cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kvm_mmu.h (9222B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2012,2013 - ARM Ltd
      4 * Author: Marc Zyngier <marc.zyngier@arm.com>
      5 */
      6
      7#ifndef __ARM64_KVM_MMU_H__
      8#define __ARM64_KVM_MMU_H__
      9
     10#include <asm/page.h>
     11#include <asm/memory.h>
     12#include <asm/mmu.h>
     13#include <asm/cpufeature.h>
     14
     15/*
     16 * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
     17 * "negative" addresses. This makes it impossible to directly share
     18 * mappings with the kernel.
     19 *
     20 * Instead, give the HYP mode its own VA region at a fixed offset from
     21 * the kernel by just masking the top bits (which are all ones for a
     22 * kernel address). We need to find out how many bits to mask.
     23 *
     24 * We want to build a set of page tables that cover both parts of the
     25 * idmap (the trampoline page used to initialize EL2), and our normal
     26 * runtime VA space, at the same time.
     27 *
     28 * Given that the kernel uses VA_BITS for its entire address space,
     29 * and that half of that space (VA_BITS - 1) is used for the linear
     30 * mapping, we can also limit the EL2 space to (VA_BITS - 1).
     31 *
     32 * The main question is "Within the VA_BITS space, does EL2 use the
     33 * top or the bottom half of that space to shadow the kernel's linear
     34 * mapping?". As we need to idmap the trampoline page, this is
     35 * determined by the range in which this page lives.
     36 *
     37 * If the page is in the bottom half, we have to use the top half. If
     38 * the page is in the top half, we have to use the bottom half:
     39 *
     40 * T = __pa_symbol(__hyp_idmap_text_start)
     41 * if (T & BIT(VA_BITS - 1))
     42 *	HYP_VA_MIN = 0  //idmap in upper half
     43 * else
     44 *	HYP_VA_MIN = 1 << (VA_BITS - 1)
     45 * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
     46 *
     47 * When using VHE, there are no separate hyp mappings and all KVM
     48 * functionality is already mapped as part of the main kernel
     49 * mappings, and none of this applies in that case.
     50 */
     51
     52#ifdef __ASSEMBLY__
     53
     54#include <asm/alternative.h>
     55
     56/*
     57 * Convert a kernel VA into a HYP VA.
     58 * reg: VA to be converted.
     59 *
     60 * The actual code generation takes place in kvm_update_va_mask, and
     61 * the instructions below are only there to reserve the space and
     62 * perform the register allocation (kvm_update_va_mask uses the
     63 * specific registers encoded in the instructions).
     64 */
     65.macro kern_hyp_va	reg
     66alternative_cb kvm_update_va_mask
     67	and     \reg, \reg, #1		/* mask with va_mask */
     68	ror	\reg, \reg, #1		/* rotate to the first tag bit */
     69	add	\reg, \reg, #0		/* insert the low 12 bits of the tag */
     70	add	\reg, \reg, #0, lsl 12	/* insert the top 12 bits of the tag */
     71	ror	\reg, \reg, #63		/* rotate back */
     72alternative_cb_end
     73.endm
     74
     75/*
     76 * Convert a hypervisor VA to a PA
     77 * reg: hypervisor address to be converted in place
     78 * tmp: temporary register
     79 */
     80.macro hyp_pa reg, tmp
     81	ldr_l	\tmp, hyp_physvirt_offset
     82	add	\reg, \reg, \tmp
     83.endm
     84
     85/*
     86 * Convert a hypervisor VA to a kernel image address
     87 * reg: hypervisor address to be converted in place
     88 * tmp: temporary register
     89 *
     90 * The actual code generation takes place in kvm_get_kimage_voffset, and
     91 * the instructions below are only there to reserve the space and
     92 * perform the register allocation (kvm_get_kimage_voffset uses the
     93 * specific registers encoded in the instructions).
     94 */
     95.macro hyp_kimg_va reg, tmp
     96	/* Convert hyp VA -> PA. */
     97	hyp_pa	\reg, \tmp
     98
     99	/* Load kimage_voffset. */
    100alternative_cb kvm_get_kimage_voffset
    101	movz	\tmp, #0
    102	movk	\tmp, #0, lsl #16
    103	movk	\tmp, #0, lsl #32
    104	movk	\tmp, #0, lsl #48
    105alternative_cb_end
    106
    107	/* Convert PA -> kimg VA. */
    108	add	\reg, \reg, \tmp
    109.endm
    110
    111#else
    112
    113#include <linux/pgtable.h>
    114#include <asm/pgalloc.h>
    115#include <asm/cache.h>
    116#include <asm/cacheflush.h>
    117#include <asm/mmu_context.h>
    118#include <asm/kvm_host.h>
    119
    120void kvm_update_va_mask(struct alt_instr *alt,
    121			__le32 *origptr, __le32 *updptr, int nr_inst);
    122void kvm_compute_layout(void);
    123void kvm_apply_hyp_relocations(void);
    124
    125#define __hyp_pa(x) (((phys_addr_t)(x)) + hyp_physvirt_offset)
    126
    127static __always_inline unsigned long __kern_hyp_va(unsigned long v)
    128{
    129	asm volatile(ALTERNATIVE_CB("and %0, %0, #1\n"
    130				    "ror %0, %0, #1\n"
    131				    "add %0, %0, #0\n"
    132				    "add %0, %0, #0, lsl 12\n"
    133				    "ror %0, %0, #63\n",
    134				    kvm_update_va_mask)
    135		     : "+r" (v));
    136	return v;
    137}
    138
    139#define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
    140
    141/*
    142 * We currently support using a VM-specified IPA size. For backward
    143 * compatibility, the default IPA size is fixed to 40bits.
    144 */
    145#define KVM_PHYS_SHIFT	(40)
    146
    147#define kvm_phys_shift(kvm)		VTCR_EL2_IPA(kvm->arch.vtcr)
    148#define kvm_phys_size(kvm)		(_AC(1, ULL) << kvm_phys_shift(kvm))
    149#define kvm_phys_mask(kvm)		(kvm_phys_size(kvm) - _AC(1, ULL))
    150
    151#include <asm/kvm_pgtable.h>
    152#include <asm/stage2_pgtable.h>
    153
    154int kvm_share_hyp(void *from, void *to);
    155void kvm_unshare_hyp(void *from, void *to);
    156int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot);
    157int __create_hyp_mappings(unsigned long start, unsigned long size,
    158			  unsigned long phys, enum kvm_pgtable_prot prot);
    159int hyp_alloc_private_va_range(size_t size, unsigned long *haddr);
    160int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
    161			   void __iomem **kaddr,
    162			   void __iomem **haddr);
    163int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
    164			     void **haddr);
    165void free_hyp_pgds(void);
    166
    167void stage2_unmap_vm(struct kvm *kvm);
    168int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu);
    169void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu);
    170int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
    171			  phys_addr_t pa, unsigned long size, bool writable);
    172
    173int kvm_handle_guest_abort(struct kvm_vcpu *vcpu);
    174
    175phys_addr_t kvm_mmu_get_httbr(void);
    176phys_addr_t kvm_get_idmap_vector(void);
    177int kvm_mmu_init(u32 *hyp_va_bits);
    178
    179static inline void *__kvm_vector_slot2addr(void *base,
    180					   enum arm64_hyp_spectre_vector slot)
    181{
    182	int idx = slot - (slot != HYP_VECTOR_DIRECT);
    183
    184	return base + (idx * SZ_2K);
    185}
    186
    187struct kvm;
    188
    189#define kvm_flush_dcache_to_poc(a,l)	\
    190	dcache_clean_inval_poc((unsigned long)(a), (unsigned long)(a)+(l))
    191
    192static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
    193{
    194	return (vcpu_read_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
    195}
    196
    197static inline void __clean_dcache_guest_page(void *va, size_t size)
    198{
    199	/*
    200	 * With FWB, we ensure that the guest always accesses memory using
    201	 * cacheable attributes, and we don't have to clean to PoC when
    202	 * faulting in pages. Furthermore, FWB implies IDC, so cleaning to
    203	 * PoU is not required either in this case.
    204	 */
    205	if (cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
    206		return;
    207
    208	kvm_flush_dcache_to_poc(va, size);
    209}
    210
    211static inline void __invalidate_icache_guest_page(void *va, size_t size)
    212{
    213	if (icache_is_aliasing()) {
    214		/* any kind of VIPT cache */
    215		icache_inval_all_pou();
    216	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
    217		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
    218		icache_inval_pou((unsigned long)va, (unsigned long)va + size);
    219	}
    220}
    221
    222void kvm_set_way_flush(struct kvm_vcpu *vcpu);
    223void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
    224
    225static inline unsigned int kvm_get_vmid_bits(void)
    226{
    227	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
    228
    229	return get_vmid_bits(reg);
    230}
    231
    232/*
    233 * We are not in the kvm->srcu critical section most of the time, so we take
    234 * the SRCU read lock here. Since we copy the data from the user page, we
    235 * can immediately drop the lock again.
    236 */
    237static inline int kvm_read_guest_lock(struct kvm *kvm,
    238				      gpa_t gpa, void *data, unsigned long len)
    239{
    240	int srcu_idx = srcu_read_lock(&kvm->srcu);
    241	int ret = kvm_read_guest(kvm, gpa, data, len);
    242
    243	srcu_read_unlock(&kvm->srcu, srcu_idx);
    244
    245	return ret;
    246}
    247
    248static inline int kvm_write_guest_lock(struct kvm *kvm, gpa_t gpa,
    249				       const void *data, unsigned long len)
    250{
    251	int srcu_idx = srcu_read_lock(&kvm->srcu);
    252	int ret = kvm_write_guest(kvm, gpa, data, len);
    253
    254	srcu_read_unlock(&kvm->srcu, srcu_idx);
    255
    256	return ret;
    257}
    258
    259#define kvm_phys_to_vttbr(addr)		phys_to_ttbr(addr)
    260
    261/*
    262 * When this is (directly or indirectly) used on the TLB invalidation
    263 * path, we rely on a previously issued DSB so that page table updates
    264 * and VMID reads are correctly ordered.
    265 */
    266static __always_inline u64 kvm_get_vttbr(struct kvm_s2_mmu *mmu)
    267{
    268	struct kvm_vmid *vmid = &mmu->vmid;
    269	u64 vmid_field, baddr;
    270	u64 cnp = system_supports_cnp() ? VTTBR_CNP_BIT : 0;
    271
    272	baddr = mmu->pgd_phys;
    273	vmid_field = atomic64_read(&vmid->id) << VTTBR_VMID_SHIFT;
    274	vmid_field &= VTTBR_VMID_MASK(kvm_arm_vmid_bits);
    275	return kvm_phys_to_vttbr(baddr) | vmid_field | cnp;
    276}
    277
    278/*
    279 * Must be called from hyp code running at EL2 with an updated VTTBR
    280 * and interrupts disabled.
    281 */
    282static __always_inline void __load_stage2(struct kvm_s2_mmu *mmu,
    283					  struct kvm_arch *arch)
    284{
    285	write_sysreg(arch->vtcr, vtcr_el2);
    286	write_sysreg(kvm_get_vttbr(mmu), vttbr_el2);
    287
    288	/*
    289	 * ARM errata 1165522 and 1530923 require the actual execution of the
    290	 * above before we can switch to the EL1/EL0 translation regime used by
    291	 * the guest.
    292	 */
    293	asm(ALTERNATIVE("nop", "isb", ARM64_WORKAROUND_SPECULATIVE_AT));
    294}
    295
    296static inline struct kvm *kvm_s2_mmu_to_kvm(struct kvm_s2_mmu *mmu)
    297{
    298	return container_of(mmu->arch, struct kvm, arch);
    299}
    300#endif /* __ASSEMBLY__ */
    301#endif /* __ARM64_KVM_MMU_H__ */