cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

crct10dif-ce-core.S (16176B)


      1//
      2// Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
      3//
      4// Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
      5// Copyright (C) 2019 Google LLC <ebiggers@google.com>
      6//
      7// This program is free software; you can redistribute it and/or modify
      8// it under the terms of the GNU General Public License version 2 as
      9// published by the Free Software Foundation.
     10//
     11
     12// Derived from the x86 version:
     13//
     14// Implement fast CRC-T10DIF computation with SSE and PCLMULQDQ instructions
     15//
     16// Copyright (c) 2013, Intel Corporation
     17//
     18// Authors:
     19//     Erdinc Ozturk <erdinc.ozturk@intel.com>
     20//     Vinodh Gopal <vinodh.gopal@intel.com>
     21//     James Guilford <james.guilford@intel.com>
     22//     Tim Chen <tim.c.chen@linux.intel.com>
     23//
     24// This software is available to you under a choice of one of two
     25// licenses.  You may choose to be licensed under the terms of the GNU
     26// General Public License (GPL) Version 2, available from the file
     27// COPYING in the main directory of this source tree, or the
     28// OpenIB.org BSD license below:
     29//
     30// Redistribution and use in source and binary forms, with or without
     31// modification, are permitted provided that the following conditions are
     32// met:
     33//
     34// * Redistributions of source code must retain the above copyright
     35//   notice, this list of conditions and the following disclaimer.
     36//
     37// * Redistributions in binary form must reproduce the above copyright
     38//   notice, this list of conditions and the following disclaimer in the
     39//   documentation and/or other materials provided with the
     40//   distribution.
     41//
     42// * Neither the name of the Intel Corporation nor the names of its
     43//   contributors may be used to endorse or promote products derived from
     44//   this software without specific prior written permission.
     45//
     46//
     47// THIS SOFTWARE IS PROVIDED BY INTEL CORPORATION ""AS IS"" AND ANY
     48// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     50// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL INTEL CORPORATION OR
     51// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     52// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     53// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     54// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     55// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     56// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     57// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     58//
     59//       Reference paper titled "Fast CRC Computation for Generic
     60//	Polynomials Using PCLMULQDQ Instruction"
     61//       URL: http://www.intel.com/content/dam/www/public/us/en/documents
     62//  /white-papers/fast-crc-computation-generic-polynomials-pclmulqdq-paper.pdf
     63//
     64
     65#include <linux/linkage.h>
     66#include <asm/assembler.h>
     67
     68	.text
     69	.arch		armv8-a+crypto
     70
     71	init_crc	.req	w0
     72	buf		.req	x1
     73	len		.req	x2
     74	fold_consts_ptr	.req	x3
     75
     76	fold_consts	.req	v10
     77
     78	ad		.req	v14
     79
     80	k00_16		.req	v15
     81	k32_48		.req	v16
     82
     83	t3		.req	v17
     84	t4		.req	v18
     85	t5		.req	v19
     86	t6		.req	v20
     87	t7		.req	v21
     88	t8		.req	v22
     89	t9		.req	v23
     90
     91	perm1		.req	v24
     92	perm2		.req	v25
     93	perm3		.req	v26
     94	perm4		.req	v27
     95
     96	bd1		.req	v28
     97	bd2		.req	v29
     98	bd3		.req	v30
     99	bd4		.req	v31
    100
    101	.macro		__pmull_init_p64
    102	.endm
    103
    104	.macro		__pmull_pre_p64, bd
    105	.endm
    106
    107	.macro		__pmull_init_p8
    108	// k00_16 := 0x0000000000000000_000000000000ffff
    109	// k32_48 := 0x00000000ffffffff_0000ffffffffffff
    110	movi		k32_48.2d, #0xffffffff
    111	mov		k32_48.h[2], k32_48.h[0]
    112	ushr		k00_16.2d, k32_48.2d, #32
    113
    114	// prepare the permutation vectors
    115	mov_q		x5, 0x080f0e0d0c0b0a09
    116	movi		perm4.8b, #8
    117	dup		perm1.2d, x5
    118	eor		perm1.16b, perm1.16b, perm4.16b
    119	ushr		perm2.2d, perm1.2d, #8
    120	ushr		perm3.2d, perm1.2d, #16
    121	ushr		perm4.2d, perm1.2d, #24
    122	sli		perm2.2d, perm1.2d, #56
    123	sli		perm3.2d, perm1.2d, #48
    124	sli		perm4.2d, perm1.2d, #40
    125	.endm
    126
    127	.macro		__pmull_pre_p8, bd
    128	tbl		bd1.16b, {\bd\().16b}, perm1.16b
    129	tbl		bd2.16b, {\bd\().16b}, perm2.16b
    130	tbl		bd3.16b, {\bd\().16b}, perm3.16b
    131	tbl		bd4.16b, {\bd\().16b}, perm4.16b
    132	.endm
    133
    134SYM_FUNC_START_LOCAL(__pmull_p8_core)
    135.L__pmull_p8_core:
    136	ext		t4.8b, ad.8b, ad.8b, #1			// A1
    137	ext		t5.8b, ad.8b, ad.8b, #2			// A2
    138	ext		t6.8b, ad.8b, ad.8b, #3			// A3
    139
    140	pmull		t4.8h, t4.8b, fold_consts.8b		// F = A1*B
    141	pmull		t8.8h, ad.8b, bd1.8b			// E = A*B1
    142	pmull		t5.8h, t5.8b, fold_consts.8b		// H = A2*B
    143	pmull		t7.8h, ad.8b, bd2.8b			// G = A*B2
    144	pmull		t6.8h, t6.8b, fold_consts.8b		// J = A3*B
    145	pmull		t9.8h, ad.8b, bd3.8b			// I = A*B3
    146	pmull		t3.8h, ad.8b, bd4.8b			// K = A*B4
    147	b		0f
    148
    149.L__pmull_p8_core2:
    150	tbl		t4.16b, {ad.16b}, perm1.16b		// A1
    151	tbl		t5.16b, {ad.16b}, perm2.16b		// A2
    152	tbl		t6.16b, {ad.16b}, perm3.16b		// A3
    153
    154	pmull2		t4.8h, t4.16b, fold_consts.16b		// F = A1*B
    155	pmull2		t8.8h, ad.16b, bd1.16b			// E = A*B1
    156	pmull2		t5.8h, t5.16b, fold_consts.16b		// H = A2*B
    157	pmull2		t7.8h, ad.16b, bd2.16b			// G = A*B2
    158	pmull2		t6.8h, t6.16b, fold_consts.16b		// J = A3*B
    159	pmull2		t9.8h, ad.16b, bd3.16b			// I = A*B3
    160	pmull2		t3.8h, ad.16b, bd4.16b			// K = A*B4
    161
    1620:	eor		t4.16b, t4.16b, t8.16b			// L = E + F
    163	eor		t5.16b, t5.16b, t7.16b			// M = G + H
    164	eor		t6.16b, t6.16b, t9.16b			// N = I + J
    165
    166	uzp1		t8.2d, t4.2d, t5.2d
    167	uzp2		t4.2d, t4.2d, t5.2d
    168	uzp1		t7.2d, t6.2d, t3.2d
    169	uzp2		t6.2d, t6.2d, t3.2d
    170
    171	// t4 = (L) (P0 + P1) << 8
    172	// t5 = (M) (P2 + P3) << 16
    173	eor		t8.16b, t8.16b, t4.16b
    174	and		t4.16b, t4.16b, k32_48.16b
    175
    176	// t6 = (N) (P4 + P5) << 24
    177	// t7 = (K) (P6 + P7) << 32
    178	eor		t7.16b, t7.16b, t6.16b
    179	and		t6.16b, t6.16b, k00_16.16b
    180
    181	eor		t8.16b, t8.16b, t4.16b
    182	eor		t7.16b, t7.16b, t6.16b
    183
    184	zip2		t5.2d, t8.2d, t4.2d
    185	zip1		t4.2d, t8.2d, t4.2d
    186	zip2		t3.2d, t7.2d, t6.2d
    187	zip1		t6.2d, t7.2d, t6.2d
    188
    189	ext		t4.16b, t4.16b, t4.16b, #15
    190	ext		t5.16b, t5.16b, t5.16b, #14
    191	ext		t6.16b, t6.16b, t6.16b, #13
    192	ext		t3.16b, t3.16b, t3.16b, #12
    193
    194	eor		t4.16b, t4.16b, t5.16b
    195	eor		t6.16b, t6.16b, t3.16b
    196	ret
    197SYM_FUNC_END(__pmull_p8_core)
    198
    199	.macro		__pmull_p8, rq, ad, bd, i
    200	.ifnc		\bd, fold_consts
    201	.err
    202	.endif
    203	mov		ad.16b, \ad\().16b
    204	.ifb		\i
    205	pmull		\rq\().8h, \ad\().8b, \bd\().8b		// D = A*B
    206	.else
    207	pmull2		\rq\().8h, \ad\().16b, \bd\().16b	// D = A*B
    208	.endif
    209
    210	bl		.L__pmull_p8_core\i
    211
    212	eor		\rq\().16b, \rq\().16b, t4.16b
    213	eor		\rq\().16b, \rq\().16b, t6.16b
    214	.endm
    215
    216	// Fold reg1, reg2 into the next 32 data bytes, storing the result back
    217	// into reg1, reg2.
    218	.macro		fold_32_bytes, p, reg1, reg2
    219	ldp		q11, q12, [buf], #0x20
    220
    221	__pmull_\p	v8, \reg1, fold_consts, 2
    222	__pmull_\p	\reg1, \reg1, fold_consts
    223
    224CPU_LE(	rev64		v11.16b, v11.16b		)
    225CPU_LE(	rev64		v12.16b, v12.16b		)
    226
    227	__pmull_\p	v9, \reg2, fold_consts, 2
    228	__pmull_\p	\reg2, \reg2, fold_consts
    229
    230CPU_LE(	ext		v11.16b, v11.16b, v11.16b, #8	)
    231CPU_LE(	ext		v12.16b, v12.16b, v12.16b, #8	)
    232
    233	eor		\reg1\().16b, \reg1\().16b, v8.16b
    234	eor		\reg2\().16b, \reg2\().16b, v9.16b
    235	eor		\reg1\().16b, \reg1\().16b, v11.16b
    236	eor		\reg2\().16b, \reg2\().16b, v12.16b
    237	.endm
    238
    239	// Fold src_reg into dst_reg, optionally loading the next fold constants
    240	.macro		fold_16_bytes, p, src_reg, dst_reg, load_next_consts
    241	__pmull_\p	v8, \src_reg, fold_consts
    242	__pmull_\p	\src_reg, \src_reg, fold_consts, 2
    243	.ifnb		\load_next_consts
    244	ld1		{fold_consts.2d}, [fold_consts_ptr], #16
    245	__pmull_pre_\p	fold_consts
    246	.endif
    247	eor		\dst_reg\().16b, \dst_reg\().16b, v8.16b
    248	eor		\dst_reg\().16b, \dst_reg\().16b, \src_reg\().16b
    249	.endm
    250
    251	.macro		__pmull_p64, rd, rn, rm, n
    252	.ifb		\n
    253	pmull		\rd\().1q, \rn\().1d, \rm\().1d
    254	.else
    255	pmull2		\rd\().1q, \rn\().2d, \rm\().2d
    256	.endif
    257	.endm
    258
    259	.macro		crc_t10dif_pmull, p
    260	__pmull_init_\p
    261
    262	// For sizes less than 256 bytes, we can't fold 128 bytes at a time.
    263	cmp		len, #256
    264	b.lt		.Lless_than_256_bytes_\@
    265
    266	adr_l		fold_consts_ptr, .Lfold_across_128_bytes_consts
    267
    268	// Load the first 128 data bytes.  Byte swapping is necessary to make
    269	// the bit order match the polynomial coefficient order.
    270	ldp		q0, q1, [buf]
    271	ldp		q2, q3, [buf, #0x20]
    272	ldp		q4, q5, [buf, #0x40]
    273	ldp		q6, q7, [buf, #0x60]
    274	add		buf, buf, #0x80
    275CPU_LE(	rev64		v0.16b, v0.16b			)
    276CPU_LE(	rev64		v1.16b, v1.16b			)
    277CPU_LE(	rev64		v2.16b, v2.16b			)
    278CPU_LE(	rev64		v3.16b, v3.16b			)
    279CPU_LE(	rev64		v4.16b, v4.16b			)
    280CPU_LE(	rev64		v5.16b, v5.16b			)
    281CPU_LE(	rev64		v6.16b, v6.16b			)
    282CPU_LE(	rev64		v7.16b, v7.16b			)
    283CPU_LE(	ext		v0.16b, v0.16b, v0.16b, #8	)
    284CPU_LE(	ext		v1.16b, v1.16b, v1.16b, #8	)
    285CPU_LE(	ext		v2.16b, v2.16b, v2.16b, #8	)
    286CPU_LE(	ext		v3.16b, v3.16b, v3.16b, #8	)
    287CPU_LE(	ext		v4.16b, v4.16b, v4.16b, #8	)
    288CPU_LE(	ext		v5.16b, v5.16b, v5.16b, #8	)
    289CPU_LE(	ext		v6.16b, v6.16b, v6.16b, #8	)
    290CPU_LE(	ext		v7.16b, v7.16b, v7.16b, #8	)
    291
    292	// XOR the first 16 data *bits* with the initial CRC value.
    293	movi		v8.16b, #0
    294	mov		v8.h[7], init_crc
    295	eor		v0.16b, v0.16b, v8.16b
    296
    297	// Load the constants for folding across 128 bytes.
    298	ld1		{fold_consts.2d}, [fold_consts_ptr]
    299	__pmull_pre_\p	fold_consts
    300
    301	// Subtract 128 for the 128 data bytes just consumed.  Subtract another
    302	// 128 to simplify the termination condition of the following loop.
    303	sub		len, len, #256
    304
    305	// While >= 128 data bytes remain (not counting v0-v7), fold the 128
    306	// bytes v0-v7 into them, storing the result back into v0-v7.
    307.Lfold_128_bytes_loop_\@:
    308	fold_32_bytes	\p, v0, v1
    309	fold_32_bytes	\p, v2, v3
    310	fold_32_bytes	\p, v4, v5
    311	fold_32_bytes	\p, v6, v7
    312
    313	subs		len, len, #128
    314	b.ge		.Lfold_128_bytes_loop_\@
    315
    316	// Now fold the 112 bytes in v0-v6 into the 16 bytes in v7.
    317
    318	// Fold across 64 bytes.
    319	add		fold_consts_ptr, fold_consts_ptr, #16
    320	ld1		{fold_consts.2d}, [fold_consts_ptr], #16
    321	__pmull_pre_\p	fold_consts
    322	fold_16_bytes	\p, v0, v4
    323	fold_16_bytes	\p, v1, v5
    324	fold_16_bytes	\p, v2, v6
    325	fold_16_bytes	\p, v3, v7, 1
    326	// Fold across 32 bytes.
    327	fold_16_bytes	\p, v4, v6
    328	fold_16_bytes	\p, v5, v7, 1
    329	// Fold across 16 bytes.
    330	fold_16_bytes	\p, v6, v7
    331
    332	// Add 128 to get the correct number of data bytes remaining in 0...127
    333	// (not counting v7), following the previous extra subtraction by 128.
    334	// Then subtract 16 to simplify the termination condition of the
    335	// following loop.
    336	adds		len, len, #(128-16)
    337
    338	// While >= 16 data bytes remain (not counting v7), fold the 16 bytes v7
    339	// into them, storing the result back into v7.
    340	b.lt		.Lfold_16_bytes_loop_done_\@
    341.Lfold_16_bytes_loop_\@:
    342	__pmull_\p	v8, v7, fold_consts
    343	__pmull_\p	v7, v7, fold_consts, 2
    344	eor		v7.16b, v7.16b, v8.16b
    345	ldr		q0, [buf], #16
    346CPU_LE(	rev64		v0.16b, v0.16b			)
    347CPU_LE(	ext		v0.16b, v0.16b, v0.16b, #8	)
    348	eor		v7.16b, v7.16b, v0.16b
    349	subs		len, len, #16
    350	b.ge		.Lfold_16_bytes_loop_\@
    351
    352.Lfold_16_bytes_loop_done_\@:
    353	// Add 16 to get the correct number of data bytes remaining in 0...15
    354	// (not counting v7), following the previous extra subtraction by 16.
    355	adds		len, len, #16
    356	b.eq		.Lreduce_final_16_bytes_\@
    357
    358.Lhandle_partial_segment_\@:
    359	// Reduce the last '16 + len' bytes where 1 <= len <= 15 and the first
    360	// 16 bytes are in v7 and the rest are the remaining data in 'buf'.  To
    361	// do this without needing a fold constant for each possible 'len',
    362	// redivide the bytes into a first chunk of 'len' bytes and a second
    363	// chunk of 16 bytes, then fold the first chunk into the second.
    364
    365	// v0 = last 16 original data bytes
    366	add		buf, buf, len
    367	ldr		q0, [buf, #-16]
    368CPU_LE(	rev64		v0.16b, v0.16b			)
    369CPU_LE(	ext		v0.16b, v0.16b, v0.16b, #8	)
    370
    371	// v1 = high order part of second chunk: v7 left-shifted by 'len' bytes.
    372	adr_l		x4, .Lbyteshift_table + 16
    373	sub		x4, x4, len
    374	ld1		{v2.16b}, [x4]
    375	tbl		v1.16b, {v7.16b}, v2.16b
    376
    377	// v3 = first chunk: v7 right-shifted by '16-len' bytes.
    378	movi		v3.16b, #0x80
    379	eor		v2.16b, v2.16b, v3.16b
    380	tbl		v3.16b, {v7.16b}, v2.16b
    381
    382	// Convert to 8-bit masks: 'len' 0x00 bytes, then '16-len' 0xff bytes.
    383	sshr		v2.16b, v2.16b, #7
    384
    385	// v2 = second chunk: 'len' bytes from v0 (low-order bytes),
    386	// then '16-len' bytes from v1 (high-order bytes).
    387	bsl		v2.16b, v1.16b, v0.16b
    388
    389	// Fold the first chunk into the second chunk, storing the result in v7.
    390	__pmull_\p	v0, v3, fold_consts
    391	__pmull_\p	v7, v3, fold_consts, 2
    392	eor		v7.16b, v7.16b, v0.16b
    393	eor		v7.16b, v7.16b, v2.16b
    394
    395.Lreduce_final_16_bytes_\@:
    396	// Reduce the 128-bit value M(x), stored in v7, to the final 16-bit CRC.
    397
    398	movi		v2.16b, #0		// init zero register
    399
    400	// Load 'x^48 * (x^48 mod G(x))' and 'x^48 * (x^80 mod G(x))'.
    401	ld1		{fold_consts.2d}, [fold_consts_ptr], #16
    402	__pmull_pre_\p	fold_consts
    403
    404	// Fold the high 64 bits into the low 64 bits, while also multiplying by
    405	// x^64.  This produces a 128-bit value congruent to x^64 * M(x) and
    406	// whose low 48 bits are 0.
    407	ext		v0.16b, v2.16b, v7.16b, #8
    408	__pmull_\p	v7, v7, fold_consts, 2	// high bits * x^48 * (x^80 mod G(x))
    409	eor		v0.16b, v0.16b, v7.16b	// + low bits * x^64
    410
    411	// Fold the high 32 bits into the low 96 bits.  This produces a 96-bit
    412	// value congruent to x^64 * M(x) and whose low 48 bits are 0.
    413	ext		v1.16b, v0.16b, v2.16b, #12	// extract high 32 bits
    414	mov		v0.s[3], v2.s[0]	// zero high 32 bits
    415	__pmull_\p	v1, v1, fold_consts	// high 32 bits * x^48 * (x^48 mod G(x))
    416	eor		v0.16b, v0.16b, v1.16b	// + low bits
    417
    418	// Load G(x) and floor(x^48 / G(x)).
    419	ld1		{fold_consts.2d}, [fold_consts_ptr]
    420	__pmull_pre_\p	fold_consts
    421
    422	// Use Barrett reduction to compute the final CRC value.
    423	__pmull_\p	v1, v0, fold_consts, 2	// high 32 bits * floor(x^48 / G(x))
    424	ushr		v1.2d, v1.2d, #32	// /= x^32
    425	__pmull_\p	v1, v1, fold_consts	// *= G(x)
    426	ushr		v0.2d, v0.2d, #48
    427	eor		v0.16b, v0.16b, v1.16b	// + low 16 nonzero bits
    428	// Final CRC value (x^16 * M(x)) mod G(x) is in low 16 bits of v0.
    429
    430	umov		w0, v0.h[0]
    431	.ifc		\p, p8
    432	ldp		x29, x30, [sp], #16
    433	.endif
    434	ret
    435
    436.Lless_than_256_bytes_\@:
    437	// Checksumming a buffer of length 16...255 bytes
    438
    439	adr_l		fold_consts_ptr, .Lfold_across_16_bytes_consts
    440
    441	// Load the first 16 data bytes.
    442	ldr		q7, [buf], #0x10
    443CPU_LE(	rev64		v7.16b, v7.16b			)
    444CPU_LE(	ext		v7.16b, v7.16b, v7.16b, #8	)
    445
    446	// XOR the first 16 data *bits* with the initial CRC value.
    447	movi		v0.16b, #0
    448	mov		v0.h[7], init_crc
    449	eor		v7.16b, v7.16b, v0.16b
    450
    451	// Load the fold-across-16-bytes constants.
    452	ld1		{fold_consts.2d}, [fold_consts_ptr], #16
    453	__pmull_pre_\p	fold_consts
    454
    455	cmp		len, #16
    456	b.eq		.Lreduce_final_16_bytes_\@	// len == 16
    457	subs		len, len, #32
    458	b.ge		.Lfold_16_bytes_loop_\@		// 32 <= len <= 255
    459	add		len, len, #16
    460	b		.Lhandle_partial_segment_\@	// 17 <= len <= 31
    461	.endm
    462
    463//
    464// u16 crc_t10dif_pmull_p8(u16 init_crc, const u8 *buf, size_t len);
    465//
    466// Assumes len >= 16.
    467//
    468SYM_FUNC_START(crc_t10dif_pmull_p8)
    469	stp		x29, x30, [sp, #-16]!
    470	mov		x29, sp
    471	crc_t10dif_pmull p8
    472SYM_FUNC_END(crc_t10dif_pmull_p8)
    473
    474	.align		5
    475//
    476// u16 crc_t10dif_pmull_p64(u16 init_crc, const u8 *buf, size_t len);
    477//
    478// Assumes len >= 16.
    479//
    480SYM_FUNC_START(crc_t10dif_pmull_p64)
    481	crc_t10dif_pmull	p64
    482SYM_FUNC_END(crc_t10dif_pmull_p64)
    483
    484	.section	".rodata", "a"
    485	.align		4
    486
    487// Fold constants precomputed from the polynomial 0x18bb7
    488// G(x) = x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0
    489.Lfold_across_128_bytes_consts:
    490	.quad		0x0000000000006123	// x^(8*128)	mod G(x)
    491	.quad		0x0000000000002295	// x^(8*128+64)	mod G(x)
    492// .Lfold_across_64_bytes_consts:
    493	.quad		0x0000000000001069	// x^(4*128)	mod G(x)
    494	.quad		0x000000000000dd31	// x^(4*128+64)	mod G(x)
    495// .Lfold_across_32_bytes_consts:
    496	.quad		0x000000000000857d	// x^(2*128)	mod G(x)
    497	.quad		0x0000000000007acc	// x^(2*128+64)	mod G(x)
    498.Lfold_across_16_bytes_consts:
    499	.quad		0x000000000000a010	// x^(1*128)	mod G(x)
    500	.quad		0x0000000000001faa	// x^(1*128+64)	mod G(x)
    501// .Lfinal_fold_consts:
    502	.quad		0x1368000000000000	// x^48 * (x^48 mod G(x))
    503	.quad		0x2d56000000000000	// x^48 * (x^80 mod G(x))
    504// .Lbarrett_reduction_consts:
    505	.quad		0x0000000000018bb7	// G(x)
    506	.quad		0x00000001f65a57f8	// floor(x^48 / G(x))
    507
    508// For 1 <= len <= 15, the 16-byte vector beginning at &byteshift_table[16 -
    509// len] is the index vector to shift left by 'len' bytes, and is also {0x80,
    510// ..., 0x80} XOR the index vector to shift right by '16 - len' bytes.
    511.Lbyteshift_table:
    512	.byte		 0x0, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87
    513	.byte		0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f
    514	.byte		 0x0,  0x1,  0x2,  0x3,  0x4,  0x5,  0x6,  0x7
    515	.byte		 0x8,  0x9,  0xa,  0xb,  0xc,  0xd,  0xe , 0x0