cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

fpsimd.h (10522B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2012 ARM Ltd.
      4 */
      5#ifndef __ASM_FP_H
      6#define __ASM_FP_H
      7
      8#include <asm/errno.h>
      9#include <asm/ptrace.h>
     10#include <asm/processor.h>
     11#include <asm/sigcontext.h>
     12#include <asm/sysreg.h>
     13
     14#ifndef __ASSEMBLY__
     15
     16#include <linux/bitmap.h>
     17#include <linux/build_bug.h>
     18#include <linux/bug.h>
     19#include <linux/cache.h>
     20#include <linux/init.h>
     21#include <linux/stddef.h>
     22#include <linux/types.h>
     23
     24#ifdef CONFIG_COMPAT
     25/* Masks for extracting the FPSR and FPCR from the FPSCR */
     26#define VFP_FPSCR_STAT_MASK	0xf800009f
     27#define VFP_FPSCR_CTRL_MASK	0x07f79f00
     28/*
     29 * The VFP state has 32x64-bit registers and a single 32-bit
     30 * control/status register.
     31 */
     32#define VFP_STATE_SIZE		((32 * 8) + 4)
     33#endif
     34
     35/*
     36 * When we defined the maximum SVE vector length we defined the ABI so
     37 * that the maximum vector length included all the reserved for future
     38 * expansion bits in ZCR rather than those just currently defined by
     39 * the architecture. While SME follows a similar pattern the fact that
     40 * it includes a square matrix means that any allocations that attempt
     41 * to cover the maximum potential vector length (such as happen with
     42 * the regset used for ptrace) end up being extremely large. Define
     43 * the much lower actual limit for use in such situations.
     44 */
     45#define SME_VQ_MAX	16
     46
     47struct task_struct;
     48
     49extern void fpsimd_save_state(struct user_fpsimd_state *state);
     50extern void fpsimd_load_state(struct user_fpsimd_state *state);
     51
     52extern void fpsimd_thread_switch(struct task_struct *next);
     53extern void fpsimd_flush_thread(void);
     54
     55extern void fpsimd_signal_preserve_current_state(void);
     56extern void fpsimd_preserve_current_state(void);
     57extern void fpsimd_restore_current_state(void);
     58extern void fpsimd_update_current_state(struct user_fpsimd_state const *state);
     59
     60extern void fpsimd_bind_state_to_cpu(struct user_fpsimd_state *state,
     61				     void *sve_state, unsigned int sve_vl,
     62				     void *za_state, unsigned int sme_vl,
     63				     u64 *svcr);
     64
     65extern void fpsimd_flush_task_state(struct task_struct *target);
     66extern void fpsimd_save_and_flush_cpu_state(void);
     67
     68static inline bool thread_sm_enabled(struct thread_struct *thread)
     69{
     70	return system_supports_sme() && (thread->svcr & SVCR_SM_MASK);
     71}
     72
     73static inline bool thread_za_enabled(struct thread_struct *thread)
     74{
     75	return system_supports_sme() && (thread->svcr & SVCR_ZA_MASK);
     76}
     77
     78/* Maximum VL that SVE/SME VL-agnostic software can transparently support */
     79#define VL_ARCH_MAX 0x100
     80
     81/* Offset of FFR in the SVE register dump */
     82static inline size_t sve_ffr_offset(int vl)
     83{
     84	return SVE_SIG_FFR_OFFSET(sve_vq_from_vl(vl)) - SVE_SIG_REGS_OFFSET;
     85}
     86
     87static inline void *sve_pffr(struct thread_struct *thread)
     88{
     89	unsigned int vl;
     90
     91	if (system_supports_sme() && thread_sm_enabled(thread))
     92		vl = thread_get_sme_vl(thread);
     93	else
     94		vl = thread_get_sve_vl(thread);
     95
     96	return (char *)thread->sve_state + sve_ffr_offset(vl);
     97}
     98
     99extern void sve_save_state(void *state, u32 *pfpsr, int save_ffr);
    100extern void sve_load_state(void const *state, u32 const *pfpsr,
    101			   int restore_ffr);
    102extern void sve_flush_live(bool flush_ffr, unsigned long vq_minus_1);
    103extern unsigned int sve_get_vl(void);
    104extern void sve_set_vq(unsigned long vq_minus_1);
    105extern void sme_set_vq(unsigned long vq_minus_1);
    106extern void za_save_state(void *state);
    107extern void za_load_state(void const *state);
    108
    109struct arm64_cpu_capabilities;
    110extern void sve_kernel_enable(const struct arm64_cpu_capabilities *__unused);
    111extern void sme_kernel_enable(const struct arm64_cpu_capabilities *__unused);
    112extern void fa64_kernel_enable(const struct arm64_cpu_capabilities *__unused);
    113
    114extern u64 read_zcr_features(void);
    115extern u64 read_smcr_features(void);
    116
    117/*
    118 * Helpers to translate bit indices in sve_vq_map to VQ values (and
    119 * vice versa).  This allows find_next_bit() to be used to find the
    120 * _maximum_ VQ not exceeding a certain value.
    121 */
    122static inline unsigned int __vq_to_bit(unsigned int vq)
    123{
    124	return SVE_VQ_MAX - vq;
    125}
    126
    127static inline unsigned int __bit_to_vq(unsigned int bit)
    128{
    129	return SVE_VQ_MAX - bit;
    130}
    131
    132
    133struct vl_info {
    134	enum vec_type type;
    135	const char *name;		/* For display purposes */
    136
    137	/* Minimum supported vector length across all CPUs */
    138	int min_vl;
    139
    140	/* Maximum supported vector length across all CPUs */
    141	int max_vl;
    142	int max_virtualisable_vl;
    143
    144	/*
    145	 * Set of available vector lengths,
    146	 * where length vq encoded as bit __vq_to_bit(vq):
    147	 */
    148	DECLARE_BITMAP(vq_map, SVE_VQ_MAX);
    149
    150	/* Set of vector lengths present on at least one cpu: */
    151	DECLARE_BITMAP(vq_partial_map, SVE_VQ_MAX);
    152};
    153
    154#ifdef CONFIG_ARM64_SVE
    155
    156extern void sve_alloc(struct task_struct *task);
    157extern void fpsimd_release_task(struct task_struct *task);
    158extern void fpsimd_sync_to_sve(struct task_struct *task);
    159extern void fpsimd_force_sync_to_sve(struct task_struct *task);
    160extern void sve_sync_to_fpsimd(struct task_struct *task);
    161extern void sve_sync_from_fpsimd_zeropad(struct task_struct *task);
    162
    163extern int vec_set_vector_length(struct task_struct *task, enum vec_type type,
    164				 unsigned long vl, unsigned long flags);
    165
    166extern int sve_set_current_vl(unsigned long arg);
    167extern int sve_get_current_vl(void);
    168
    169static inline void sve_user_disable(void)
    170{
    171	sysreg_clear_set(cpacr_el1, CPACR_EL1_ZEN_EL0EN, 0);
    172}
    173
    174static inline void sve_user_enable(void)
    175{
    176	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_ZEN_EL0EN);
    177}
    178
    179#define sve_cond_update_zcr_vq(val, reg)		\
    180	do {						\
    181		u64 __zcr = read_sysreg_s((reg));	\
    182		u64 __new = __zcr & ~ZCR_ELx_LEN_MASK;	\
    183		__new |= (val) & ZCR_ELx_LEN_MASK;	\
    184		if (__zcr != __new)			\
    185			write_sysreg_s(__new, (reg));	\
    186	} while (0)
    187
    188/*
    189 * Probing and setup functions.
    190 * Calls to these functions must be serialised with one another.
    191 */
    192enum vec_type;
    193
    194extern void __init vec_init_vq_map(enum vec_type type);
    195extern void vec_update_vq_map(enum vec_type type);
    196extern int vec_verify_vq_map(enum vec_type type);
    197extern void __init sve_setup(void);
    198
    199extern __ro_after_init struct vl_info vl_info[ARM64_VEC_MAX];
    200
    201static inline void write_vl(enum vec_type type, u64 val)
    202{
    203	u64 tmp;
    204
    205	switch (type) {
    206#ifdef CONFIG_ARM64_SVE
    207	case ARM64_VEC_SVE:
    208		tmp = read_sysreg_s(SYS_ZCR_EL1) & ~ZCR_ELx_LEN_MASK;
    209		write_sysreg_s(tmp | val, SYS_ZCR_EL1);
    210		break;
    211#endif
    212#ifdef CONFIG_ARM64_SME
    213	case ARM64_VEC_SME:
    214		tmp = read_sysreg_s(SYS_SMCR_EL1) & ~SMCR_ELx_LEN_MASK;
    215		write_sysreg_s(tmp | val, SYS_SMCR_EL1);
    216		break;
    217#endif
    218	default:
    219		WARN_ON_ONCE(1);
    220		break;
    221	}
    222}
    223
    224static inline int vec_max_vl(enum vec_type type)
    225{
    226	return vl_info[type].max_vl;
    227}
    228
    229static inline int vec_max_virtualisable_vl(enum vec_type type)
    230{
    231	return vl_info[type].max_virtualisable_vl;
    232}
    233
    234static inline int sve_max_vl(void)
    235{
    236	return vec_max_vl(ARM64_VEC_SVE);
    237}
    238
    239static inline int sve_max_virtualisable_vl(void)
    240{
    241	return vec_max_virtualisable_vl(ARM64_VEC_SVE);
    242}
    243
    244/* Ensure vq >= SVE_VQ_MIN && vq <= SVE_VQ_MAX before calling this function */
    245static inline bool vq_available(enum vec_type type, unsigned int vq)
    246{
    247	return test_bit(__vq_to_bit(vq), vl_info[type].vq_map);
    248}
    249
    250static inline bool sve_vq_available(unsigned int vq)
    251{
    252	return vq_available(ARM64_VEC_SVE, vq);
    253}
    254
    255size_t sve_state_size(struct task_struct const *task);
    256
    257#else /* ! CONFIG_ARM64_SVE */
    258
    259static inline void sve_alloc(struct task_struct *task) { }
    260static inline void fpsimd_release_task(struct task_struct *task) { }
    261static inline void sve_sync_to_fpsimd(struct task_struct *task) { }
    262static inline void sve_sync_from_fpsimd_zeropad(struct task_struct *task) { }
    263
    264static inline int sve_max_virtualisable_vl(void)
    265{
    266	return 0;
    267}
    268
    269static inline int sve_set_current_vl(unsigned long arg)
    270{
    271	return -EINVAL;
    272}
    273
    274static inline int sve_get_current_vl(void)
    275{
    276	return -EINVAL;
    277}
    278
    279static inline int sve_max_vl(void)
    280{
    281	return -EINVAL;
    282}
    283
    284static inline bool sve_vq_available(unsigned int vq) { return false; }
    285
    286static inline void sve_user_disable(void) { BUILD_BUG(); }
    287static inline void sve_user_enable(void) { BUILD_BUG(); }
    288
    289#define sve_cond_update_zcr_vq(val, reg) do { } while (0)
    290
    291static inline void vec_init_vq_map(enum vec_type t) { }
    292static inline void vec_update_vq_map(enum vec_type t) { }
    293static inline int vec_verify_vq_map(enum vec_type t) { return 0; }
    294static inline void sve_setup(void) { }
    295
    296static inline size_t sve_state_size(struct task_struct const *task)
    297{
    298	return 0;
    299}
    300
    301#endif /* ! CONFIG_ARM64_SVE */
    302
    303#ifdef CONFIG_ARM64_SME
    304
    305static inline void sme_user_disable(void)
    306{
    307	sysreg_clear_set(cpacr_el1, CPACR_EL1_SMEN_EL0EN, 0);
    308}
    309
    310static inline void sme_user_enable(void)
    311{
    312	sysreg_clear_set(cpacr_el1, 0, CPACR_EL1_SMEN_EL0EN);
    313}
    314
    315static inline void sme_smstart_sm(void)
    316{
    317	asm volatile(__msr_s(SYS_SVCR_SMSTART_SM_EL0, "xzr"));
    318}
    319
    320static inline void sme_smstop_sm(void)
    321{
    322	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SM_EL0, "xzr"));
    323}
    324
    325static inline void sme_smstop(void)
    326{
    327	asm volatile(__msr_s(SYS_SVCR_SMSTOP_SMZA_EL0, "xzr"));
    328}
    329
    330extern void __init sme_setup(void);
    331
    332static inline int sme_max_vl(void)
    333{
    334	return vec_max_vl(ARM64_VEC_SME);
    335}
    336
    337static inline int sme_max_virtualisable_vl(void)
    338{
    339	return vec_max_virtualisable_vl(ARM64_VEC_SME);
    340}
    341
    342extern void sme_alloc(struct task_struct *task);
    343extern unsigned int sme_get_vl(void);
    344extern int sme_set_current_vl(unsigned long arg);
    345extern int sme_get_current_vl(void);
    346
    347/*
    348 * Return how many bytes of memory are required to store the full SME
    349 * specific state (currently just ZA) for task, given task's currently
    350 * configured vector length.
    351 */
    352static inline size_t za_state_size(struct task_struct const *task)
    353{
    354	unsigned int vl = task_get_sme_vl(task);
    355
    356	return ZA_SIG_REGS_SIZE(sve_vq_from_vl(vl));
    357}
    358
    359#else
    360
    361static inline void sme_user_disable(void) { BUILD_BUG(); }
    362static inline void sme_user_enable(void) { BUILD_BUG(); }
    363
    364static inline void sme_smstart_sm(void) { }
    365static inline void sme_smstop_sm(void) { }
    366static inline void sme_smstop(void) { }
    367
    368static inline void sme_alloc(struct task_struct *task) { }
    369static inline void sme_setup(void) { }
    370static inline unsigned int sme_get_vl(void) { return 0; }
    371static inline int sme_max_vl(void) { return 0; }
    372static inline int sme_max_virtualisable_vl(void) { return 0; }
    373static inline int sme_set_current_vl(unsigned long arg) { return -EINVAL; }
    374static inline int sme_get_current_vl(void) { return -EINVAL; }
    375
    376static inline size_t za_state_size(struct task_struct const *task)
    377{
    378	return 0;
    379}
    380
    381#endif /* ! CONFIG_ARM64_SME */
    382
    383/* For use by EFI runtime services calls only */
    384extern void __efi_fpsimd_begin(void);
    385extern void __efi_fpsimd_end(void);
    386
    387#endif
    388
    389#endif