cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

cpufeature.h (29482B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
      4 */
      5
      6#ifndef __ASM_CPUFEATURE_H
      7#define __ASM_CPUFEATURE_H
      8
      9#include <asm/cpucaps.h>
     10#include <asm/cputype.h>
     11#include <asm/hwcap.h>
     12#include <asm/sysreg.h>
     13
     14#define MAX_CPU_FEATURES	64
     15#define cpu_feature(x)		KERNEL_HWCAP_ ## x
     16
     17#ifndef __ASSEMBLY__
     18
     19#include <linux/bug.h>
     20#include <linux/jump_label.h>
     21#include <linux/kernel.h>
     22
     23/*
     24 * CPU feature register tracking
     25 *
     26 * The safe value of a CPUID feature field is dependent on the implications
     27 * of the values assigned to it by the architecture. Based on the relationship
     28 * between the values, the features are classified into 3 types - LOWER_SAFE,
     29 * HIGHER_SAFE and EXACT.
     30 *
     31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
     32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
     33 * a field when EXACT is specified, failing which, the safe value specified
     34 * in the table is chosen.
     35 */
     36
     37enum ftr_type {
     38	FTR_EXACT,			/* Use a predefined safe value */
     39	FTR_LOWER_SAFE,			/* Smaller value is safe */
     40	FTR_HIGHER_SAFE,		/* Bigger value is safe */
     41	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
     42};
     43
     44#define FTR_STRICT	true	/* SANITY check strict matching required */
     45#define FTR_NONSTRICT	false	/* SANITY check ignored */
     46
     47#define FTR_SIGNED	true	/* Value should be treated as signed */
     48#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
     49
     50#define FTR_VISIBLE	true	/* Feature visible to the user space */
     51#define FTR_HIDDEN	false	/* Feature is hidden from the user */
     52
     53#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
     54	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
     55
     56struct arm64_ftr_bits {
     57	bool		sign;	/* Value is signed ? */
     58	bool		visible;
     59	bool		strict;	/* CPU Sanity check: strict matching required ? */
     60	enum ftr_type	type;
     61	u8		shift;
     62	u8		width;
     63	s64		safe_val; /* safe value for FTR_EXACT features */
     64};
     65
     66/*
     67 * Describe the early feature override to the core override code:
     68 *
     69 * @val			Values that are to be merged into the final
     70 *			sanitised value of the register. Only the bitfields
     71 *			set to 1 in @mask are valid
     72 * @mask		Mask of the features that are overridden by @val
     73 *
     74 * A @mask field set to full-1 indicates that the corresponding field
     75 * in @val is a valid override.
     76 *
     77 * A @mask field set to full-0 with the corresponding @val field set
     78 * to full-0 denotes that this field has no override
     79 *
     80 * A @mask field set to full-0 with the corresponding @val field set
     81 * to full-1 denotes thath this field has an invalid override.
     82 */
     83struct arm64_ftr_override {
     84	u64		val;
     85	u64		mask;
     86};
     87
     88/*
     89 * @arm64_ftr_reg - Feature register
     90 * @strict_mask		Bits which should match across all CPUs for sanity.
     91 * @sys_val		Safe value across the CPUs (system view)
     92 */
     93struct arm64_ftr_reg {
     94	const char			*name;
     95	u64				strict_mask;
     96	u64				user_mask;
     97	u64				sys_val;
     98	u64				user_val;
     99	struct arm64_ftr_override	*override;
    100	const struct arm64_ftr_bits	*ftr_bits;
    101};
    102
    103extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
    104
    105/*
    106 * CPU capabilities:
    107 *
    108 * We use arm64_cpu_capabilities to represent system features, errata work
    109 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
    110 * ELF HWCAPs (which are exposed to user).
    111 *
    112 * To support systems with heterogeneous CPUs, we need to make sure that we
    113 * detect the capabilities correctly on the system and take appropriate
    114 * measures to ensure there are no incompatibilities.
    115 *
    116 * This comment tries to explain how we treat the capabilities.
    117 * Each capability has the following list of attributes :
    118 *
    119 * 1) Scope of Detection : The system detects a given capability by
    120 *    performing some checks at runtime. This could be, e.g, checking the
    121 *    value of a field in CPU ID feature register or checking the cpu
    122 *    model. The capability provides a call back ( @matches() ) to
    123 *    perform the check. Scope defines how the checks should be performed.
    124 *    There are three cases:
    125 *
    126 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
    127 *        matches. This implies, we have to run the check on all the
    128 *        booting CPUs, until the system decides that state of the
    129 *        capability is finalised. (See section 2 below)
    130 *		Or
    131 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
    132 *        matches. This implies, we run the check only once, when the
    133 *        system decides to finalise the state of the capability. If the
    134 *        capability relies on a field in one of the CPU ID feature
    135 *        registers, we use the sanitised value of the register from the
    136 *        CPU feature infrastructure to make the decision.
    137 *		Or
    138 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
    139 *        feature. This category is for features that are "finalised"
    140 *        (or used) by the kernel very early even before the SMP cpus
    141 *        are brought up.
    142 *
    143 *    The process of detection is usually denoted by "update" capability
    144 *    state in the code.
    145 *
    146 * 2) Finalise the state : The kernel should finalise the state of a
    147 *    capability at some point during its execution and take necessary
    148 *    actions if any. Usually, this is done, after all the boot-time
    149 *    enabled CPUs are brought up by the kernel, so that it can make
    150 *    better decision based on the available set of CPUs. However, there
    151 *    are some special cases, where the action is taken during the early
    152 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
    153 *    Virtualisation Host Extensions). The kernel usually disallows any
    154 *    changes to the state of a capability once it finalises the capability
    155 *    and takes any action, as it may be impossible to execute the actions
    156 *    safely. A CPU brought up after a capability is "finalised" is
    157 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
    158 *    CPUs are treated "late CPUs" for capabilities determined by the boot
    159 *    CPU.
    160 *
    161 *    At the moment there are two passes of finalising the capabilities.
    162 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
    163 *         setup_boot_cpu_capabilities().
    164 *      b) Everything except (a) - Run via setup_system_capabilities().
    165 *
    166 * 3) Verification: When a CPU is brought online (e.g, by user or by the
    167 *    kernel), the kernel should make sure that it is safe to use the CPU,
    168 *    by verifying that the CPU is compliant with the state of the
    169 *    capabilities finalised already. This happens via :
    170 *
    171 *	secondary_start_kernel()-> check_local_cpu_capabilities()
    172 *
    173 *    As explained in (2) above, capabilities could be finalised at
    174 *    different points in the execution. Each newly booted CPU is verified
    175 *    against the capabilities that have been finalised by the time it
    176 *    boots.
    177 *
    178 *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
    179 *	except for the primary boot CPU.
    180 *
    181 *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
    182 *	user after the kernel boot are verified against the capability.
    183 *
    184 *    If there is a conflict, the kernel takes an action, based on the
    185 *    severity (e.g, a CPU could be prevented from booting or cause a
    186 *    kernel panic). The CPU is allowed to "affect" the state of the
    187 *    capability, if it has not been finalised already. See section 5
    188 *    for more details on conflicts.
    189 *
    190 * 4) Action: As mentioned in (2), the kernel can take an action for each
    191 *    detected capability, on all CPUs on the system. Appropriate actions
    192 *    include, turning on an architectural feature, modifying the control
    193 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
    194 *    alternatives. The kernel patching is batched and performed at later
    195 *    point. The actions are always initiated only after the capability
    196 *    is finalised. This is usally denoted by "enabling" the capability.
    197 *    The actions are initiated as follows :
    198 *	a) Action is triggered on all online CPUs, after the capability is
    199 *	finalised, invoked within the stop_machine() context from
    200 *	enable_cpu_capabilitie().
    201 *
    202 *	b) Any late CPU, brought up after (1), the action is triggered via:
    203 *
    204 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
    205 *
    206 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
    207 *    the system state, we could have the following combinations :
    208 *
    209 *		x-----------------------------x
    210 *		| Type  | System   | Late CPU |
    211 *		|-----------------------------|
    212 *		|  a    |   y      |    n     |
    213 *		|-----------------------------|
    214 *		|  b    |   n      |    y     |
    215 *		x-----------------------------x
    216 *
    217 *     Two separate flag bits are defined to indicate whether each kind of
    218 *     conflict can be allowed:
    219 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
    220 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
    221 *
    222 *     Case (a) is not permitted for a capability that the system requires
    223 *     all CPUs to have in order for the capability to be enabled. This is
    224 *     typical for capabilities that represent enhanced functionality.
    225 *
    226 *     Case (b) is not permitted for a capability that must be enabled
    227 *     during boot if any CPU in the system requires it in order to run
    228 *     safely. This is typical for erratum work arounds that cannot be
    229 *     enabled after the corresponding capability is finalised.
    230 *
    231 *     In some non-typical cases either both (a) and (b), or neither,
    232 *     should be permitted. This can be described by including neither
    233 *     or both flags in the capability's type field.
    234 *
    235 *     In case of a conflict, the CPU is prevented from booting. If the
    236 *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
    237 *     then a kernel panic is triggered.
    238 */
    239
    240
    241/*
    242 * Decide how the capability is detected.
    243 * On any local CPU vs System wide vs the primary boot CPU
    244 */
    245#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
    246#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
    247/*
    248 * The capabilitiy is detected on the Boot CPU and is used by kernel
    249 * during early boot. i.e, the capability should be "detected" and
    250 * "enabled" as early as possibly on all booting CPUs.
    251 */
    252#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
    253#define ARM64_CPUCAP_SCOPE_MASK			\
    254	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
    255	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
    256	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
    257
    258#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
    259#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
    260#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
    261#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
    262
    263/*
    264 * Is it permitted for a late CPU to have this capability when system
    265 * hasn't already enabled it ?
    266 */
    267#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
    268/* Is it safe for a late CPU to miss this capability when system has it */
    269#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
    270/* Panic when a conflict is detected */
    271#define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
    272
    273/*
    274 * CPU errata workarounds that need to be enabled at boot time if one or
    275 * more CPUs in the system requires it. When one of these capabilities
    276 * has been enabled, it is safe to allow any CPU to boot that doesn't
    277 * require the workaround. However, it is not safe if a "late" CPU
    278 * requires a workaround and the system hasn't enabled it already.
    279 */
    280#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
    281	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
    282/*
    283 * CPU feature detected at boot time based on system-wide value of a
    284 * feature. It is safe for a late CPU to have this feature even though
    285 * the system hasn't enabled it, although the feature will not be used
    286 * by Linux in this case. If the system has enabled this feature already,
    287 * then every late CPU must have it.
    288 */
    289#define ARM64_CPUCAP_SYSTEM_FEATURE	\
    290	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
    291/*
    292 * CPU feature detected at boot time based on feature of one or more CPUs.
    293 * All possible conflicts for a late CPU are ignored.
    294 * NOTE: this means that a late CPU with the feature will *not* cause the
    295 * capability to be advertised by cpus_have_*cap()!
    296 */
    297#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
    298	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
    299	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
    300	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
    301
    302/*
    303 * CPU feature detected at boot time, on one or more CPUs. A late CPU
    304 * is not allowed to have the capability when the system doesn't have it.
    305 * It is Ok for a late CPU to miss the feature.
    306 */
    307#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
    308	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
    309	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
    310
    311/*
    312 * CPU feature used early in the boot based on the boot CPU. All secondary
    313 * CPUs must match the state of the capability as detected by the boot CPU. In
    314 * case of a conflict, a kernel panic is triggered.
    315 */
    316#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
    317	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
    318
    319/*
    320 * CPU feature used early in the boot based on the boot CPU. It is safe for a
    321 * late CPU to have this feature even though the boot CPU hasn't enabled it,
    322 * although the feature will not be used by Linux in this case. If the boot CPU
    323 * has enabled this feature already, then every late CPU must have it.
    324 */
    325#define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
    326	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
    327
    328struct arm64_cpu_capabilities {
    329	const char *desc;
    330	u16 capability;
    331	u16 type;
    332	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
    333	/*
    334	 * Take the appropriate actions to configure this capability
    335	 * for this CPU. If the capability is detected by the kernel
    336	 * this will be called on all the CPUs in the system,
    337	 * including the hotplugged CPUs, regardless of whether the
    338	 * capability is available on that specific CPU. This is
    339	 * useful for some capabilities (e.g, working around CPU
    340	 * errata), where all the CPUs must take some action (e.g,
    341	 * changing system control/configuration). Thus, if an action
    342	 * is required only if the CPU has the capability, then the
    343	 * routine must check it before taking any action.
    344	 */
    345	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
    346	union {
    347		struct {	/* To be used for erratum handling only */
    348			struct midr_range midr_range;
    349			const struct arm64_midr_revidr {
    350				u32 midr_rv;		/* revision/variant */
    351				u32 revidr_mask;
    352			} * const fixed_revs;
    353		};
    354
    355		const struct midr_range *midr_range_list;
    356		struct {	/* Feature register checking */
    357			u32 sys_reg;
    358			u8 field_pos;
    359			u8 field_width;
    360			u8 min_field_value;
    361			u8 hwcap_type;
    362			bool sign;
    363			unsigned long hwcap;
    364		};
    365	};
    366
    367	/*
    368	 * An optional list of "matches/cpu_enable" pair for the same
    369	 * "capability" of the same "type" as described by the parent.
    370	 * Only matches(), cpu_enable() and fields relevant to these
    371	 * methods are significant in the list. The cpu_enable is
    372	 * invoked only if the corresponding entry "matches()".
    373	 * However, if a cpu_enable() method is associated
    374	 * with multiple matches(), care should be taken that either
    375	 * the match criteria are mutually exclusive, or that the
    376	 * method is robust against being called multiple times.
    377	 */
    378	const struct arm64_cpu_capabilities *match_list;
    379};
    380
    381static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
    382{
    383	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
    384}
    385
    386/*
    387 * Generic helper for handling capabilities with multiple (match,enable) pairs
    388 * of call backs, sharing the same capability bit.
    389 * Iterate over each entry to see if at least one matches.
    390 */
    391static inline bool
    392cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
    393			       int scope)
    394{
    395	const struct arm64_cpu_capabilities *caps;
    396
    397	for (caps = entry->match_list; caps->matches; caps++)
    398		if (caps->matches(caps, scope))
    399			return true;
    400
    401	return false;
    402}
    403
    404static __always_inline bool is_vhe_hyp_code(void)
    405{
    406	/* Only defined for code run in VHE hyp context */
    407	return __is_defined(__KVM_VHE_HYPERVISOR__);
    408}
    409
    410static __always_inline bool is_nvhe_hyp_code(void)
    411{
    412	/* Only defined for code run in NVHE hyp context */
    413	return __is_defined(__KVM_NVHE_HYPERVISOR__);
    414}
    415
    416static __always_inline bool is_hyp_code(void)
    417{
    418	return is_vhe_hyp_code() || is_nvhe_hyp_code();
    419}
    420
    421extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
    422extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
    423extern struct static_key_false arm64_const_caps_ready;
    424
    425/* ARM64 CAPS + alternative_cb */
    426#define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
    427extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
    428
    429#define for_each_available_cap(cap)		\
    430	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
    431
    432bool this_cpu_has_cap(unsigned int cap);
    433void cpu_set_feature(unsigned int num);
    434bool cpu_have_feature(unsigned int num);
    435unsigned long cpu_get_elf_hwcap(void);
    436unsigned long cpu_get_elf_hwcap2(void);
    437
    438#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
    439#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
    440
    441static __always_inline bool system_capabilities_finalized(void)
    442{
    443	return static_branch_likely(&arm64_const_caps_ready);
    444}
    445
    446/*
    447 * Test for a capability with a runtime check.
    448 *
    449 * Before the capability is detected, this returns false.
    450 */
    451static inline bool cpus_have_cap(unsigned int num)
    452{
    453	if (num >= ARM64_NCAPS)
    454		return false;
    455	return test_bit(num, cpu_hwcaps);
    456}
    457
    458/*
    459 * Test for a capability without a runtime check.
    460 *
    461 * Before capabilities are finalized, this returns false.
    462 * After capabilities are finalized, this is patched to avoid a runtime check.
    463 *
    464 * @num must be a compile-time constant.
    465 */
    466static __always_inline bool __cpus_have_const_cap(int num)
    467{
    468	if (num >= ARM64_NCAPS)
    469		return false;
    470	return static_branch_unlikely(&cpu_hwcap_keys[num]);
    471}
    472
    473/*
    474 * Test for a capability without a runtime check.
    475 *
    476 * Before capabilities are finalized, this will BUG().
    477 * After capabilities are finalized, this is patched to avoid a runtime check.
    478 *
    479 * @num must be a compile-time constant.
    480 */
    481static __always_inline bool cpus_have_final_cap(int num)
    482{
    483	if (system_capabilities_finalized())
    484		return __cpus_have_const_cap(num);
    485	else
    486		BUG();
    487}
    488
    489/*
    490 * Test for a capability, possibly with a runtime check for non-hyp code.
    491 *
    492 * For hyp code, this behaves the same as cpus_have_final_cap().
    493 *
    494 * For non-hyp code:
    495 * Before capabilities are finalized, this behaves as cpus_have_cap().
    496 * After capabilities are finalized, this is patched to avoid a runtime check.
    497 *
    498 * @num must be a compile-time constant.
    499 */
    500static __always_inline bool cpus_have_const_cap(int num)
    501{
    502	if (is_hyp_code())
    503		return cpus_have_final_cap(num);
    504	else if (system_capabilities_finalized())
    505		return __cpus_have_const_cap(num);
    506	else
    507		return cpus_have_cap(num);
    508}
    509
    510static inline void cpus_set_cap(unsigned int num)
    511{
    512	if (num >= ARM64_NCAPS) {
    513		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
    514			num, ARM64_NCAPS);
    515	} else {
    516		__set_bit(num, cpu_hwcaps);
    517	}
    518}
    519
    520static inline int __attribute_const__
    521cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
    522{
    523	return (s64)(features << (64 - width - field)) >> (64 - width);
    524}
    525
    526static inline int __attribute_const__
    527cpuid_feature_extract_signed_field(u64 features, int field)
    528{
    529	return cpuid_feature_extract_signed_field_width(features, field, 4);
    530}
    531
    532static __always_inline unsigned int __attribute_const__
    533cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
    534{
    535	return (u64)(features << (64 - width - field)) >> (64 - width);
    536}
    537
    538static __always_inline unsigned int __attribute_const__
    539cpuid_feature_extract_unsigned_field(u64 features, int field)
    540{
    541	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
    542}
    543
    544/*
    545 * Fields that identify the version of the Performance Monitors Extension do
    546 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
    547 * "Alternative ID scheme used for the Performance Monitors Extension version".
    548 */
    549static inline u64 __attribute_const__
    550cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
    551{
    552	u64 val = cpuid_feature_extract_unsigned_field(features, field);
    553	u64 mask = GENMASK_ULL(field + 3, field);
    554
    555	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
    556	if (val == ID_AA64DFR0_PMUVER_IMP_DEF)
    557		val = 0;
    558
    559	if (val > cap) {
    560		features &= ~mask;
    561		features |= (cap << field) & mask;
    562	}
    563
    564	return features;
    565}
    566
    567static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
    568{
    569	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
    570}
    571
    572static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
    573{
    574	return (reg->user_val | (reg->sys_val & reg->user_mask));
    575}
    576
    577static inline int __attribute_const__
    578cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
    579{
    580	if (WARN_ON_ONCE(!width))
    581		width = 4;
    582	return (sign) ?
    583		cpuid_feature_extract_signed_field_width(features, field, width) :
    584		cpuid_feature_extract_unsigned_field_width(features, field, width);
    585}
    586
    587static inline int __attribute_const__
    588cpuid_feature_extract_field(u64 features, int field, bool sign)
    589{
    590	return cpuid_feature_extract_field_width(features, field, 4, sign);
    591}
    592
    593static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
    594{
    595	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
    596}
    597
    598static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
    599{
    600	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
    601		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
    602}
    603
    604static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
    605{
    606	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
    607
    608	return val == ID_AA64PFR0_ELx_32BIT_64BIT;
    609}
    610
    611static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
    612{
    613	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
    614
    615	return val == ID_AA64PFR0_ELx_32BIT_64BIT;
    616}
    617
    618static inline bool id_aa64pfr0_sve(u64 pfr0)
    619{
    620	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
    621
    622	return val > 0;
    623}
    624
    625static inline bool id_aa64pfr1_sme(u64 pfr1)
    626{
    627	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_SME_SHIFT);
    628
    629	return val > 0;
    630}
    631
    632static inline bool id_aa64pfr1_mte(u64 pfr1)
    633{
    634	u32 val = cpuid_feature_extract_unsigned_field(pfr1, ID_AA64PFR1_MTE_SHIFT);
    635
    636	return val >= ID_AA64PFR1_MTE;
    637}
    638
    639void __init setup_cpu_features(void);
    640void check_local_cpu_capabilities(void);
    641
    642u64 read_sanitised_ftr_reg(u32 id);
    643u64 __read_sysreg_by_encoding(u32 sys_id);
    644
    645static inline bool cpu_supports_mixed_endian_el0(void)
    646{
    647	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
    648}
    649
    650
    651static inline bool supports_csv2p3(int scope)
    652{
    653	u64 pfr0;
    654	u8 csv2_val;
    655
    656	if (scope == SCOPE_LOCAL_CPU)
    657		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
    658	else
    659		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
    660
    661	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
    662							ID_AA64PFR0_CSV2_SHIFT);
    663	return csv2_val == 3;
    664}
    665
    666static inline bool supports_clearbhb(int scope)
    667{
    668	u64 isar2;
    669
    670	if (scope == SCOPE_LOCAL_CPU)
    671		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
    672	else
    673		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
    674
    675	return cpuid_feature_extract_unsigned_field(isar2,
    676						    ID_AA64ISAR2_CLEARBHB_SHIFT);
    677}
    678
    679const struct cpumask *system_32bit_el0_cpumask(void);
    680DECLARE_STATIC_KEY_FALSE(arm64_mismatched_32bit_el0);
    681
    682static inline bool system_supports_32bit_el0(void)
    683{
    684	u64 pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
    685
    686	return static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
    687	       id_aa64pfr0_32bit_el0(pfr0);
    688}
    689
    690static inline bool system_supports_4kb_granule(void)
    691{
    692	u64 mmfr0;
    693	u32 val;
    694
    695	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
    696	val = cpuid_feature_extract_unsigned_field(mmfr0,
    697						ID_AA64MMFR0_TGRAN4_SHIFT);
    698
    699	return (val >= ID_AA64MMFR0_TGRAN4_SUPPORTED_MIN) &&
    700	       (val <= ID_AA64MMFR0_TGRAN4_SUPPORTED_MAX);
    701}
    702
    703static inline bool system_supports_64kb_granule(void)
    704{
    705	u64 mmfr0;
    706	u32 val;
    707
    708	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
    709	val = cpuid_feature_extract_unsigned_field(mmfr0,
    710						ID_AA64MMFR0_TGRAN64_SHIFT);
    711
    712	return (val >= ID_AA64MMFR0_TGRAN64_SUPPORTED_MIN) &&
    713	       (val <= ID_AA64MMFR0_TGRAN64_SUPPORTED_MAX);
    714}
    715
    716static inline bool system_supports_16kb_granule(void)
    717{
    718	u64 mmfr0;
    719	u32 val;
    720
    721	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
    722	val = cpuid_feature_extract_unsigned_field(mmfr0,
    723						ID_AA64MMFR0_TGRAN16_SHIFT);
    724
    725	return (val >= ID_AA64MMFR0_TGRAN16_SUPPORTED_MIN) &&
    726	       (val <= ID_AA64MMFR0_TGRAN16_SUPPORTED_MAX);
    727}
    728
    729static inline bool system_supports_mixed_endian_el0(void)
    730{
    731	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
    732}
    733
    734static inline bool system_supports_mixed_endian(void)
    735{
    736	u64 mmfr0;
    737	u32 val;
    738
    739	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
    740	val = cpuid_feature_extract_unsigned_field(mmfr0,
    741						ID_AA64MMFR0_BIGENDEL_SHIFT);
    742
    743	return val == 0x1;
    744}
    745
    746static __always_inline bool system_supports_fpsimd(void)
    747{
    748	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
    749}
    750
    751static inline bool system_uses_hw_pan(void)
    752{
    753	return IS_ENABLED(CONFIG_ARM64_PAN) &&
    754		cpus_have_const_cap(ARM64_HAS_PAN);
    755}
    756
    757static inline bool system_uses_ttbr0_pan(void)
    758{
    759	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
    760		!system_uses_hw_pan();
    761}
    762
    763static __always_inline bool system_supports_sve(void)
    764{
    765	return IS_ENABLED(CONFIG_ARM64_SVE) &&
    766		cpus_have_const_cap(ARM64_SVE);
    767}
    768
    769static __always_inline bool system_supports_sme(void)
    770{
    771	return IS_ENABLED(CONFIG_ARM64_SME) &&
    772		cpus_have_const_cap(ARM64_SME);
    773}
    774
    775static __always_inline bool system_supports_fa64(void)
    776{
    777	return IS_ENABLED(CONFIG_ARM64_SME) &&
    778		cpus_have_const_cap(ARM64_SME_FA64);
    779}
    780
    781static __always_inline bool system_supports_tpidr2(void)
    782{
    783	return system_supports_sme();
    784}
    785
    786static __always_inline bool system_supports_cnp(void)
    787{
    788	return IS_ENABLED(CONFIG_ARM64_CNP) &&
    789		cpus_have_const_cap(ARM64_HAS_CNP);
    790}
    791
    792static inline bool system_supports_address_auth(void)
    793{
    794	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
    795		cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
    796}
    797
    798static inline bool system_supports_generic_auth(void)
    799{
    800	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
    801		cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
    802}
    803
    804static inline bool system_has_full_ptr_auth(void)
    805{
    806	return system_supports_address_auth() && system_supports_generic_auth();
    807}
    808
    809static __always_inline bool system_uses_irq_prio_masking(void)
    810{
    811	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
    812	       cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
    813}
    814
    815static inline bool system_supports_mte(void)
    816{
    817	return IS_ENABLED(CONFIG_ARM64_MTE) &&
    818		cpus_have_const_cap(ARM64_MTE);
    819}
    820
    821static inline bool system_has_prio_mask_debugging(void)
    822{
    823	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
    824	       system_uses_irq_prio_masking();
    825}
    826
    827static inline bool system_supports_bti(void)
    828{
    829	return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
    830}
    831
    832static inline bool system_supports_tlb_range(void)
    833{
    834	return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
    835		cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
    836}
    837
    838extern int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
    839
    840static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
    841{
    842	switch (parange) {
    843	case ID_AA64MMFR0_PARANGE_32: return 32;
    844	case ID_AA64MMFR0_PARANGE_36: return 36;
    845	case ID_AA64MMFR0_PARANGE_40: return 40;
    846	case ID_AA64MMFR0_PARANGE_42: return 42;
    847	case ID_AA64MMFR0_PARANGE_44: return 44;
    848	case ID_AA64MMFR0_PARANGE_48: return 48;
    849	case ID_AA64MMFR0_PARANGE_52: return 52;
    850	/*
    851	 * A future PE could use a value unknown to the kernel.
    852	 * However, by the "D10.1.4 Principles of the ID scheme
    853	 * for fields in ID registers", ARM DDI 0487C.a, any new
    854	 * value is guaranteed to be higher than what we know already.
    855	 * As a safe limit, we return the limit supported by the kernel.
    856	 */
    857	default: return CONFIG_ARM64_PA_BITS;
    858	}
    859}
    860
    861/* Check whether hardware update of the Access flag is supported */
    862static inline bool cpu_has_hw_af(void)
    863{
    864	u64 mmfr1;
    865
    866	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
    867		return false;
    868
    869	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
    870	return cpuid_feature_extract_unsigned_field(mmfr1,
    871						ID_AA64MMFR1_HADBS_SHIFT);
    872}
    873
    874static inline bool cpu_has_pan(void)
    875{
    876	u64 mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
    877	return cpuid_feature_extract_unsigned_field(mmfr1,
    878						    ID_AA64MMFR1_PAN_SHIFT);
    879}
    880
    881#ifdef CONFIG_ARM64_AMU_EXTN
    882/* Check whether the cpu supports the Activity Monitors Unit (AMU) */
    883extern bool cpu_has_amu_feat(int cpu);
    884#else
    885static inline bool cpu_has_amu_feat(int cpu)
    886{
    887	return false;
    888}
    889#endif
    890
    891/* Get a cpu that supports the Activity Monitors Unit (AMU) */
    892extern int get_cpu_with_amu_feat(void);
    893
    894static inline unsigned int get_vmid_bits(u64 mmfr1)
    895{
    896	int vmid_bits;
    897
    898	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
    899						ID_AA64MMFR1_VMIDBITS_SHIFT);
    900	if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
    901		return 16;
    902
    903	/*
    904	 * Return the default here even if any reserved
    905	 * value is fetched from the system register.
    906	 */
    907	return 8;
    908}
    909
    910extern struct arm64_ftr_override id_aa64mmfr1_override;
    911extern struct arm64_ftr_override id_aa64pfr1_override;
    912extern struct arm64_ftr_override id_aa64isar1_override;
    913extern struct arm64_ftr_override id_aa64isar2_override;
    914
    915u32 get_kvm_ipa_limit(void);
    916void dump_cpu_features(void);
    917
    918#endif /* __ASSEMBLY__ */
    919
    920#endif