recommended
    626	  break-before-make sequence, then under very rare circumstances
    627	  TLBI+DSB completes before a read using the translation being
    628	  invalidated has been observed by other observers. The
    629	  workaround repeats the TLBI+DSB operation.
    630
    631config ARM64_ERRATUM_1463225
    632	bool "Cortex-A76: Software Step might prevent interrupt recognition"
    633	default y
    634	help
    635	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
    636
    637	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
    638	  of a system call instruction (SVC) can prevent recognition of
    639	  subsequent interrupts when software stepping is disabled in the
    640	  exception handler of the system call and either kernel debugging
    641	  is enabled or VHE is in use.
    642
    643	  Work around the erratum by triggering a dummy step exception
    644	  when handling a system call from a task that is being stepped
    645	  in a VHE configuration of the kernel.
    646
    647	  If unsure, say Y.
    648
    649config ARM64_ERRATUM_1542419
    650	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
    651	default y
    652	help
    653	  This option adds a workaround for ARM Neoverse-N1 erratum
    654	  1542419.
    655
    656	  Affected Neoverse-N1 cores could execute a stale instruction when
    657	  modified by another CPU. The workaround depends on a firmware
    658	  counterpart.
    659
    660	  Workaround the issue by hiding the DIC feature from EL0. This
    661	  forces user-space to perform cache maintenance.
    662
    663	  If unsure, say Y.
    664
    665config ARM64_ERRATUM_1508412
    666	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
    667	default y
    668	help
    669	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
    670
    671	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
    672	  of a store-exclusive or read of PAR_EL1 and a load with device or
    673	  non-cacheable memory attributes. The workaround depends on a firmware
    674	  counterpart.
    675
    676	  KVM guests must also have the workaround implemented or they can
    677	  deadlock the system.
    678
    679	  Work around the issue by inserting DMB SY barriers around PAR_EL1
    680	  register reads and warning KVM users. The DMB barrier is sufficient
    681	  to prevent a speculative PAR_EL1 read.
    682
    683	  If unsure, say Y.
    684
    685config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
    686	bool
    687
    688config ARM64_ERRATUM_2051678
    689	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
    690	default y
    691	help
    692	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
    693	  Affected Cortex-A510 might not respect the ordering rules for
    694	  hardware update of the page table's dirty bit. The workaround
    695	  is to not enable the feature on affected CPUs.
    696
    697	  If unsure, say Y.
    698
    699config ARM64_ERRATUM_2077057
    700	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
    701	default y
    702	help
    703	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
    704	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
    705	  expected, but a Pointer Authentication trap is taken instead. The
    706	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
    707	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
    708
    709	  This can only happen when EL2 is stepping EL1.
    710
    711	  When these conditions occur, the SPSR_EL2 value is unchanged from the
    712	  previous guest entry, and can be restored from the in-memory copy.
    713
    714	  If unsure, say Y.
    715
    716config ARM64_ERRATUM_2119858
    717	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
    718	default y
    719	depends on CORESIGHT_TRBE
    720	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
    721	help
    722	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
    723
    724	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
    725	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
    726	  the event of a WRAP event.
    727
    728	  Work around the issue by always making sure we move the TRBPTR_EL1 by
    729	  256 bytes before enabling the buffer and filling the first 256 bytes of
    730	  the buffer with ETM ignore packets upon disabling.
    731
    732	  If unsure, say Y.
    733
    734config ARM64_ERRATUM_2139208
    735	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
    736	default y
    737	depends on CORESIGHT_TRBE
    738	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
    739	help
    740	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
    741
    742	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
    743	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
    744	  the event of a WRAP event.
    745
    746	  Work around the issue by always making sure we move the TRBPTR_EL1 by
    747	  256 bytes before enabling the buffer and filling the first 256 bytes of
    748	  the buffer with ETM ignore packets upon disabling.
    749
    750	  If unsure, say Y.
    751
    752config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
    753	bool
    754
    755config ARM64_ERRATUM_2054223
    756	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
    757	default y
    758	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
    759	help
    760	  Enable workaround for ARM Cortex-A710 erratum 2054223
    761
    762	  Affected cores may fail to flush the trace data on a TSB instruction, when
    763	  the PE is in trace prohibited state. This will cause losing a few bytes
    764	  of the trace cached.
    765
    766	  Workaround is to issue two TSB consecutively on affected cores.
    767
    768	  If unsure, say Y.
    769
    770config ARM64_ERRATUM_2067961
    771	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
    772	default y
    773	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
    774	help
    775	  Enable workaround for ARM Neoverse-N2 erratum 2067961
    776
    777	  Affected cores may fail to flush the trace data on a TSB instruction, when
    778	  the PE is in trace prohibited state. This will cause losing a few bytes
    779	  of the trace cached.
    780
    781	  Workaround is to issue two TSB consecutively on affected cores.
    782
    783	  If unsure, say Y.
    784
    785config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
    786	bool
    787
    788config ARM64_ERRATUM_2253138
    789	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
    790	depends on CORESIGHT_TRBE
    791	default y
    792	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
    793	help
    794	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
    795
    796	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
    797	  for TRBE. Under some conditions, the TRBE might generate a write to the next
    798	  virtually addressed page following the last page of the TRBE address space
    799	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
    800
    801	  Work around this in the driver by always making sure that there is a
    802	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
    803
    804	  If unsure, say Y.
    805
    806config ARM64_ERRATUM_2224489
    807	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
    808	depends on CORESIGHT_TRBE
    809	default y
    810	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
    811	help
    812	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
    813
    814	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
    815	  for TRBE. Under some conditions, the TRBE might generate a write to the next
    816	  virtually addressed page following the last page of the TRBE address space
    817	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
    818
    819	  Work around this in the driver by always making sure that there is a
    820	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
    821
    822	  If unsure, say Y.
    823
    824config ARM64_ERRATUM_2064142
    825	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
    826	depends on CORESIGHT_TRBE
    827	default y
    828	help
    829	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
    830
    831	  Affected Cortex-A510 core might fail to write into system registers after the
    832	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
    833	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
    834	  and TRBTRG_EL1 will be ignored and will not be effected.
    835
    836	  Work around this in the driver by executing TSB CSYNC and DSB after collection
    837	  is stopped and before performing a system register write to one of the affected
    838	  registers.
    839
    840	  If unsure, say Y.
    841
    842config ARM64_ERRATUM_2038923
    843	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
    844	depends on CORESIGHT_TRBE
    845	default y
    846	help
    847	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
    848
    849	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
    850	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
    851	  might be corrupted. This happens after TRBE buffer has been enabled by setting
    852	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
    853	  execution changes from a context, in which trace is prohibited to one where it
    854	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
    855	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
    856	  the trace buffer state might be corrupted.
    857
    858	  Work around this in the driver by preventing an inconsistent view of whether the
    859	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
    860	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
    861	  two ISB instructions if no ERET is to take place.
    862
    863	  If unsure, say Y.
    864
    865config ARM64_ERRATUM_1902691
    866	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
    867	depends on CORESIGHT_TRBE
    868	default y
    869	help
    870	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
    871
    872	  Affected Cortex-A510 core might cause trace data corruption, when being written
    873	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
    874	  trace data.
    875
    876	  Work around this problem in the driver by just preventing TRBE initialization on
    877	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
    878	  on such implementations. This will cover the kernel for any firmware that doesn't
    879	  do this already.
    880
    881	  If unsure, say Y.
    882
    883config CAVIUM_ERRATUM_22375
    884	bool "Cavium erratum 22375, 24313"
    885	default y
    886	help
    887	  Enable workaround for errata 22375 and 24313.
    888
    889	  This implements two gicv3-its errata workarounds for ThunderX. Both
    890	  with a small impact affecting only ITS table allocation.
    891
    892	    erratum 22375: only alloc 8MB table size
    893	    erratum 24313: ignore memory access type
    894
    895	  The fixes are in ITS initialization and basically ignore memory access
    896	  type and table size provided by the TYPER and BASER registers.
    897
    898	  If unsure, say Y.
    899
    900config CAVIUM_ERRATUM_23144
    901	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
    902	depends on NUMA
    903	default y
    904	help
    905	  ITS SYNC command hang for cross node io and collections/cpu mapping.
    906
    907	  If unsure, say Y.
    908
    909config CAVIUM_ERRATUM_23154
    910	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
    911	default y
    912	help
    913	  The ThunderX GICv3 implementation requires a modified version for
    914	  reading the IAR status to ensure data synchronization
    915	  (access to icc_iar1_el1 is not sync'ed before and after).
    916
    917	  It also suffers from erratum 38545 (also present on Marvell's
    918	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
    919	  spuriously presented to the CPU interface.
    920
    921	  If unsure, say Y.
    922
    923config CAVIUM_ERRATUM_27456
    924	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
    925	default y
    926	help
    927	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
    928	  instructions may cause the icache to become corrupted if it
    929	  contains data for a non-current ASID.  The fix is to
    930	  invalidate the icache when changing the mm context.
    931
    932	  If unsure, say Y.
    933
    934config CAVIUM_ERRATUM_30115
    935	bool "Cavium erratum 30115: Guest may disable interrupts in host"
    936	default y
    937	help
    938	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
    939	  1.2, and T83 Pass 1.0, KVM guest execution may disable
    940	  interrupts in host. Trapping both GICv3 group-0 and group-1
    941	  accesses sidesteps the issue.
    942
    943	  If unsure, say Y.
    944
    945config CAVIUM_TX2_ERRATUM_219
    946	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
    947	default y
    948	help
    949	  On Cavium ThunderX2, a load, store or prefetch instruction between a
    950	  TTBR update and the corresponding context synchronizing operation can
    951	  cause a spurious Data Abort to be delivered to any hardware thread in
    952	  the CPU core.
    953
    954	  Work around the issue by avoiding the problematic code sequence and
    955	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
    956	  trap handler performs the corresponding register access, skips the
    957	  instruction and ensures context synchronization by virtue of the
    958	  exception return.
    959
    960	  If unsure, say Y.
    961
    962config FUJITSU_ERRATUM_010001
    963	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
    964	default y
    965	help
    966	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
    967	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
    968	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
    969	  This fault occurs under a specific hardware condition when a
    970	  load/store instruction performs an address translation using:
    971	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
    972	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
    973	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
    974	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
    975
    976	  The workaround is to ensure these bits are clear in TCR_ELx.
    977	  The workaround only affects the Fujitsu-A64FX.
    978
    979	  If unsure, say Y.
    980
    981config HISILICON_ERRATUM_161600802
    982	bool "Hip07 161600802: Erroneous redistributor VLPI base"
    983	default y
    984	help
    985	  The HiSilicon Hip07 SoC uses the wrong redistributor base
    986	  when issued ITS commands such as VMOVP and VMAPP, and requires
    987	  a 128kB offset to be applied to the target address in this commands.
    988
    989	  If unsure, say Y.
    990
    991config QCOM_FALKOR_ERRATUM_1003
    992	bool "Falkor E1003: Incorrect translation due to ASID change"
    993	default y
    994	help
    995	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
    996	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
    997	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
    998	  then only for entries in the walk cache, since the leaf translation
    999	  is unchanged. Work around the erratum by invalidating the walk cache
   1000	  entries for the trampoline before entering the kernel proper.
   1001
   1002config QCOM_FALKOR_ERRATUM_1009
   1003	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
   1004	default y
   1005	select ARM64_WORKAROUND_REPEAT_TLBI
   1006	help
   1007	  On Falkor v1, the CPU may prematurely complete a DSB following a
   1008	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
   1009	  one more time to fix the issue.
   1010
   1011	  If unsure, say Y.
   1012
   1013config QCOM_QDF2400_ERRATUM_0065
   1014	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
   1015	default y
   1016	help
   1017	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
   1018	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
   1019	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
   1020
   1021	  If unsure, say Y.
   1022
   1023config QCOM_FALKOR_ERRATUM_E1041
   1024	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
   1025	default y
   1026	help
   1027	  Falkor CPU may speculatively fetch instructions from an improper
   1028	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
   1029	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
   1030
   1031	  If unsure, say Y.
   1032
   1033config NVIDIA_CARMEL_CNP_ERRATUM
   1034	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
   1035	default y
   1036	help
   1037	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
   1038	  invalidate shared TLB entries installed by a different core, as it would
   1039	  on standard ARM cores.
   1040
   1041	  If unsure, say Y.
   1042
   1043config SOCIONEXT_SYNQUACER_PREITS
   1044	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
   1045	default y
   1046	help
   1047	  Socionext Synquacer SoCs implement a separate h/w block to generate
   1048	  MSI doorbell writes with non-zero values for the device ID.
   1049
   1050	  If unsure, say Y.
   1051
   1052endmenu # "ARM errata workarounds via the alternatives framework"
   1053
   1054choice
   1055	prompt "Page size"
   1056	default ARM64_4K_PAGES
   1057	help
   1058	  Page size (translation granule) configuration.
   1059
   1060config ARM64_4K_PAGES
   1061	bool "4KB"
   1062	help
   1063	  This feature enables 4KB pages support.
   1064
   1065config ARM64_16K_PAGES
   1066	bool "16KB"
   1067	help
   1068	  The system will use 16KB pages support. AArch32 emulation
   1069	  requires applications compiled with 16K (or a multiple of 16K)
   1070	  aligned segments.
   1071
   1072config ARM64_64K_PAGES
   1073	bool "64KB"
   1074	help
   1075	  This feature enables 64KB pages support (4KB by default)
   1076	  allowing only two levels of page tables and faster TLB
   1077	  look-up. AArch32 emulation requires applications compiled
   1078	  with 64K aligned segments.
   1079
   1080endchoice
   1081
   1082choice
   1083	prompt "Virtual address space size"
   1084	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
   1085	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
   1086	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
   1087	help
   1088	  Allows choosing one of multiple possible virtual address
   1089	  space sizes. The level of translation table is determined by
   1090	  a combination of page size and virtual address space size.
   1091
   1092config ARM64_VA_BITS_36
   1093	bool "36-bit" if EXPERT
   1094	depends on ARM64_16K_PAGES
   1095
   1096config ARM64_VA_BITS_39
   1097	bool "39-bit"
   1098	depends on ARM64_4K_PAGES
   1099
   1100config ARM64_VA_BITS_42
   1101	bool "42-bit"
   1102	depends on ARM64_64K_PAGES
   1103
   1104config ARM64_VA_BITS_47
   1105	bool "47-bit"
   1106	depends on ARM64_16K_PAGES
   1107
   1108config ARM64_VA_BITS_48
   1109	bool "48-bit"
   1110
   1111config ARM64_VA_BITS_52
   1112	bool "52-bit"
   1113	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
   1114	help
   1115	  Enable 52-bit virtual addressing for userspace when explicitly
   1116	  requested via a hint to mmap(). The kernel will also use 52-bit
   1117	  virtual addresses for its own mappings (provided HW support for
   1118	  this feature is available, otherwise it reverts to 48-bit).
   1119
   1120	  NOTE: Enabling 52-bit virtual addressing in conjunction with
   1121	  ARMv8.3 Pointer Authentication will result in the PAC being
   1122	  reduced from 7 bits to 3 bits, which may have a significant
   1123	  impact on its susceptibility to brute-force attacks.
   1124
   1125	  If unsure, select 48-bit virtual addressing instead.
   1126
   1127endchoice
   1128
   1129config ARM64_FORCE_52BIT
   1130	bool "Force 52-bit virtual addresses for userspace"
   1131	depends on ARM64_VA_BITS_52 && EXPERT
   1132	help
   1133	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
   1134	  to maintain compatibility with older software by providing 48-bit VAs
   1135	  unless a hint is supplied to mmap.
   1136
   1137	  This configuration option disables the 48-bit compatibility logic, and
   1138	  forces all userspace addresses to be 52-bit on HW that supports it. One
   1139	  should only enable this configuration option for stress testing userspace
   1140	  memory management code. If unsure say N here.
   1141
   1142config ARM64_VA_BITS
   1143	int
   1144	default 36 if ARM64_VA_BITS_36
   1145	default 39 if ARM64_VA_BITS_39
   1146	default 42 if ARM64_VA_BITS_42
   1147	default 47 if ARM64_VA_BITS_47
   1148	default 48 if ARM64_VA_BITS_48
   1149	default 52 if ARM64_VA_BITS_52
   1150
   1151choice
   1152	prompt "Physical address space size"
   1153	default ARM64_PA_BITS_48
   1154	help
   1155	  Choose the maximum physical address range that the kernel will
   1156	  support.
   1157
   1158config ARM64_PA_BITS_48
   1159	bool "48-bit"
   1160
   1161config ARM64_PA_BITS_52
   1162	bool "52-bit (ARMv8.2)"
   1163	depends on ARM64_64K_PAGES
   1164	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
   1165	help
   1166	  Enable support for a 52-bit physical address space, introduced as
   1167	  part of the ARMv8.2-LPA extension.
   1168
   1169	  With this enabled, the kernel will also continue to work on CPUs that
   1170	  do not support ARMv8.2-LPA, but with some added memory overhead (and
   1171	  minor performance overhead).
   1172
   1173endchoice
   1174
   1175config ARM64_PA_BITS
   1176	int
   1177	default 48 if ARM64_PA_BITS_48
   1178	default 52 if ARM64_PA_BITS_52
   1179
   1180choice
   1181	prompt "Endianness"
   1182	default CPU_LITTLE_ENDIAN
   1183	help
   1184	  Select the endianness of data accesses performed by the CPU. Userspace
   1185	  applications will need to be compiled and linked for the endianness
   1186	  that is selected here.
   1187
   1188config CPU_BIG_ENDIAN
   1189	bool "Build big-endian kernel"
   1190	depends on !LD_IS_LLD || LLD_VERSION >= 130000
   1191	help
   1192	  Say Y if you plan on running a kernel with a big-endian userspace.
   1193
   1194config CPU_LITTLE_ENDIAN
   1195	bool "Build little-endian kernel"
   1196	help
   1197	  Say Y if you plan on running a kernel with a little-endian userspace.
   1198	  This is usually the case for distributions targeting arm64.
   1199
   1200endchoice
   1201
   1202config SCHED_MC
   1203	bool "Multi-core scheduler support"
   1204	help
   1205	  Multi-core scheduler support improves the CPU scheduler's decision
   1206	  making when dealing with multi-core CPU chips at a cost of slightly
   1207	  increased overhead in some places. If unsure say N here.
   1208
   1209config SCHED_CLUSTER
   1210	bool "Cluster scheduler support"
   1211	help
   1212	  Cluster scheduler support improves the CPU scheduler's decision
   1213	  making when dealing with machines that have clusters of CPUs.
   1214	  Cluster usually means a couple of CPUs which are placed closely
   1215	  by sharing mid-level caches, last-level cache tags or internal
   1216	  busses.
   1217
   1218config SCHED_SMT
   1219	bool "SMT scheduler support"
   1220	help
   1221	  Improves the CPU scheduler's decision making when dealing with
   1222	  MultiThreading at a cost of slightly increased overhead in some
   1223	  places. If unsure say N here.
   1224
   1225config NR_CPUS
   1226	int "Maximum number of CPUs (2-4096)"
   1227	range 2 4096
   1228	default "256"
   1229
   1230config HOTPLUG_CPU
   1231	bool "Support for hot-pluggable CPUs"
   1232	select GENERIC_IRQ_MIGRATION
   1233	help
   1234	  Say Y here to experiment with turning CPUs off and on.  CPUs
   1235	  can be controlled through /sys/devices/system/cpu.
   1236
   1237# Common NUMA Features
   1238config NUMA
   1239	bool "NUMA Memory Allocation and Scheduler Support"
   1240	select GENERIC_ARCH_NUMA
   1241	select ACPI_NUMA if ACPI
   1242	select OF_NUMA
   1243	select HAVE_SETUP_PER_CPU_AREA
   1244	select NEED_PER_CPU_EMBED_FIRST_CHUNK
   1245	select NEED_PER_CPU_PAGE_FIRST_CHUNK
   1246	select USE_PERCPU_NUMA_NODE_ID
   1247	help
   1248	  Enable NUMA (Non-Uniform Memory Access) support.
   1249
   1250	  The kernel will try to allocate memory used by a CPU on the
   1251	  local memory of the CPU and add some more
   1252	  NUMA awareness to the kernel.
   1253
   1254config NODES_SHIFT
   1255	int "Maximum NUMA Nodes (as a power of 2)"
   1256	range 1 10
   1257	default "4"
   1258	depends on NUMA
   1259	help
   1260	  Specify the maximum number of NUMA Nodes available on the target
   1261	  system.  Increases memory reserved to accommodate various tables.
   1262
   1263source "kernel/Kconfig.hz"
   1264
   1265config ARCH_SPARSEMEM_ENABLE
   1266	def_bool y
   1267	select SPARSEMEM_VMEMMAP_ENABLE
   1268	select SPARSEMEM_VMEMMAP
   1269
   1270config HW_PERF_EVENTS
   1271	def_bool y
   1272	depends on ARM_PMU
   1273
   1274# Supported by clang >= 7.0 or GCC >= 12.0.0
   1275config CC_HAVE_SHADOW_CALL_STACK
   1276	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
   1277
   1278config PARAVIRT
   1279	bool "Enable paravirtualization code"
   1280	help
   1281	  This changes the kernel so it can modify itself when it is run
   1282	  under a hypervisor, potentially improving performance significantly
   1283	  over full virtualization.
   1284
   1285config PARAVIRT_TIME_ACCOUNTING
   1286	bool "Paravirtual steal time accounting"
   1287	select PARAVIRT
   1288	help
   1289	  Select this option to enable fine granularity task steal time
   1290	  accounting. Time spent executing other tasks in parallel with
   1291	  the current vCPU is discounted from the vCPU power. To account for
   1292	  that, there can be a small performance impact.
   1293
   1294	  If in doubt, say N here.
   1295
   1296config KEXEC
   1297	depends on PM_SLEEP_SMP
   1298	select KEXEC_CORE
   1299	bool "kexec system call"
   1300	help
   1301	  kexec is a system call that implements the ability to shutdown your
   1302	  current kernel, and to start another kernel.  It is like a reboot
   1303	  but it is independent of the system firmware.   And like a reboot
   1304	  you can start any kernel with it, not just Linux.
   1305
   1306config KEXEC_FILE
   1307	bool "kexec file based system call"
   1308	select KEXEC_CORE
   1309	select HAVE_IMA_KEXEC if IMA
   1310	help
   1311	  This is new version of kexec system call. This system call is
   1312	  file based and takes file descriptors as system call argument
   1313	  for kernel and initramfs as opposed to list of segments as
   1314	  accepted by previous system call.
   1315
   1316config KEXEC_SIG
   1317	bool "Verify kernel signature during kexec_file_load() syscall"
   1318	depends on KEXEC_FILE
   1319	help
   1320	  Select this option to verify a signature with loaded kernel
   1321	  image. If configured, any attempt of loading a image without
   1322	  valid signature will fail.
   1323
   1324	  In addition to that option, you need to enable signature
   1325	  verification for the corresponding kernel image type being
   1326	  loaded in order for this to work.
   1327
   1328config KEXEC_IMAGE_VERIFY_SIG
   1329	bool "Enable Image signature verification support"
   1330	default y
   1331	depends on KEXEC_SIG
   1332	depends on EFI && SIGNED_PE_FILE_VERIFICATION
   1333	help
   1334	  Enable Image signature verification support.
   1335
   1336comment "Support for PE file signature verification disabled"
   1337	depends on KEXEC_SIG
   1338	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
   1339
   1340config CRASH_DUMP
   1341	bool "Build kdump crash kernel"
   1342	help
   1343	  Generate crash dump after being started by kexec. This should
   1344	  be normally only set in special crash dump kernels which are
   1345	  loaded in the main kernel with kexec-tools into a specially
   1346	  reserved region and then later executed after a crash by
   1347	  kdump/kexec.
   1348
   1349	  For more details see Documentation/admin-guide/kdump/kdump.rst
   1350
   1351config TRANS_TABLE
   1352	def_bool y
   1353	depends on HIBERNATION || KEXEC_CORE
   1354
   1355config XEN_DOM0
   1356	def_bool y
   1357	depends on XEN
   1358
   1359config XEN
   1360	bool "Xen guest support on ARM64"
   1361	depends on ARM64 && OF
   1362	select SWIOTLB_XEN
   1363	select PARAVIRT
   1364	help
   1365	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
   1366
   1367config FORCE_MAX_ZONEORDER
   1368	int
   1369	default "14" if ARM64_64K_PAGES
   1370	default "12" if ARM64_16K_PAGES
   1371	default "11"
   1372	help
   1373	  The kernel memory allocator divides physically contiguous memory
   1374	  blocks into "zones", where each zone is a power of two number of
   1375	  pages.  This option selects the largest power of two that the kernel
   1376	  keeps in the memory allocator.  If you need to allocate very large
   1377	  blocks of physically contiguous memory, then you may need to
   1378	  increase this value.
   1379
   1380	  This config option is actually maximum order plus one. For example,
   1381	  a value of 11 means that the largest free memory block is 2^10 pages.
   1382
   1383	  We make sure that we can allocate upto a HugePage size for each configuration.
   1384	  Hence we have :
   1385		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
   1386
   1387	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
   1388	  4M allocations matching the default size used by generic code.
   1389
   1390config UNMAP_KERNEL_AT_EL0
   1391	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
   1392	default y
   1393	help
   1394	  Speculation attacks against some high-performance processors can
   1395	  be used to bypass MMU permission checks and leak kernel data to
   1396	  userspace. This can be defended against by unmapping the kernel
   1397	  when running in userspace, mapping it back in on exception entry
   1398	  via a trampoline page in the vector table.
   1399
   1400	  If unsure, say Y.
   1401
   1402config MITIGATE_SPECTRE_BRANCH_HISTORY
   1403	bool "Mitigate Spectre style attacks against branch history" if EXPERT
   1404	default y
   1405	help
   1406	  Speculation attacks against some high-performance processors can
   1407	  make use of branch history to influence future speculation.
   1408	  When taking an exception from user-space, a sequence of branches
   1409	  or a firmware call overwrites the branch history.
   1410
   1411config RODATA_FULL_DEFAULT_ENABLED
   1412	bool "Apply r/o permissions of VM areas also to their linear aliases"
   1413	default y
   1414	help
   1415	  Apply read-only attributes of VM areas to the linear alias of
   1416	  the backing pages as well. This prevents code or read-only data
   1417	  from being modified (inadvertently or intentionally) via another
   1418	  mapping of the same memory page. This additional enhancement can
   1419	  be turned off at runtime by passing rodata=[off|on] (and turned on
   1420	  with rodata=full if this option is set to 'n')
   1421
   1422	  This requires the linear region to be mapped down to pages,
   1423	  which may adversely affect performance in some cases.
   1424
   1425config ARM64_SW_TTBR0_PAN
   1426	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
   1427	help
   1428	  Enabling this option prevents the kernel from accessing
   1429	  user-space memory directly by pointing TTBR0_EL1 to a reserved
   1430	  zeroed area and reserved ASID. The user access routines
   1431	  restore the valid TTBR0_EL1 temporarily.
   1432
   1433config ARM64_TAGGED_ADDR_ABI
   1434	bool "Enable the tagged user addresses syscall ABI"
   1435	default y
   1436	help
   1437	  When this option is enabled, user applications can opt in to a
   1438	  relaxed ABI via prctl() allowing tagged addresses to be passed
   1439	  to system calls as pointer arguments. For details, see
   1440	  Documentation/arm64/tagged-address-abi.rst.
   1441
   1442menuconfig COMPAT
   1443	bool "Kernel support for 32-bit EL0"
   1444	depends on ARM64_4K_PAGES || EXPERT
   1445	select HAVE_UID16
   1446	select OLD_SIGSUSPEND3
   1447	select COMPAT_OLD_SIGACTION
   1448	help
   1449	  This option enables support for a 32-bit EL0 running under a 64-bit
   1450	  kernel at EL1. AArch32-specific components such as system calls,
   1451	  the user helper functions, VFP support and the ptrace interface are
   1452	  handled appropriately by the kernel.
   1453
   1454	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
   1455	  that you will only be able to execute AArch32 binaries that were compiled
   1456	  with page size aligned segments.
   1457
   1458	  If you want to execute 32-bit userspace applications, say Y.
   1459
   1460if COMPAT
   1461
   1462config KUSER_HELPERS
   1463	bool "Enable kuser helpers page for 32-bit applications"
   1464	default y
   1465	help
   1466	  Warning: disabling this option may break 32-bit user programs.
   1467
   1468	  Provide kuser helpers to compat tasks. The kernel provides
   1469	  helper code to userspace in read only form at a fixed location
   1470	  to allow userspace to be independent of the CPU type fitted to
   1471	  the system. This permits binaries to be run on ARMv4 through
   1472	  to ARMv8 without modification.
   1473
   1474	  See Documentation/arm/kernel_user_helpers.rst for details.
   1475
   1476	  However, the fixed address nature of these helpers can be used
   1477	  by ROP (return orientated programming) authors when creating
   1478	  exploits.
   1479
   1480	  If all of the binaries and libraries which run on your platform
   1481	  are built specifically for your platform, and make no use of
   1482	  these helpers, then you can turn this option off to hinder
   1483	  such exploits. However, in that case, if a binary or library
   1484	  relying on those helpers is run, it will not function correctly.
   1485
   1486	  Say N here only if you are absolutely certain that you do not
   1487	  need these helpers; otherwise, the safe option is to say Y.
   1488
   1489config COMPAT_VDSO
   1490	bool "Enable vDSO for 32-bit applications"
   1491	depends on !CPU_BIG_ENDIAN
   1492	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
   1493	select GENERIC_COMPAT_VDSO
   1494	default y
   1495	help
   1496	  Place in the process address space of 32-bit applications an
   1497	  ELF shared object providing fast implementations of gettimeofday
   1498	  and clock_gettime.
   1499
   1500	  You must have a 32-bit build of glibc 2.22 or later for programs
   1501	  to seamlessly take advantage of this.
   1502
   1503config THUMB2_COMPAT_VDSO
   1504	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
   1505	depends on COMPAT_VDSO
   1506	default y
   1507	help
   1508	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
   1509	  otherwise with '-marm'.
   1510
   1511menuconfig ARMV8_DEPRECATED
   1512	bool "Emulate deprecated/obsolete ARMv8 instructions"
   1513	depends on SYSCTL
   1514	help
   1515	  Legacy software support may require certain instructions
   1516	  that have been deprecated or obsoleted in the architecture.
   1517
   1518	  Enable this config to enable selective emulation of these
   1519	  features.
   1520
   1521	  If unsure, say Y
   1522
   1523if ARMV8_DEPRECATED
   1524
   1525config SWP_EMULATION
   1526	bool "Emulate SWP/SWPB instructions"
   1527	help
   1528	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
   1529	  they are always undefined. Say Y here to enable software
   1530	  emulation of these instructions for userspace using LDXR/STXR.
   1531	  This feature can be controlled at runtime with the abi.swp
   1532	  sysctl which is disabled by default.
   1533
   1534	  In some older versions of glibc [<=2.8] SWP is used during futex
   1535	  trylock() operations with the assumption that the code will not
   1536	  be preempted. This invalid assumption may be more likely to fail
   1537	  with SWP emulation enabled, leading to deadlock of the user
   1538	  application.
   1539
   1540	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
   1541	  on an external transaction monitoring block called a global
   1542	  monitor to maintain update atomicity. If your system does not
   1543	  implement a global monitor, this option can cause programs that
   1544	  perform SWP operations to uncached memory to deadlock.
   1545
   1546	  If unsure, say Y
   1547
   1548config CP15_BARRIER_EMULATION
   1549	bool "Emulate CP15 Barrier instructions"
   1550	help
   1551	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
   1552	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
   1553	  strongly recommended to use the ISB, DSB, and DMB
   1554	  instructions instead.
   1555
   1556	  Say Y here to enable software emulation of these
   1557	  instructions for AArch32 userspace code. When this option is
   1558	  enabled, CP15 barrier usage is traced which can help
   1559	  identify software that needs updating. This feature can be
   1560	  controlled at runtime with the abi.cp15_barrier sysctl.
   1561
   1562	  If unsure, say Y
   1563
   1564config SETEND_EMULATION
   1565	bool "Emulate SETEND instruction"
   1566	help
   1567	  The SETEND instruction alters the data-endianness of the
   1568	  AArch32 EL0, and is deprecated in ARMv8.
   1569
   1570	  Say Y here to enable software emulation of the instruction
   1571	  for AArch32 userspace code. This feature can be controlled
   1572	  at runtime with the abi.setend sysctl.
   1573
   1574	  Note: All the cpus on the system must have mixed endian support at EL0
   1575	  for this feature to be enabled. If a new CPU - which doesn't support mixed
   1576	  endian - is hotplugged in after this feature has been enabled, there could
   1577	  be unexpected results in the applications.
   1578
   1579	  If unsure, say Y
   1580endif # ARMV8_DEPRECATED
   1581
   1582endif # COMPAT
   1583
   1584menu "ARMv8.1 architectural features"
   1585
   1586config ARM64_HW_AFDBM
   1587	bool "Support for hardware updates of the Access and Dirty page flags"
   1588	default y
   1589	help
   1590	  The ARMv8.1 architecture extensions introduce support for
   1591	  hardware updates of the access and dirty information in page
   1592	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
   1593	  capable processors, accesses to pages with PTE_AF cleared will
   1594	  set this bit instead of raising an access flag fault.
   1595	  Similarly, writes to read-only pages with the DBM bit set will
   1596	  clear the read-only bit (AP[2]) instead of raising a
   1597	  permission fault.
   1598
   1599	  Kernels built with this configuration option enabled continue
   1600	  to work on pre-ARMv8.1 hardware and the performance impact is
   1601	  minimal. If unsure, say Y.
   1602
   1603config ARM64_PAN
   1604	bool "Enable support for Privileged Access Never (PAN)"
   1605	default y
   1606	help
   1607	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
   1608	  prevents the kernel or hypervisor from accessing user-space (EL0)
   1609	  memory directly.
   1610
   1611	  Choosing this option will cause any unprotected (not using
   1612	  copy_to_user et al) memory access to fail with a permission fault.
   1613
   1614	  The feature is detected at runtime, and will remain as a 'nop'
   1615	  instruction if the cpu does not implement the feature.
   1616
   1617config AS_HAS_LDAPR
   1618	def_bool $(as-instr,.arch_extension rcpc)
   1619
   1620config AS_HAS_LSE_ATOMICS
   1621	def_bool $(as-instr,.arch_extension lse)
   1622
   1623config ARM64_LSE_ATOMICS
   1624	bool
   1625	default ARM64_USE_LSE_ATOMICS
   1626	depends on AS_HAS_LSE_ATOMICS
   1627
   1628config ARM64_USE_LSE_ATOMICS
   1629	bool "Atomic instructions"
   1630	depends on JUMP_LABEL
   1631	default y
   1632	help
   1633	  As part of the Large System Extensions, ARMv8.1 introduces new
   1634	  atomic instructions that are designed specifically to scale in
   1635	  very large systems.
   1636
   1637	  Say Y here to make use of these instructions for the in-kernel
   1638	  atomic routines. This incurs a small overhead on CPUs that do
   1639	  not support these instructions and requires the kernel to be
   1640	  built with binutils >= 2.25 in order for the new instructions
   1641	  to be used.
   1642
   1643endmenu # "ARMv8.1 architectural features"
   1644
   1645menu "ARMv8.2 architectural features"
   1646
   1647config AS_HAS_ARMV8_2
   1648	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
   1649
   1650config AS_HAS_SHA3
   1651	def_bool $(as-instr,.arch armv8.2-a+sha3)
   1652
   1653config ARM64_PMEM
   1654	bool "Enable support for persistent memory"
   1655	select ARCH_HAS_PMEM_API
   1656	select ARCH_HAS_UACCESS_FLUSHCACHE
   1657	help
   1658	  Say Y to enable support for the persistent memory API based on the
   1659	  ARMv8.2 DCPoP feature.
   1660
   1661	  The feature is detected at runtime, and the kernel will use DC CVAC
   1662	  operations if DC CVAP is not supported (following the behaviour of
   1663	  DC CVAP itself if the system does not define a point of persistence).
   1664
   1665config ARM64_RAS_EXTN
   1666	bool "Enable support for RAS CPU Extensions"
   1667	default y
   1668	help
   1669	  CPUs that support the Reliability, Availability and Serviceability
   1670	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
   1671	  errors, classify them and report them to software.
   1672
   1673	  On CPUs with these extensions system software can use additional
   1674	  barriers to determine if faults are pending and read the
   1675	  classification from a new set of registers.
   1676
   1677	  Selecting this feature will allow the kernel to use these barriers
   1678	  and access the new registers if the system supports the extension.
   1679	  Platform RAS features may additionally depend on firmware support.
   1680
   1681config ARM64_CNP
   1682	bool "Enable support for Common Not Private (CNP) translations"
   1683	default y
   1684	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
   1685	help
   1686	  Common Not Private (CNP) allows translation table entries to
   1687	  be shared between different PEs in the same inner shareable
   1688	  domain, so the hardware can use this fact to optimise the
   1689	  caching of such entries in the TLB.
   1690
   1691	  Selecting this option allows the CNP feature to be detected
   1692	  at runtime, and does not affect PEs that do not implement
   1693	  this feature.
   1694
   1695endmenu # "ARMv8.2 architectural features"
   1696
   1697menu "ARMv8.3 architectural features"
   1698
   1699config ARM64_PTR_AUTH
   1700	bool "Enable support for pointer authentication"
   1701	default y
   1702	help
   1703	  Pointer authentication (part of the ARMv8.3 Extensions) provides
   1704	  instructions for signing and authenticating pointers against secret
   1705	  keys, which can be used to mitigate Return Oriented Programming (ROP)
   1706	  and other attacks.
   1707
   1708	  This option enables these instructions at EL0 (i.e. for userspace).
   1709	  Choosing this option will cause the kernel to initialise secret keys
   1710	  for each process at exec() time, with these keys being
   1711	  context-switched along with the process.
   1712
   1713	  The feature is detected at runtime. If the feature is not present in
   1714	  hardware it will not be advertised to userspace/KVM guest nor will it
   1715	  be enabled.
   1716
   1717	  If the feature is present on the boot CPU but not on a late CPU, then
   1718	  the late CPU will be parked. Also, if the boot CPU does not have
   1719	  address auth and the late CPU has then the late CPU will still boot
   1720	  but with the feature disabled. On such a system, this option should
   1721	  not be selected.
   1722
   1723config ARM64_PTR_AUTH_KERNEL
   1724	bool "Use pointer authentication for kernel"
   1725	default y
   1726	depends on ARM64_PTR_AUTH
   1727	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
   1728	# Modern compilers insert a .note.gnu.property section note for PAC
   1729	# which is only understood by binutils starting with version 2.33.1.
   1730	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
   1731	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
   1732	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
   1733	help
   1734	  If the compiler supports the -mbranch-protection or
   1735	  -msign-return-address flag (e.g. GCC 7 or later), then this option
   1736	  will cause the kernel itself to be compiled with return address
   1737	  protection. In this case, and if the target hardware is known to
   1738	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
   1739	  disabled with minimal loss of protection.
   1740
   1741	  This feature works with FUNCTION_GRAPH_TRACER option only if
   1742	  DYNAMIC_FTRACE_WITH_REGS is enabled.
   1743
   1744config CC_HAS_BRANCH_PROT_PAC_RET
   1745	# GCC 9 or later, clang 8 or later
   1746	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
   1747
   1748config CC_HAS_SIGN_RETURN_ADDRESS
   1749	# GCC 7, 8
   1750	def_bool $(cc-option,-msign-return-address=all)
   1751
   1752config AS_HAS_PAC
   1753	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
   1754
   1755config AS_HAS_CFI_NEGATE_RA_STATE
   1756	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
   1757
   1758endmenu # "ARMv8.3 architectural features"
   1759
   1760menu "ARMv8.4 architectural features"
   1761
   1762config ARM64_AMU_EXTN
   1763	bool "Enable support for the Activity Monitors Unit CPU extension"
   1764	default y
   1765	help
   1766	  The activity monitors extension is an optional extension introduced
   1767	  by the ARMv8.4 CPU architecture. This enables support for version 1
   1768	  of the activity monitors architecture, AMUv1.
   1769
   1770	  To enable the use of this extension on CPUs that implement it, say Y.
   1771
   1772	  Note that for architectural reasons, firmware _must_ implement AMU
   1773	  support when running on CPUs that present the activity monitors
   1774	  extension. The required support is present in:
   1775	    * Version 1.5 and later of the ARM Trusted Firmware
   1776
   1777	  For kernels that have this configuration enabled but boot with broken
   1778	  firmware, you may need to say N here until the firmware is fixed.
   1779	  Otherwise you may experience firmware panics or lockups when
   1780	  accessing the counter registers. Even if you are not observing these
   1781	  symptoms, the values returned by the register reads might not
   1782	  correctly reflect reality. Most commonly, the value read will be 0,
   1783	  indicating that the counter is not enabled.
   1784
   1785config AS_HAS_ARMV8_4
   1786	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
   1787
   1788config ARM64_TLB_RANGE
   1789	bool "Enable support for tlbi range feature"
   1790	default y
   1791	depends on AS_HAS_ARMV8_4
   1792	help
   1793	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
   1794	  range of input addresses.
   1795
   1796	  The feature introduces new assembly instructions, and they were
   1797	  support when binutils >= 2.30.
   1798
   1799endmenu # "ARMv8.4 architectural features"
   1800
   1801menu "ARMv8.5 architectural features"
   1802
   1803config AS_HAS_ARMV8_5
   1804	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
   1805
   1806config ARM64_BTI
   1807	bool "Branch Target Identification support"
   1808	default y
   1809	help
   1810	  Branch Target Identification (part of the ARMv8.5 Extensions)
   1811	  provides a mechanism to limit the set of locations to which computed
   1812	  branch instructions such as BR or BLR can jump.
   1813
   1814	  To make use of BTI on CPUs that support it, say Y.
   1815
   1816	  BTI is intended to provide complementary protection to other control
   1817	  flow integrity protection mechanisms, such as the Pointer
   1818	  authentication mechanism provided as part of the ARMv8.3 Extensions.
   1819	  For this reason, it does not make sense to enable this option without
   1820	  also enabling support for pointer authentication.  Thus, when
   1821	  enabling this option you should also select ARM64_PTR_AUTH=y.
   1822
   1823	  Userspace binaries must also be specifically compiled to make use of
   1824	  this mechanism.  If you say N here or the hardware does not support
   1825	  BTI, such binaries can still run, but you get no additional
   1826	  enforcement of branch destinations.
   1827
   1828config ARM64_BTI_KERNEL
   1829	bool "Use Branch Target Identification for kernel"
   1830	default y
   1831	depends on ARM64_BTI
   1832	depends on ARM64_PTR_AUTH_KERNEL
   1833	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
   1834	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
   1835	depends on !CC_IS_GCC || GCC_VERSION >= 100100
   1836	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
   1837	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
   1838	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
   1839	help
   1840	  Build the kernel with Branch Target Identification annotations
   1841	  and enable enforcement of this for kernel code. When this option
   1842	  is enabled and the system supports BTI all kernel code including
   1843	  modular code must have BTI enabled.
   1844
   1845config CC_HAS_BRANCH_PROT_PAC_RET_BTI
   1846	# GCC 9 or later, clang 8 or later
   1847	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
   1848
   1849config ARM64_E0PD
   1850	bool "Enable support for E0PD"
   1851	default y
   1852	help
   1853	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
   1854	  that EL0 accesses made via TTBR1 always fault in constant time,
   1855	  providing similar benefits to KASLR as those provided by KPTI, but
   1856	  with lower overhead and without disrupting legitimate access to
   1857	  kernel memory such as SPE.
   1858
   1859	  This option enables E0PD for TTBR1 where available.
   1860
   1861config ARCH_RANDOM
   1862	bool "Enable support for random number generation"
   1863	default y
   1864	help
   1865	  Random number generation (part of the ARMv8.5 Extensions)
   1866	  provides a high bandwidth, cryptographically secure
   1867	  hardware random number generator.
   1868
   1869config ARM64_AS_HAS_MTE
   1870	# Initial support for MTE went in binutils 2.32.0, checked with
   1871	# ".arch armv8.5-a+memtag" below. However, this was incomplete
   1872	# as a late addition to the final architecture spec (LDGM/STGM)
   1873	# is only supported in the newer 2.32.x and 2.33 binutils
   1874	# versions, hence the extra "stgm" instruction check below.
   1875	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
   1876
   1877config ARM64_MTE
   1878	bool "Memory Tagging Extension support"
   1879	default y
   1880	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
   1881	depends on AS_HAS_ARMV8_5
   1882	depends on AS_HAS_LSE_ATOMICS
   1883	# Required for tag checking in the uaccess routines
   1884	depends on ARM64_PAN
   1885	select ARCH_HAS_SUBPAGE_FAULTS
   1886	select ARCH_USES_HIGH_VMA_FLAGS
   1887	help
   1888	  Memory Tagging (part of the ARMv8.5 Extensions) provides
   1889	  architectural support for run-time, always-on detection of
   1890	  various classes of memory error to aid with software debugging
   1891	  to eliminate vulnerabilities arising from memory-unsafe
   1892	  languages.
   1893
   1894	  This option enables the support for the Memory Tagging
   1895	  Extension at EL0 (i.e. for userspace).
   1896
   1897	  Selecting this option allows the feature to be detected at
   1898	  runtime. Any secondary CPU not implementing this feature will
   1899	  not be allowed a late bring-up.
   1900
   1901	  Userspace binaries that want to use this feature must
   1902	  explicitly opt in. The mechanism for the userspace is
   1903	  described in:
   1904
   1905	  Documentation/arm64/memory-tagging-extension.rst.
   1906
   1907endmenu # "ARMv8.5 architectural features"
   1908
   1909menu "ARMv8.7 architectural features"
   1910
   1911config ARM64_EPAN
   1912	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
   1913	default y
   1914	depends on ARM64_PAN
   1915	help
   1916	  Enhanced Privileged Access Never (EPAN) allows Privileged
   1917	  Access Never to be used with Execute-only mappings.
   1918
   1919	  The feature is detected at runtime, and will remain disabled
   1920	  if the cpu does not implement the feature.
   1921endmenu # "ARMv8.7 architectural features"
   1922
   1923config ARM64_SVE
   1924	bool "ARM Scalable Vector Extension support"
   1925	default y
   1926	help
   1927	  The Scalable Vector Extension (SVE) is an extension to the AArch64
   1928	  execution state which complements and extends the SIMD functionality
   1929	  of the base architecture to support much larger vectors and to enable
   1930	  additional vectorisation opportunities.
   1931
   1932	  To enable use of this extension on CPUs that implement it, say Y.
   1933
   1934	  On CPUs that support the SVE2 extensions, this option will enable
   1935	  those too.
   1936
   1937	  Note that for architectural reasons, firmware _must_ implement SVE
   1938	  support when running on SVE capable hardware.  The required support
   1939	  is present in:
   1940
   1941	    * version 1.5 and later of the ARM Trusted Firmware
   1942	    * the AArch64 boot wrapper since commit 5e1261e08abf
   1943	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
   1944
   1945	  For other firmware implementations, consult the firmware documentation
   1946	  or vendor.
   1947
   1948	  If you need the kernel to boot on SVE-capable hardware with broken
   1949	  firmware, you may need to say N here until you get your firmware
   1950	  fixed.  Otherwise, you may experience firmware panics or lockups when
   1951	  booting the kernel.  If unsure and you are not observing these
   1952	  symptoms, you should assume that it is safe to say Y.
   1953
   1954config ARM64_SME
   1955	bool "ARM Scalable Matrix Extension support"
   1956	default y
   1957	depends on ARM64_SVE
   1958	help
   1959	  The Scalable Matrix Extension (SME) is an extension to the AArch64
   1960	  execution state which utilises a substantial subset of the SVE
   1961	  instruction set, together with the addition of new architectural
   1962	  register state capable of holding two dimensional matrix tiles to
   1963	  enable various matrix operations.
   1964
   1965config ARM64_MODULE_PLTS
   1966	bool "Use PLTs to allow module memory to spill over into vmalloc area"
   1967	depends on MODULES
   1968	select HAVE_MOD_ARCH_SPECIFIC
   1969	help
   1970	  Allocate PLTs when loading modules so that jumps and calls whose
   1971	  targets are too far away for their relative offsets to be encoded
   1972	  in the instructions themselves can be bounced via veneers in the
   1973	  module's PLT. This allows modules to be allocated in the generic
   1974	  vmalloc area after the dedicated module memory area has been
   1975	  exhausted.
   1976
   1977	  When running with address space randomization (KASLR), the module
   1978	  region itself may be too far away for ordinary relative jumps and
   1979	  calls, and so in that case, module PLTs are required and cannot be
   1980	  disabled.
   1981
   1982	  Specific errata workaround(s) might also force module PLTs to be
   1983	  enabled (ARM64_ERRATUM_843419).
   1984
   1985config ARM64_PSEUDO_NMI
   1986	bool "Support for NMI-like interrupts"
   1987	select ARM_GIC_V3
   1988	help
   1989	  Adds support for mimicking Non-Maskable Interrupts through the use of
   1990	  GIC interrupt priority. This support requires version 3 or later of
   1991	  ARM GIC.
   1992
   1993	  This high priority configuration for interrupts needs to be
   1994	  explicitly enabled by setting the kernel parameter
   1995	  "irqchip.gicv3_pseudo_nmi" to 1.
   1996
   1997	  If unsure, say N
   1998
   1999if ARM64_PSEUDO_NMI
   2000config ARM64_DEBUG_PRIORITY_MASKING
   2001	bool "Debug interrupt priority masking"
   2002	help
   2003	  This adds runtime checks to functions enabling/disabling
   2004	  interrupts when using priority masking. The additional checks verify
   2005	  the validity of ICC_PMR_EL1 when calling concerned functions.
   2006
   2007	  If unsure, say N
   2008endif # ARM64_PSEUDO_NMI
   2009
   2010config RELOCATABLE
   2011	bool "Build a relocatable kernel image" if EXPERT
   2012	select ARCH_HAS_RELR
   2013	default y
   2014	help
   2015	  This builds the kernel as a Position Independent Executable (PIE),
   2016	  which retains all relocation metadata required to relocate the
   2017	  kernel binary at runtime to a different virtual address than the
   2018	  address it was linked at.
   2019	  Since AArch64 uses the RELA relocation format, this requires a
   2020	  relocation pass at runtime even if the kernel is loaded at the
   2021	  same address it was linked at.
   2022
   2023config RANDOMIZE_BASE
   2024	bool "Randomize the address of the kernel image"
   2025	select ARM64_MODULE_PLTS if MODULES
   2026	select RELOCATABLE
   2027	help
   2028	  Randomizes the virtual address at which the kernel image is
   2029	  loaded, as a security feature that deters exploit attempts
   2030	  relying on knowledge of the location of kernel internals.
   2031
   2032	  It is the bootloader's job to provide entropy, by passing a
   2033	  random u64 value in /chosen/kaslr-seed at kernel entry.
   2034
   2035	  When booting via the UEFI stub, it will invoke the firmware's
   2036	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
   2037	  to the kernel proper. In addition, it will randomise the physical
   2038	  location of the kernel Image as well.
   2039
   2040	  If unsure, say N.
   2041
   2042config RANDOMIZE_MODULE_REGION_FULL
   2043	bool "Randomize the module region over a 2 GB range"
   2044	depends on RANDOMIZE_BASE
   2045	default y
   2046	help
   2047	  Randomizes the location of the module region inside a 2 GB window
   2048	  covering the core kernel. This way, it is less likely for modules
   2049	  to leak information about the location of core kernel data structures
   2050	  but it does imply that function calls between modules and the core
   2051	  kernel will need to be resolved via veneers in the module PLT.
   2052
   2053	  When this option is not set, the module region will be randomized over
   2054	  a limited range that contains the [_stext, _etext] interval of the
   2055	  core kernel, so branch relocations are almost always in range unless
   2056	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
   2057	  particular case of region exhaustion, modules might be able to fall
   2058	  back to a larger 2GB area.
   2059
   2060config CC_HAVE_STACKPROTECTOR_SYSREG
   2061	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
   2062
   2063config STACKPROTECTOR_PER_TASK
   2064	def_bool y
   2065	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
   2066
   2067# The GPIO number here must be sorted by descending number. In case of
   2068# a multiplatform kernel, we just want the highest value required by the
   2069# selected platforms.
   2070config ARCH_NR_GPIO
   2071        int
   2072        default 2048 if ARCH_APPLE
   2073        default 0
   2074        help
   2075          Maximum number of GPIOs in the system.
   2076
   2077          If unsure, leave the default value.
   2078
   2079endmenu # "Kernel Features"
   2080
   2081menu "Boot options"
   2082
   2083config ARM64_ACPI_PARKING_PROTOCOL
   2084	bool "Enable support for the ARM64 ACPI parking protocol"
   2085	depends on ACPI
   2086	help
   2087	  Enable support for the ARM64 ACPI parking protocol. If disabled
   2088	  the kernel will not allow booting through the ARM64 ACPI parking
   2089	  protocol even if the corresponding data is present in the ACPI
   2090	  MADT table.
   2091
   2092config CMDLINE
   2093	string "Default kernel command string"
   2094	default ""
   2095	help
   2096	  Provide a set of default command-line options at build time by
   2097	  entering them here. As a minimum, you should specify the the
   2098	  root device (e.g. root=/dev/nfs).
   2099
   2100choice
   2101	prompt "Kernel command line type" if CMDLINE != ""
   2102	default CMDLINE_FROM_BOOTLOADER
   2103	help
   2104	  Choose how the kernel will handle the provided default kernel
   2105	  command line string.
   2106
   2107config CMDLINE_FROM_BOOTLOADER
   2108	bool "Use bootloader kernel arguments if available"
   2109	help
   2110	  Uses the command-line options passed by the boot loader. If
   2111	  the boot loader doesn't provide any, the default kernel command
   2112	  string provided in CMDLINE will be used.
   2113
   2114config CMDLINE_FORCE
   2115	bool "Always use the default kernel command string"
   2116	help
   2117	  Always use the default kernel command string, even if the boot
   2118	  loader passes other arguments to the kernel.
   2119	  This is useful if you cannot or don't want to change the
   2120	  command-line options your boot loader passes to the kernel.
   2121
   2122endchoice
   2123
   2124config EFI_STUB
   2125	bool
   2126
   2127config EFI
   2128	bool "UEFI runtime support"
   2129	depends on OF && !CPU_BIG_ENDIAN
   2130	depends on KERNEL_MODE_NEON
   2131	select ARCH_SUPPORTS_ACPI
   2132	select LIBFDT
   2133	select UCS2_STRING
   2134	select EFI_PARAMS_FROM_FDT
   2135	select EFI_RUNTIME_WRAPPERS
   2136	select EFI_STUB
   2137	select EFI_GENERIC_STUB
   2138	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
   2139	default y
   2140	help
   2141	  This option provides support for runtime services provided
   2142	  by UEFI firmware (such as non-volatile variables, realtime
   2143	  clock, and platform reset). A UEFI stub is also provided to
   2144	  allow the kernel to be booted as an EFI application. This
   2145	  is only useful on systems that have UEFI firmware.
   2146
   2147config DMI
   2148	bool "Enable support for SMBIOS (DMI) tables"
   2149	depends on EFI
   2150	default y
   2151	help
   2152	  This enables SMBIOS/DMI feature for systems.
   2153
   2154	  This option is only useful on systems that have UEFI firmware.
   2155	  However, even with this option, the resultant kernel should
   2156	  continue to boot on existing non-UEFI platforms.
   2157
   2158endmenu # "Boot options"
   2159
   2160menu "Power management options"
   2161
   2162source "kernel/power/Kconfig"
   2163
   2164config ARCH_HIBERNATION_POSSIBLE
   2165	def_bool y
   2166	depends on CPU_PM
   2167
   2168config ARCH_HIBERNATION_HEADER
   2169	def_bool y
   2170	depends on HIBERNATION
   2171
   2172config ARCH_SUSPEND_POSSIBLE
   2173	def_bool y
   2174
   2175endmenu # "Power management options"
   2176
   2177menu "CPU Power Management"
   2178
   2179source "drivers/cpuidle/Kconfig"
   2180
   2181source "drivers/cpufreq/Kconfig"
   2182
   2183endmenu # "CPU Power Management"
   2184
   2185source "drivers/acpi/Kconfig"
   2186
   2187source "arch/arm64/kvm/Kconfig"
   2188
   2189if CRYPTO
   2190source "arch/arm64/crypto/Kconfig"
   2191endif # CRYPTO