cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

sha512-armv8.pl (21537B)


      1#! /usr/bin/env perl
      2# SPDX-License-Identifier: GPL-2.0
      3
      4# This code is taken from the OpenSSL project but the author (Andy Polyakov)
      5# has relicensed it under the GPLv2. Therefore this program is free software;
      6# you can redistribute it and/or modify it under the terms of the GNU General
      7# Public License version 2 as published by the Free Software Foundation.
      8#
      9# The original headers, including the original license headers, are
     10# included below for completeness.
     11
     12# Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
     13#
     14# Licensed under the OpenSSL license (the "License").  You may not use
     15# this file except in compliance with the License.  You can obtain a copy
     16# in the file LICENSE in the source distribution or at
     17# https://www.openssl.org/source/license.html
     18
     19# ====================================================================
     20# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
     21# project. The module is, however, dual licensed under OpenSSL and
     22# CRYPTOGAMS licenses depending on where you obtain it. For further
     23# details see http://www.openssl.org/~appro/cryptogams/.
     24# ====================================================================
     25#
     26# SHA256/512 for ARMv8.
     27#
     28# Performance in cycles per processed byte and improvement coefficient
     29# over code generated with "default" compiler:
     30#
     31#		SHA256-hw	SHA256(*)	SHA512
     32# Apple A7	1.97		10.5 (+33%)	6.73 (-1%(**))
     33# Cortex-A53	2.38		15.5 (+115%)	10.0 (+150%(***))
     34# Cortex-A57	2.31		11.6 (+86%)	7.51 (+260%(***))
     35# Denver	2.01		10.5 (+26%)	6.70 (+8%)
     36# X-Gene			20.0 (+100%)	12.8 (+300%(***))
     37# Mongoose	2.36		13.0 (+50%)	8.36 (+33%)
     38#
     39# (*)	Software SHA256 results are of lesser relevance, presented
     40#	mostly for informational purposes.
     41# (**)	The result is a trade-off: it's possible to improve it by
     42#	10% (or by 1 cycle per round), but at the cost of 20% loss
     43#	on Cortex-A53 (or by 4 cycles per round).
     44# (***)	Super-impressive coefficients over gcc-generated code are
     45#	indication of some compiler "pathology", most notably code
     46#	generated with -mgeneral-regs-only is significantly faster
     47#	and the gap is only 40-90%.
     48#
     49# October 2016.
     50#
     51# Originally it was reckoned that it makes no sense to implement NEON
     52# version of SHA256 for 64-bit processors. This is because performance
     53# improvement on most wide-spread Cortex-A5x processors was observed
     54# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
     55# observed that 32-bit NEON SHA256 performs significantly better than
     56# 64-bit scalar version on *some* of the more recent processors. As
     57# result 64-bit NEON version of SHA256 was added to provide best
     58# all-round performance. For example it executes ~30% faster on X-Gene
     59# and Mongoose. [For reference, NEON version of SHA512 is bound to
     60# deliver much less improvement, likely *negative* on Cortex-A5x.
     61# Which is why NEON support is limited to SHA256.]
     62
     63$output=pop;
     64$flavour=pop;
     65
     66if ($flavour && $flavour ne "void") {
     67    $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
     68    ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
     69    ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
     70    die "can't locate arm-xlate.pl";
     71
     72    open OUT,"| \"$^X\" $xlate $flavour $output";
     73    *STDOUT=*OUT;
     74} else {
     75    open STDOUT,">$output";
     76}
     77
     78if ($output =~ /512/) {
     79	$BITS=512;
     80	$SZ=8;
     81	@Sigma0=(28,34,39);
     82	@Sigma1=(14,18,41);
     83	@sigma0=(1,  8, 7);
     84	@sigma1=(19,61, 6);
     85	$rounds=80;
     86	$reg_t="x";
     87} else {
     88	$BITS=256;
     89	$SZ=4;
     90	@Sigma0=( 2,13,22);
     91	@Sigma1=( 6,11,25);
     92	@sigma0=( 7,18, 3);
     93	@sigma1=(17,19,10);
     94	$rounds=64;
     95	$reg_t="w";
     96}
     97
     98$func="sha${BITS}_block_data_order";
     99
    100($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
    101
    102@X=map("$reg_t$_",(3..15,0..2));
    103@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
    104($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
    105
    106sub BODY_00_xx {
    107my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
    108my $j=($i+1)&15;
    109my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
    110   $T0=@X[$i+3] if ($i<11);
    111
    112$code.=<<___	if ($i<16);
    113#ifndef	__AARCH64EB__
    114	rev	@X[$i],@X[$i]			// $i
    115#endif
    116___
    117$code.=<<___	if ($i<13 && ($i&1));
    118	ldp	@X[$i+1],@X[$i+2],[$inp],#2*$SZ
    119___
    120$code.=<<___	if ($i==13);
    121	ldp	@X[14],@X[15],[$inp]
    122___
    123$code.=<<___	if ($i>=14);
    124	ldr	@X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
    125___
    126$code.=<<___	if ($i>0 && $i<16);
    127	add	$a,$a,$t1			// h+=Sigma0(a)
    128___
    129$code.=<<___	if ($i>=11);
    130	str	@X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
    131___
    132# While ARMv8 specifies merged rotate-n-logical operation such as
    133# 'eor x,y,z,ror#n', it was found to negatively affect performance
    134# on Apple A7. The reason seems to be that it requires even 'y' to
    135# be available earlier. This means that such merged instruction is
    136# not necessarily best choice on critical path... On the other hand
    137# Cortex-A5x handles merged instructions much better than disjoint
    138# rotate and logical... See (**) footnote above.
    139$code.=<<___	if ($i<15);
    140	ror	$t0,$e,#$Sigma1[0]
    141	add	$h,$h,$t2			// h+=K[i]
    142	eor	$T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
    143	and	$t1,$f,$e
    144	bic	$t2,$g,$e
    145	add	$h,$h,@X[$i&15]			// h+=X[i]
    146	orr	$t1,$t1,$t2			// Ch(e,f,g)
    147	eor	$t2,$a,$b			// a^b, b^c in next round
    148	eor	$t0,$t0,$T0,ror#$Sigma1[1]	// Sigma1(e)
    149	ror	$T0,$a,#$Sigma0[0]
    150	add	$h,$h,$t1			// h+=Ch(e,f,g)
    151	eor	$t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
    152	add	$h,$h,$t0			// h+=Sigma1(e)
    153	and	$t3,$t3,$t2			// (b^c)&=(a^b)
    154	add	$d,$d,$h			// d+=h
    155	eor	$t3,$t3,$b			// Maj(a,b,c)
    156	eor	$t1,$T0,$t1,ror#$Sigma0[1]	// Sigma0(a)
    157	add	$h,$h,$t3			// h+=Maj(a,b,c)
    158	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
    159	//add	$h,$h,$t1			// h+=Sigma0(a)
    160___
    161$code.=<<___	if ($i>=15);
    162	ror	$t0,$e,#$Sigma1[0]
    163	add	$h,$h,$t2			// h+=K[i]
    164	ror	$T1,@X[($j+1)&15],#$sigma0[0]
    165	and	$t1,$f,$e
    166	ror	$T2,@X[($j+14)&15],#$sigma1[0]
    167	bic	$t2,$g,$e
    168	ror	$T0,$a,#$Sigma0[0]
    169	add	$h,$h,@X[$i&15]			// h+=X[i]
    170	eor	$t0,$t0,$e,ror#$Sigma1[1]
    171	eor	$T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
    172	orr	$t1,$t1,$t2			// Ch(e,f,g)
    173	eor	$t2,$a,$b			// a^b, b^c in next round
    174	eor	$t0,$t0,$e,ror#$Sigma1[2]	// Sigma1(e)
    175	eor	$T0,$T0,$a,ror#$Sigma0[1]
    176	add	$h,$h,$t1			// h+=Ch(e,f,g)
    177	and	$t3,$t3,$t2			// (b^c)&=(a^b)
    178	eor	$T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
    179	eor	$T1,$T1,@X[($j+1)&15],lsr#$sigma0[2]	// sigma0(X[i+1])
    180	add	$h,$h,$t0			// h+=Sigma1(e)
    181	eor	$t3,$t3,$b			// Maj(a,b,c)
    182	eor	$t1,$T0,$a,ror#$Sigma0[2]	// Sigma0(a)
    183	eor	$T2,$T2,@X[($j+14)&15],lsr#$sigma1[2]	// sigma1(X[i+14])
    184	add	@X[$j],@X[$j],@X[($j+9)&15]
    185	add	$d,$d,$h			// d+=h
    186	add	$h,$h,$t3			// h+=Maj(a,b,c)
    187	ldr	$t3,[$Ktbl],#$SZ		// *K++, $t2 in next round
    188	add	@X[$j],@X[$j],$T1
    189	add	$h,$h,$t1			// h+=Sigma0(a)
    190	add	@X[$j],@X[$j],$T2
    191___
    192	($t2,$t3)=($t3,$t2);
    193}
    194
    195$code.=<<___;
    196#ifndef	__KERNEL__
    197# include "arm_arch.h"
    198#endif
    199
    200.text
    201
    202.extern	OPENSSL_armcap_P
    203.globl	$func
    204.type	$func,%function
    205.align	6
    206$func:
    207___
    208$code.=<<___	if ($SZ==4);
    209#ifndef	__KERNEL__
    210# ifdef	__ILP32__
    211	ldrsw	x16,.LOPENSSL_armcap_P
    212# else
    213	ldr	x16,.LOPENSSL_armcap_P
    214# endif
    215	adr	x17,.LOPENSSL_armcap_P
    216	add	x16,x16,x17
    217	ldr	w16,[x16]
    218	tst	w16,#ARMV8_SHA256
    219	b.ne	.Lv8_entry
    220	tst	w16,#ARMV7_NEON
    221	b.ne	.Lneon_entry
    222#endif
    223___
    224$code.=<<___;
    225	stp	x29,x30,[sp,#-128]!
    226	add	x29,sp,#0
    227
    228	stp	x19,x20,[sp,#16]
    229	stp	x21,x22,[sp,#32]
    230	stp	x23,x24,[sp,#48]
    231	stp	x25,x26,[sp,#64]
    232	stp	x27,x28,[sp,#80]
    233	sub	sp,sp,#4*$SZ
    234
    235	ldp	$A,$B,[$ctx]				// load context
    236	ldp	$C,$D,[$ctx,#2*$SZ]
    237	ldp	$E,$F,[$ctx,#4*$SZ]
    238	add	$num,$inp,$num,lsl#`log(16*$SZ)/log(2)`	// end of input
    239	ldp	$G,$H,[$ctx,#6*$SZ]
    240	adr	$Ktbl,.LK$BITS
    241	stp	$ctx,$num,[x29,#96]
    242
    243.Loop:
    244	ldp	@X[0],@X[1],[$inp],#2*$SZ
    245	ldr	$t2,[$Ktbl],#$SZ			// *K++
    246	eor	$t3,$B,$C				// magic seed
    247	str	$inp,[x29,#112]
    248___
    249for ($i=0;$i<16;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
    250$code.=".Loop_16_xx:\n";
    251for (;$i<32;$i++)	{ &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
    252$code.=<<___;
    253	cbnz	$t2,.Loop_16_xx
    254
    255	ldp	$ctx,$num,[x29,#96]
    256	ldr	$inp,[x29,#112]
    257	sub	$Ktbl,$Ktbl,#`$SZ*($rounds+1)`		// rewind
    258
    259	ldp	@X[0],@X[1],[$ctx]
    260	ldp	@X[2],@X[3],[$ctx,#2*$SZ]
    261	add	$inp,$inp,#14*$SZ			// advance input pointer
    262	ldp	@X[4],@X[5],[$ctx,#4*$SZ]
    263	add	$A,$A,@X[0]
    264	ldp	@X[6],@X[7],[$ctx,#6*$SZ]
    265	add	$B,$B,@X[1]
    266	add	$C,$C,@X[2]
    267	add	$D,$D,@X[3]
    268	stp	$A,$B,[$ctx]
    269	add	$E,$E,@X[4]
    270	add	$F,$F,@X[5]
    271	stp	$C,$D,[$ctx,#2*$SZ]
    272	add	$G,$G,@X[6]
    273	add	$H,$H,@X[7]
    274	cmp	$inp,$num
    275	stp	$E,$F,[$ctx,#4*$SZ]
    276	stp	$G,$H,[$ctx,#6*$SZ]
    277	b.ne	.Loop
    278
    279	ldp	x19,x20,[x29,#16]
    280	add	sp,sp,#4*$SZ
    281	ldp	x21,x22,[x29,#32]
    282	ldp	x23,x24,[x29,#48]
    283	ldp	x25,x26,[x29,#64]
    284	ldp	x27,x28,[x29,#80]
    285	ldp	x29,x30,[sp],#128
    286	ret
    287.size	$func,.-$func
    288
    289.align	6
    290.type	.LK$BITS,%object
    291.LK$BITS:
    292___
    293$code.=<<___ if ($SZ==8);
    294	.quad	0x428a2f98d728ae22,0x7137449123ef65cd
    295	.quad	0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
    296	.quad	0x3956c25bf348b538,0x59f111f1b605d019
    297	.quad	0x923f82a4af194f9b,0xab1c5ed5da6d8118
    298	.quad	0xd807aa98a3030242,0x12835b0145706fbe
    299	.quad	0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
    300	.quad	0x72be5d74f27b896f,0x80deb1fe3b1696b1
    301	.quad	0x9bdc06a725c71235,0xc19bf174cf692694
    302	.quad	0xe49b69c19ef14ad2,0xefbe4786384f25e3
    303	.quad	0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
    304	.quad	0x2de92c6f592b0275,0x4a7484aa6ea6e483
    305	.quad	0x5cb0a9dcbd41fbd4,0x76f988da831153b5
    306	.quad	0x983e5152ee66dfab,0xa831c66d2db43210
    307	.quad	0xb00327c898fb213f,0xbf597fc7beef0ee4
    308	.quad	0xc6e00bf33da88fc2,0xd5a79147930aa725
    309	.quad	0x06ca6351e003826f,0x142929670a0e6e70
    310	.quad	0x27b70a8546d22ffc,0x2e1b21385c26c926
    311	.quad	0x4d2c6dfc5ac42aed,0x53380d139d95b3df
    312	.quad	0x650a73548baf63de,0x766a0abb3c77b2a8
    313	.quad	0x81c2c92e47edaee6,0x92722c851482353b
    314	.quad	0xa2bfe8a14cf10364,0xa81a664bbc423001
    315	.quad	0xc24b8b70d0f89791,0xc76c51a30654be30
    316	.quad	0xd192e819d6ef5218,0xd69906245565a910
    317	.quad	0xf40e35855771202a,0x106aa07032bbd1b8
    318	.quad	0x19a4c116b8d2d0c8,0x1e376c085141ab53
    319	.quad	0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
    320	.quad	0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
    321	.quad	0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
    322	.quad	0x748f82ee5defb2fc,0x78a5636f43172f60
    323	.quad	0x84c87814a1f0ab72,0x8cc702081a6439ec
    324	.quad	0x90befffa23631e28,0xa4506cebde82bde9
    325	.quad	0xbef9a3f7b2c67915,0xc67178f2e372532b
    326	.quad	0xca273eceea26619c,0xd186b8c721c0c207
    327	.quad	0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
    328	.quad	0x06f067aa72176fba,0x0a637dc5a2c898a6
    329	.quad	0x113f9804bef90dae,0x1b710b35131c471b
    330	.quad	0x28db77f523047d84,0x32caab7b40c72493
    331	.quad	0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
    332	.quad	0x4cc5d4becb3e42b6,0x597f299cfc657e2a
    333	.quad	0x5fcb6fab3ad6faec,0x6c44198c4a475817
    334	.quad	0	// terminator
    335___
    336$code.=<<___ if ($SZ==4);
    337	.long	0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
    338	.long	0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
    339	.long	0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
    340	.long	0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
    341	.long	0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
    342	.long	0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
    343	.long	0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
    344	.long	0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
    345	.long	0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
    346	.long	0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
    347	.long	0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
    348	.long	0xd192e819,0xd6990624,0xf40e3585,0x106aa070
    349	.long	0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
    350	.long	0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
    351	.long	0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
    352	.long	0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
    353	.long	0	//terminator
    354___
    355$code.=<<___;
    356.size	.LK$BITS,.-.LK$BITS
    357#ifndef	__KERNEL__
    358.align	3
    359.LOPENSSL_armcap_P:
    360# ifdef	__ILP32__
    361	.long	OPENSSL_armcap_P-.
    362# else
    363	.quad	OPENSSL_armcap_P-.
    364# endif
    365#endif
    366.asciz	"SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
    367.align	2
    368___
    369
    370if ($SZ==4) {
    371my $Ktbl="x3";
    372
    373my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
    374my @MSG=map("v$_.16b",(4..7));
    375my ($W0,$W1)=("v16.4s","v17.4s");
    376my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
    377
    378$code.=<<___;
    379#ifndef	__KERNEL__
    380.type	sha256_block_armv8,%function
    381.align	6
    382sha256_block_armv8:
    383.Lv8_entry:
    384	stp		x29,x30,[sp,#-16]!
    385	add		x29,sp,#0
    386
    387	ld1.32		{$ABCD,$EFGH},[$ctx]
    388	adr		$Ktbl,.LK256
    389
    390.Loop_hw:
    391	ld1		{@MSG[0]-@MSG[3]},[$inp],#64
    392	sub		$num,$num,#1
    393	ld1.32		{$W0},[$Ktbl],#16
    394	rev32		@MSG[0],@MSG[0]
    395	rev32		@MSG[1],@MSG[1]
    396	rev32		@MSG[2],@MSG[2]
    397	rev32		@MSG[3],@MSG[3]
    398	orr		$ABCD_SAVE,$ABCD,$ABCD		// offload
    399	orr		$EFGH_SAVE,$EFGH,$EFGH
    400___
    401for($i=0;$i<12;$i++) {
    402$code.=<<___;
    403	ld1.32		{$W1},[$Ktbl],#16
    404	add.i32		$W0,$W0,@MSG[0]
    405	sha256su0	@MSG[0],@MSG[1]
    406	orr		$abcd,$ABCD,$ABCD
    407	sha256h		$ABCD,$EFGH,$W0
    408	sha256h2	$EFGH,$abcd,$W0
    409	sha256su1	@MSG[0],@MSG[2],@MSG[3]
    410___
    411	($W0,$W1)=($W1,$W0);	push(@MSG,shift(@MSG));
    412}
    413$code.=<<___;
    414	ld1.32		{$W1},[$Ktbl],#16
    415	add.i32		$W0,$W0,@MSG[0]
    416	orr		$abcd,$ABCD,$ABCD
    417	sha256h		$ABCD,$EFGH,$W0
    418	sha256h2	$EFGH,$abcd,$W0
    419
    420	ld1.32		{$W0},[$Ktbl],#16
    421	add.i32		$W1,$W1,@MSG[1]
    422	orr		$abcd,$ABCD,$ABCD
    423	sha256h		$ABCD,$EFGH,$W1
    424	sha256h2	$EFGH,$abcd,$W1
    425
    426	ld1.32		{$W1},[$Ktbl]
    427	add.i32		$W0,$W0,@MSG[2]
    428	sub		$Ktbl,$Ktbl,#$rounds*$SZ-16	// rewind
    429	orr		$abcd,$ABCD,$ABCD
    430	sha256h		$ABCD,$EFGH,$W0
    431	sha256h2	$EFGH,$abcd,$W0
    432
    433	add.i32		$W1,$W1,@MSG[3]
    434	orr		$abcd,$ABCD,$ABCD
    435	sha256h		$ABCD,$EFGH,$W1
    436	sha256h2	$EFGH,$abcd,$W1
    437
    438	add.i32		$ABCD,$ABCD,$ABCD_SAVE
    439	add.i32		$EFGH,$EFGH,$EFGH_SAVE
    440
    441	cbnz		$num,.Loop_hw
    442
    443	st1.32		{$ABCD,$EFGH},[$ctx]
    444
    445	ldr		x29,[sp],#16
    446	ret
    447.size	sha256_block_armv8,.-sha256_block_armv8
    448#endif
    449___
    450}
    451
    452if ($SZ==4) {	######################################### NEON stuff #
    453# You'll surely note a lot of similarities with sha256-armv4 module,
    454# and of course it's not a coincidence. sha256-armv4 was used as
    455# initial template, but was adapted for ARMv8 instruction set and
    456# extensively re-tuned for all-round performance.
    457
    458my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
    459my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
    460my $Ktbl="x16";
    461my $Xfer="x17";
    462my @X = map("q$_",(0..3));
    463my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
    464my $j=0;
    465
    466sub AUTOLOAD()          # thunk [simplified] x86-style perlasm
    467{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
    468  my $arg = pop;
    469    $arg = "#$arg" if ($arg*1 eq $arg);
    470    $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
    471}
    472
    473sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
    474sub Dlo     { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
    475sub Dhi     { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
    476
    477sub Xupdate()
    478{ use integer;
    479  my $body = shift;
    480  my @insns = (&$body,&$body,&$body,&$body);
    481  my ($a,$b,$c,$d,$e,$f,$g,$h);
    482
    483	&ext_8		($T0,@X[0],@X[1],4);	# X[1..4]
    484	 eval(shift(@insns));
    485	 eval(shift(@insns));
    486	 eval(shift(@insns));
    487	&ext_8		($T3,@X[2],@X[3],4);	# X[9..12]
    488	 eval(shift(@insns));
    489	 eval(shift(@insns));
    490	&mov		(&Dscalar($T7),&Dhi(@X[3]));	# X[14..15]
    491	 eval(shift(@insns));
    492	 eval(shift(@insns));
    493	&ushr_32	($T2,$T0,$sigma0[0]);
    494	 eval(shift(@insns));
    495	&ushr_32	($T1,$T0,$sigma0[2]);
    496	 eval(shift(@insns));
    497	&add_32 	(@X[0],@X[0],$T3);	# X[0..3] += X[9..12]
    498	 eval(shift(@insns));
    499	&sli_32		($T2,$T0,32-$sigma0[0]);
    500	 eval(shift(@insns));
    501	 eval(shift(@insns));
    502	&ushr_32	($T3,$T0,$sigma0[1]);
    503	 eval(shift(@insns));
    504	 eval(shift(@insns));
    505	&eor_8		($T1,$T1,$T2);
    506	 eval(shift(@insns));
    507	 eval(shift(@insns));
    508	&sli_32		($T3,$T0,32-$sigma0[1]);
    509	 eval(shift(@insns));
    510	 eval(shift(@insns));
    511	  &ushr_32	($T4,$T7,$sigma1[0]);
    512	 eval(shift(@insns));
    513	 eval(shift(@insns));
    514	&eor_8		($T1,$T1,$T3);		# sigma0(X[1..4])
    515	 eval(shift(@insns));
    516	 eval(shift(@insns));
    517	  &sli_32	($T4,$T7,32-$sigma1[0]);
    518	 eval(shift(@insns));
    519	 eval(shift(@insns));
    520	  &ushr_32	($T5,$T7,$sigma1[2]);
    521	 eval(shift(@insns));
    522	 eval(shift(@insns));
    523	  &ushr_32	($T3,$T7,$sigma1[1]);
    524	 eval(shift(@insns));
    525	 eval(shift(@insns));
    526	&add_32		(@X[0],@X[0],$T1);	# X[0..3] += sigma0(X[1..4])
    527	 eval(shift(@insns));
    528	 eval(shift(@insns));
    529	  &sli_u32	($T3,$T7,32-$sigma1[1]);
    530	 eval(shift(@insns));
    531	 eval(shift(@insns));
    532	  &eor_8	($T5,$T5,$T4);
    533	 eval(shift(@insns));
    534	 eval(shift(@insns));
    535	 eval(shift(@insns));
    536	  &eor_8	($T5,$T5,$T3);		# sigma1(X[14..15])
    537	 eval(shift(@insns));
    538	 eval(shift(@insns));
    539	 eval(shift(@insns));
    540	&add_32		(@X[0],@X[0],$T5);	# X[0..1] += sigma1(X[14..15])
    541	 eval(shift(@insns));
    542	 eval(shift(@insns));
    543	 eval(shift(@insns));
    544	  &ushr_32	($T6,@X[0],$sigma1[0]);
    545	 eval(shift(@insns));
    546	  &ushr_32	($T7,@X[0],$sigma1[2]);
    547	 eval(shift(@insns));
    548	 eval(shift(@insns));
    549	  &sli_32	($T6,@X[0],32-$sigma1[0]);
    550	 eval(shift(@insns));
    551	  &ushr_32	($T5,@X[0],$sigma1[1]);
    552	 eval(shift(@insns));
    553	 eval(shift(@insns));
    554	  &eor_8	($T7,$T7,$T6);
    555	 eval(shift(@insns));
    556	 eval(shift(@insns));
    557	  &sli_32	($T5,@X[0],32-$sigma1[1]);
    558	 eval(shift(@insns));
    559	 eval(shift(@insns));
    560	&ld1_32		("{$T0}","[$Ktbl], #16");
    561	 eval(shift(@insns));
    562	  &eor_8	($T7,$T7,$T5);		# sigma1(X[16..17])
    563	 eval(shift(@insns));
    564	 eval(shift(@insns));
    565	&eor_8		($T5,$T5,$T5);
    566	 eval(shift(@insns));
    567	 eval(shift(@insns));
    568	&mov		(&Dhi($T5), &Dlo($T7));
    569	 eval(shift(@insns));
    570	 eval(shift(@insns));
    571	 eval(shift(@insns));
    572	&add_32		(@X[0],@X[0],$T5);	# X[2..3] += sigma1(X[16..17])
    573	 eval(shift(@insns));
    574	 eval(shift(@insns));
    575	 eval(shift(@insns));
    576	&add_32		($T0,$T0,@X[0]);
    577	 while($#insns>=1) { eval(shift(@insns)); }
    578	&st1_32		("{$T0}","[$Xfer], #16");
    579	 eval(shift(@insns));
    580
    581	push(@X,shift(@X));		# "rotate" X[]
    582}
    583
    584sub Xpreload()
    585{ use integer;
    586  my $body = shift;
    587  my @insns = (&$body,&$body,&$body,&$body);
    588  my ($a,$b,$c,$d,$e,$f,$g,$h);
    589
    590	 eval(shift(@insns));
    591	 eval(shift(@insns));
    592	&ld1_8		("{@X[0]}","[$inp],#16");
    593	 eval(shift(@insns));
    594	 eval(shift(@insns));
    595	&ld1_32		("{$T0}","[$Ktbl],#16");
    596	 eval(shift(@insns));
    597	 eval(shift(@insns));
    598	 eval(shift(@insns));
    599	 eval(shift(@insns));
    600	&rev32		(@X[0],@X[0]);
    601	 eval(shift(@insns));
    602	 eval(shift(@insns));
    603	 eval(shift(@insns));
    604	 eval(shift(@insns));
    605	&add_32		($T0,$T0,@X[0]);
    606	 foreach (@insns) { eval; }	# remaining instructions
    607	&st1_32		("{$T0}","[$Xfer], #16");
    608
    609	push(@X,shift(@X));		# "rotate" X[]
    610}
    611
    612sub body_00_15 () {
    613	(
    614	'($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
    615	'&add	($h,$h,$t1)',			# h+=X[i]+K[i]
    616	'&add	($a,$a,$t4);'.			# h+=Sigma0(a) from the past
    617	'&and	($t1,$f,$e)',
    618	'&bic	($t4,$g,$e)',
    619	'&eor	($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
    620	'&add	($a,$a,$t2)',			# h+=Maj(a,b,c) from the past
    621	'&orr	($t1,$t1,$t4)',			# Ch(e,f,g)
    622	'&eor	($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))',	# Sigma1(e)
    623	'&eor	($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
    624	'&add	($h,$h,$t1)',			# h+=Ch(e,f,g)
    625	'&ror	($t0,$t0,"#$Sigma1[0]")',
    626	'&eor	($t2,$a,$b)',			# a^b, b^c in next round
    627	'&eor	($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))',	# Sigma0(a)
    628	'&add	($h,$h,$t0)',			# h+=Sigma1(e)
    629	'&ldr	($t1,sprintf "[sp,#%d]",4*(($j+1)&15))	if (($j&15)!=15);'.
    630	'&ldr	($t1,"[$Ktbl]")				if ($j==15);'.
    631	'&and	($t3,$t3,$t2)',			# (b^c)&=(a^b)
    632	'&ror	($t4,$t4,"#$Sigma0[0]")',
    633	'&add	($d,$d,$h)',			# d+=h
    634	'&eor	($t3,$t3,$b)',			# Maj(a,b,c)
    635	'$j++;	unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
    636	)
    637}
    638
    639$code.=<<___;
    640#ifdef	__KERNEL__
    641.globl	sha256_block_neon
    642#endif
    643.type	sha256_block_neon,%function
    644.align	4
    645sha256_block_neon:
    646.Lneon_entry:
    647	stp	x29, x30, [sp, #-16]!
    648	mov	x29, sp
    649	sub	sp,sp,#16*4
    650
    651	adr	$Ktbl,.LK256
    652	add	$num,$inp,$num,lsl#6	// len to point at the end of inp
    653
    654	ld1.8	{@X[0]},[$inp], #16
    655	ld1.8	{@X[1]},[$inp], #16
    656	ld1.8	{@X[2]},[$inp], #16
    657	ld1.8	{@X[3]},[$inp], #16
    658	ld1.32	{$T0},[$Ktbl], #16
    659	ld1.32	{$T1},[$Ktbl], #16
    660	ld1.32	{$T2},[$Ktbl], #16
    661	ld1.32	{$T3},[$Ktbl], #16
    662	rev32	@X[0],@X[0]		// yes, even on
    663	rev32	@X[1],@X[1]		// big-endian
    664	rev32	@X[2],@X[2]
    665	rev32	@X[3],@X[3]
    666	mov	$Xfer,sp
    667	add.32	$T0,$T0,@X[0]
    668	add.32	$T1,$T1,@X[1]
    669	add.32	$T2,$T2,@X[2]
    670	st1.32	{$T0-$T1},[$Xfer], #32
    671	add.32	$T3,$T3,@X[3]
    672	st1.32	{$T2-$T3},[$Xfer]
    673	sub	$Xfer,$Xfer,#32
    674
    675	ldp	$A,$B,[$ctx]
    676	ldp	$C,$D,[$ctx,#8]
    677	ldp	$E,$F,[$ctx,#16]
    678	ldp	$G,$H,[$ctx,#24]
    679	ldr	$t1,[sp,#0]
    680	mov	$t2,wzr
    681	eor	$t3,$B,$C
    682	mov	$t4,wzr
    683	b	.L_00_48
    684
    685.align	4
    686.L_00_48:
    687___
    688	&Xupdate(\&body_00_15);
    689	&Xupdate(\&body_00_15);
    690	&Xupdate(\&body_00_15);
    691	&Xupdate(\&body_00_15);
    692$code.=<<___;
    693	cmp	$t1,#0				// check for K256 terminator
    694	ldr	$t1,[sp,#0]
    695	sub	$Xfer,$Xfer,#64
    696	bne	.L_00_48
    697
    698	sub	$Ktbl,$Ktbl,#256		// rewind $Ktbl
    699	cmp	$inp,$num
    700	mov	$Xfer, #64
    701	csel	$Xfer, $Xfer, xzr, eq
    702	sub	$inp,$inp,$Xfer			// avoid SEGV
    703	mov	$Xfer,sp
    704___
    705	&Xpreload(\&body_00_15);
    706	&Xpreload(\&body_00_15);
    707	&Xpreload(\&body_00_15);
    708	&Xpreload(\&body_00_15);
    709$code.=<<___;
    710	add	$A,$A,$t4			// h+=Sigma0(a) from the past
    711	ldp	$t0,$t1,[$ctx,#0]
    712	add	$A,$A,$t2			// h+=Maj(a,b,c) from the past
    713	ldp	$t2,$t3,[$ctx,#8]
    714	add	$A,$A,$t0			// accumulate
    715	add	$B,$B,$t1
    716	ldp	$t0,$t1,[$ctx,#16]
    717	add	$C,$C,$t2
    718	add	$D,$D,$t3
    719	ldp	$t2,$t3,[$ctx,#24]
    720	add	$E,$E,$t0
    721	add	$F,$F,$t1
    722	 ldr	$t1,[sp,#0]
    723	stp	$A,$B,[$ctx,#0]
    724	add	$G,$G,$t2
    725	 mov	$t2,wzr
    726	stp	$C,$D,[$ctx,#8]
    727	add	$H,$H,$t3
    728	stp	$E,$F,[$ctx,#16]
    729	 eor	$t3,$B,$C
    730	stp	$G,$H,[$ctx,#24]
    731	 mov	$t4,wzr
    732	 mov	$Xfer,sp
    733	b.ne	.L_00_48
    734
    735	ldr	x29,[x29]
    736	add	sp,sp,#16*4+16
    737	ret
    738.size	sha256_block_neon,.-sha256_block_neon
    739___
    740}
    741
    742$code.=<<___;
    743#ifndef	__KERNEL__
    744.comm	OPENSSL_armcap_P,4,4
    745#endif
    746___
    747
    748{   my  %opcode = (
    749	"sha256h"	=> 0x5e004000,	"sha256h2"	=> 0x5e005000,
    750	"sha256su0"	=> 0x5e282800,	"sha256su1"	=> 0x5e006000	);
    751
    752    sub unsha256 {
    753	my ($mnemonic,$arg)=@_;
    754
    755	$arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
    756	&&
    757	sprintf ".inst\t0x%08x\t//%s %s",
    758			$opcode{$mnemonic}|$1|($2<<5)|($3<<16),
    759			$mnemonic,$arg;
    760    }
    761}
    762
    763open SELF,$0;
    764while(<SELF>) {
    765        next if (/^#!/);
    766        last if (!s/^#/\/\// and !/^$/);
    767        print;
    768}
    769close SELF;
    770
    771foreach(split("\n",$code)) {
    772
    773	s/\`([^\`]*)\`/eval($1)/ge;
    774
    775	s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
    776
    777	s/\bq([0-9]+)\b/v$1.16b/g;		# old->new registers
    778
    779	s/\.[ui]?8(\s)/$1/;
    780	s/\.\w?32\b//		and s/\.16b/\.4s/g;
    781	m/(ld|st)1[^\[]+\[0\]/	and s/\.4s/\.s/g;
    782
    783	print $_,"\n";
    784}
    785
    786close STDOUT;