cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

aes-ce-glue.c (4455B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
      4 *
      5 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
      6 */
      7
      8#include <asm/neon.h>
      9#include <asm/simd.h>
     10#include <asm/unaligned.h>
     11#include <crypto/aes.h>
     12#include <crypto/internal/simd.h>
     13#include <linux/cpufeature.h>
     14#include <linux/crypto.h>
     15#include <linux/module.h>
     16
     17#include "aes-ce-setkey.h"
     18
     19MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
     20MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
     21MODULE_LICENSE("GPL v2");
     22
     23struct aes_block {
     24	u8 b[AES_BLOCK_SIZE];
     25};
     26
     27asmlinkage void __aes_ce_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
     28asmlinkage void __aes_ce_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
     29
     30asmlinkage u32 __aes_ce_sub(u32 l);
     31asmlinkage void __aes_ce_invert(struct aes_block *out,
     32				const struct aes_block *in);
     33
     34static int num_rounds(struct crypto_aes_ctx *ctx)
     35{
     36	/*
     37	 * # of rounds specified by AES:
     38	 * 128 bit key		10 rounds
     39	 * 192 bit key		12 rounds
     40	 * 256 bit key		14 rounds
     41	 * => n byte key	=> 6 + (n/4) rounds
     42	 */
     43	return 6 + ctx->key_length / 4;
     44}
     45
     46static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
     47{
     48	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
     49
     50	if (!crypto_simd_usable()) {
     51		aes_encrypt(ctx, dst, src);
     52		return;
     53	}
     54
     55	kernel_neon_begin();
     56	__aes_ce_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
     57	kernel_neon_end();
     58}
     59
     60static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
     61{
     62	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
     63
     64	if (!crypto_simd_usable()) {
     65		aes_decrypt(ctx, dst, src);
     66		return;
     67	}
     68
     69	kernel_neon_begin();
     70	__aes_ce_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
     71	kernel_neon_end();
     72}
     73
     74int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
     75		     unsigned int key_len)
     76{
     77	/*
     78	 * The AES key schedule round constants
     79	 */
     80	static u8 const rcon[] = {
     81		0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36,
     82	};
     83
     84	u32 kwords = key_len / sizeof(u32);
     85	struct aes_block *key_enc, *key_dec;
     86	int i, j;
     87
     88	if (key_len != AES_KEYSIZE_128 &&
     89	    key_len != AES_KEYSIZE_192 &&
     90	    key_len != AES_KEYSIZE_256)
     91		return -EINVAL;
     92
     93	ctx->key_length = key_len;
     94	for (i = 0; i < kwords; i++)
     95		ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
     96
     97	kernel_neon_begin();
     98	for (i = 0; i < sizeof(rcon); i++) {
     99		u32 *rki = ctx->key_enc + (i * kwords);
    100		u32 *rko = rki + kwords;
    101
    102		rko[0] = ror32(__aes_ce_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
    103		rko[1] = rko[0] ^ rki[1];
    104		rko[2] = rko[1] ^ rki[2];
    105		rko[3] = rko[2] ^ rki[3];
    106
    107		if (key_len == AES_KEYSIZE_192) {
    108			if (i >= 7)
    109				break;
    110			rko[4] = rko[3] ^ rki[4];
    111			rko[5] = rko[4] ^ rki[5];
    112		} else if (key_len == AES_KEYSIZE_256) {
    113			if (i >= 6)
    114				break;
    115			rko[4] = __aes_ce_sub(rko[3]) ^ rki[4];
    116			rko[5] = rko[4] ^ rki[5];
    117			rko[6] = rko[5] ^ rki[6];
    118			rko[7] = rko[6] ^ rki[7];
    119		}
    120	}
    121
    122	/*
    123	 * Generate the decryption keys for the Equivalent Inverse Cipher.
    124	 * This involves reversing the order of the round keys, and applying
    125	 * the Inverse Mix Columns transformation on all but the first and
    126	 * the last one.
    127	 */
    128	key_enc = (struct aes_block *)ctx->key_enc;
    129	key_dec = (struct aes_block *)ctx->key_dec;
    130	j = num_rounds(ctx);
    131
    132	key_dec[0] = key_enc[j];
    133	for (i = 1, j--; j > 0; i++, j--)
    134		__aes_ce_invert(key_dec + i, key_enc + j);
    135	key_dec[i] = key_enc[0];
    136
    137	kernel_neon_end();
    138	return 0;
    139}
    140EXPORT_SYMBOL(ce_aes_expandkey);
    141
    142int ce_aes_setkey(struct crypto_tfm *tfm, const u8 *in_key,
    143		  unsigned int key_len)
    144{
    145	struct crypto_aes_ctx *ctx = crypto_tfm_ctx(tfm);
    146
    147	return ce_aes_expandkey(ctx, in_key, key_len);
    148}
    149EXPORT_SYMBOL(ce_aes_setkey);
    150
    151static struct crypto_alg aes_alg = {
    152	.cra_name		= "aes",
    153	.cra_driver_name	= "aes-ce",
    154	.cra_priority		= 250,
    155	.cra_flags		= CRYPTO_ALG_TYPE_CIPHER,
    156	.cra_blocksize		= AES_BLOCK_SIZE,
    157	.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
    158	.cra_module		= THIS_MODULE,
    159	.cra_cipher = {
    160		.cia_min_keysize	= AES_MIN_KEY_SIZE,
    161		.cia_max_keysize	= AES_MAX_KEY_SIZE,
    162		.cia_setkey		= ce_aes_setkey,
    163		.cia_encrypt		= aes_cipher_encrypt,
    164		.cia_decrypt		= aes_cipher_decrypt
    165	}
    166};
    167
    168static int __init aes_mod_init(void)
    169{
    170	return crypto_register_alg(&aes_alg);
    171}
    172
    173static void __exit aes_mod_exit(void)
    174{
    175	crypto_unregister_alg(&aes_alg);
    176}
    177
    178module_cpu_feature_match(AES, aes_mod_init);
    179module_exit(aes_mod_exit);