cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

pgtable.h (31563B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Copyright (C) 2012 ARM Ltd.
      4 */
      5#ifndef __ASM_PGTABLE_H
      6#define __ASM_PGTABLE_H
      7
      8#include <asm/bug.h>
      9#include <asm/proc-fns.h>
     10
     11#include <asm/memory.h>
     12#include <asm/mte.h>
     13#include <asm/pgtable-hwdef.h>
     14#include <asm/pgtable-prot.h>
     15#include <asm/tlbflush.h>
     16
     17/*
     18 * VMALLOC range.
     19 *
     20 * VMALLOC_START: beginning of the kernel vmalloc space
     21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
     22 *	and fixed mappings
     23 */
     24#define VMALLOC_START		(MODULES_END)
     25#define VMALLOC_END		(VMEMMAP_START - SZ_256M)
     26
     27#define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
     28
     29#ifndef __ASSEMBLY__
     30
     31#include <asm/cmpxchg.h>
     32#include <asm/fixmap.h>
     33#include <linux/mmdebug.h>
     34#include <linux/mm_types.h>
     35#include <linux/sched.h>
     36#include <linux/page_table_check.h>
     37
     38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
     39#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
     40
     41/* Set stride and tlb_level in flush_*_tlb_range */
     42#define flush_pmd_tlb_range(vma, addr, end)	\
     43	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
     44#define flush_pud_tlb_range(vma, addr, end)	\
     45	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
     46#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
     47
     48/*
     49 * Outside of a few very special situations (e.g. hibernation), we always
     50 * use broadcast TLB invalidation instructions, therefore a spurious page
     51 * fault on one CPU which has been handled concurrently by another CPU
     52 * does not need to perform additional invalidation.
     53 */
     54#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
     55
     56/*
     57 * ZERO_PAGE is a global shared page that is always zero: used
     58 * for zero-mapped memory areas etc..
     59 */
     60extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
     61#define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
     62
     63#define pte_ERROR(e)	\
     64	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
     65
     66/*
     67 * Macros to convert between a physical address and its placement in a
     68 * page table entry, taking care of 52-bit addresses.
     69 */
     70#ifdef CONFIG_ARM64_PA_BITS_52
     71static inline phys_addr_t __pte_to_phys(pte_t pte)
     72{
     73	return (pte_val(pte) & PTE_ADDR_LOW) |
     74		((pte_val(pte) & PTE_ADDR_HIGH) << 36);
     75}
     76static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
     77{
     78	return (phys | (phys >> 36)) & PTE_ADDR_MASK;
     79}
     80#else
     81#define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
     82#define __phys_to_pte_val(phys)	(phys)
     83#endif
     84
     85#define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
     86#define pfn_pte(pfn,prot)	\
     87	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
     88
     89#define pte_none(pte)		(!pte_val(pte))
     90#define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
     91#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
     92
     93/*
     94 * The following only work if pte_present(). Undefined behaviour otherwise.
     95 */
     96#define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
     97#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
     98#define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
     99#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
    100#define pte_user(pte)		(!!(pte_val(pte) & PTE_USER))
    101#define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
    102#define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
    103#define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
    104#define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
    105				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
    106
    107#define pte_cont_addr_end(addr, end)						\
    108({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
    109	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
    110})
    111
    112#define pmd_cont_addr_end(addr, end)						\
    113({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
    114	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
    115})
    116
    117#define pte_hw_dirty(pte)	(pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
    118#define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
    119#define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
    120
    121#define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
    122/*
    123 * Execute-only user mappings do not have the PTE_USER bit set. All valid
    124 * kernel mappings have the PTE_UXN bit set.
    125 */
    126#define pte_valid_not_user(pte) \
    127	((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN))
    128/*
    129 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
    130 * so that we don't erroneously return false for pages that have been
    131 * remapped as PROT_NONE but are yet to be flushed from the TLB.
    132 * Note that we can't make any assumptions based on the state of the access
    133 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
    134 * TLB.
    135 */
    136#define pte_accessible(mm, pte)	\
    137	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
    138
    139/*
    140 * p??_access_permitted() is true for valid user mappings (PTE_USER
    141 * bit set, subject to the write permission check). For execute-only
    142 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits
    143 * not set) must return false. PROT_NONE mappings do not have the
    144 * PTE_VALID bit set.
    145 */
    146#define pte_access_permitted(pte, write) \
    147	(((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte)))
    148#define pmd_access_permitted(pmd, write) \
    149	(pte_access_permitted(pmd_pte(pmd), (write)))
    150#define pud_access_permitted(pud, write) \
    151	(pte_access_permitted(pud_pte(pud), (write)))
    152
    153static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
    154{
    155	pte_val(pte) &= ~pgprot_val(prot);
    156	return pte;
    157}
    158
    159static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
    160{
    161	pte_val(pte) |= pgprot_val(prot);
    162	return pte;
    163}
    164
    165static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
    166{
    167	pmd_val(pmd) &= ~pgprot_val(prot);
    168	return pmd;
    169}
    170
    171static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
    172{
    173	pmd_val(pmd) |= pgprot_val(prot);
    174	return pmd;
    175}
    176
    177static inline pte_t pte_mkwrite(pte_t pte)
    178{
    179	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
    180	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
    181	return pte;
    182}
    183
    184static inline pte_t pte_mkclean(pte_t pte)
    185{
    186	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
    187	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
    188
    189	return pte;
    190}
    191
    192static inline pte_t pte_mkdirty(pte_t pte)
    193{
    194	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
    195
    196	if (pte_write(pte))
    197		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
    198
    199	return pte;
    200}
    201
    202static inline pte_t pte_wrprotect(pte_t pte)
    203{
    204	/*
    205	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
    206	 * clear), set the PTE_DIRTY bit.
    207	 */
    208	if (pte_hw_dirty(pte))
    209		pte = pte_mkdirty(pte);
    210
    211	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
    212	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
    213	return pte;
    214}
    215
    216static inline pte_t pte_mkold(pte_t pte)
    217{
    218	return clear_pte_bit(pte, __pgprot(PTE_AF));
    219}
    220
    221static inline pte_t pte_mkyoung(pte_t pte)
    222{
    223	return set_pte_bit(pte, __pgprot(PTE_AF));
    224}
    225
    226static inline pte_t pte_mkspecial(pte_t pte)
    227{
    228	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
    229}
    230
    231static inline pte_t pte_mkcont(pte_t pte)
    232{
    233	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
    234	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
    235}
    236
    237static inline pte_t pte_mknoncont(pte_t pte)
    238{
    239	return clear_pte_bit(pte, __pgprot(PTE_CONT));
    240}
    241
    242static inline pte_t pte_mkpresent(pte_t pte)
    243{
    244	return set_pte_bit(pte, __pgprot(PTE_VALID));
    245}
    246
    247static inline pmd_t pmd_mkcont(pmd_t pmd)
    248{
    249	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
    250}
    251
    252static inline pte_t pte_mkdevmap(pte_t pte)
    253{
    254	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
    255}
    256
    257static inline void set_pte(pte_t *ptep, pte_t pte)
    258{
    259	WRITE_ONCE(*ptep, pte);
    260
    261	/*
    262	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
    263	 * or update_mmu_cache() have the necessary barriers.
    264	 */
    265	if (pte_valid_not_user(pte)) {
    266		dsb(ishst);
    267		isb();
    268	}
    269}
    270
    271extern void __sync_icache_dcache(pte_t pteval);
    272
    273/*
    274 * PTE bits configuration in the presence of hardware Dirty Bit Management
    275 * (PTE_WRITE == PTE_DBM):
    276 *
    277 * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
    278 *   0      0      |   1           0          0
    279 *   0      1      |   1           1          0
    280 *   1      0      |   1           0          1
    281 *   1      1      |   0           1          x
    282 *
    283 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
    284 * the page fault mechanism. Checking the dirty status of a pte becomes:
    285 *
    286 *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
    287 */
    288
    289static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
    290					   pte_t pte)
    291{
    292	pte_t old_pte;
    293
    294	if (!IS_ENABLED(CONFIG_DEBUG_VM))
    295		return;
    296
    297	old_pte = READ_ONCE(*ptep);
    298
    299	if (!pte_valid(old_pte) || !pte_valid(pte))
    300		return;
    301	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
    302		return;
    303
    304	/*
    305	 * Check for potential race with hardware updates of the pte
    306	 * (ptep_set_access_flags safely changes valid ptes without going
    307	 * through an invalid entry).
    308	 */
    309	VM_WARN_ONCE(!pte_young(pte),
    310		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
    311		     __func__, pte_val(old_pte), pte_val(pte));
    312	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
    313		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
    314		     __func__, pte_val(old_pte), pte_val(pte));
    315}
    316
    317static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
    318				pte_t *ptep, pte_t pte)
    319{
    320	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
    321		__sync_icache_dcache(pte);
    322
    323	/*
    324	 * If the PTE would provide user space access to the tags associated
    325	 * with it then ensure that the MTE tags are synchronised.  Although
    326	 * pte_access_permitted() returns false for exec only mappings, they
    327	 * don't expose tags (instruction fetches don't check tags).
    328	 */
    329	if (system_supports_mte() && pte_access_permitted(pte, false) &&
    330	    !pte_special(pte)) {
    331		pte_t old_pte = READ_ONCE(*ptep);
    332		/*
    333		 * We only need to synchronise if the new PTE has tags enabled
    334		 * or if swapping in (in which case another mapping may have
    335		 * set tags in the past even if this PTE isn't tagged).
    336		 * (!pte_none() && !pte_present()) is an open coded version of
    337		 * is_swap_pte()
    338		 */
    339		if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte)))
    340			mte_sync_tags(old_pte, pte);
    341	}
    342
    343	__check_racy_pte_update(mm, ptep, pte);
    344
    345	set_pte(ptep, pte);
    346}
    347
    348static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
    349			      pte_t *ptep, pte_t pte)
    350{
    351	page_table_check_pte_set(mm, addr, ptep, pte);
    352	return __set_pte_at(mm, addr, ptep, pte);
    353}
    354
    355/*
    356 * Huge pte definitions.
    357 */
    358#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
    359
    360/*
    361 * Hugetlb definitions.
    362 */
    363#define HUGE_MAX_HSTATE		4
    364#define HPAGE_SHIFT		PMD_SHIFT
    365#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
    366#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
    367#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
    368
    369static inline pte_t pgd_pte(pgd_t pgd)
    370{
    371	return __pte(pgd_val(pgd));
    372}
    373
    374static inline pte_t p4d_pte(p4d_t p4d)
    375{
    376	return __pte(p4d_val(p4d));
    377}
    378
    379static inline pte_t pud_pte(pud_t pud)
    380{
    381	return __pte(pud_val(pud));
    382}
    383
    384static inline pud_t pte_pud(pte_t pte)
    385{
    386	return __pud(pte_val(pte));
    387}
    388
    389static inline pmd_t pud_pmd(pud_t pud)
    390{
    391	return __pmd(pud_val(pud));
    392}
    393
    394static inline pte_t pmd_pte(pmd_t pmd)
    395{
    396	return __pte(pmd_val(pmd));
    397}
    398
    399static inline pmd_t pte_pmd(pte_t pte)
    400{
    401	return __pmd(pte_val(pte));
    402}
    403
    404static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
    405{
    406	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
    407}
    408
    409static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
    410{
    411	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
    412}
    413
    414#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE
    415static inline pte_t pte_swp_mkexclusive(pte_t pte)
    416{
    417	return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
    418}
    419
    420static inline int pte_swp_exclusive(pte_t pte)
    421{
    422	return pte_val(pte) & PTE_SWP_EXCLUSIVE;
    423}
    424
    425static inline pte_t pte_swp_clear_exclusive(pte_t pte)
    426{
    427	return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE));
    428}
    429
    430#ifdef CONFIG_NUMA_BALANCING
    431/*
    432 * See the comment in include/linux/pgtable.h
    433 */
    434static inline int pte_protnone(pte_t pte)
    435{
    436	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
    437}
    438
    439static inline int pmd_protnone(pmd_t pmd)
    440{
    441	return pte_protnone(pmd_pte(pmd));
    442}
    443#endif
    444
    445#define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
    446
    447static inline int pmd_present(pmd_t pmd)
    448{
    449	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
    450}
    451
    452/*
    453 * THP definitions.
    454 */
    455
    456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    457static inline int pmd_trans_huge(pmd_t pmd)
    458{
    459	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
    460}
    461#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    462
    463#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
    464#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
    465#define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
    466#define pmd_user(pmd)		pte_user(pmd_pte(pmd))
    467#define pmd_user_exec(pmd)	pte_user_exec(pmd_pte(pmd))
    468#define pmd_cont(pmd)		pte_cont(pmd_pte(pmd))
    469#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
    470#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
    471#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
    472#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
    473#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
    474#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
    475
    476static inline pmd_t pmd_mkinvalid(pmd_t pmd)
    477{
    478	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
    479	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
    480
    481	return pmd;
    482}
    483
    484#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
    485
    486#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
    487
    488#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
    489
    490#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    491#define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
    492#endif
    493static inline pmd_t pmd_mkdevmap(pmd_t pmd)
    494{
    495	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
    496}
    497
    498#define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
    499#define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
    500#define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
    501#define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
    502#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
    503
    504#define pud_young(pud)		pte_young(pud_pte(pud))
    505#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
    506#define pud_write(pud)		pte_write(pud_pte(pud))
    507
    508#define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
    509
    510#define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
    511#define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
    512#define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
    513#define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
    514
    515static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
    516			      pmd_t *pmdp, pmd_t pmd)
    517{
    518	page_table_check_pmd_set(mm, addr, pmdp, pmd);
    519	return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
    520}
    521
    522static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
    523			      pud_t *pudp, pud_t pud)
    524{
    525	page_table_check_pud_set(mm, addr, pudp, pud);
    526	return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
    527}
    528
    529#define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
    530#define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
    531
    532#define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
    533#define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
    534
    535#define __pgprot_modify(prot,mask,bits) \
    536	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
    537
    538#define pgprot_nx(prot) \
    539	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
    540
    541/*
    542 * Mark the prot value as uncacheable and unbufferable.
    543 */
    544#define pgprot_noncached(prot) \
    545	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
    546#define pgprot_writecombine(prot) \
    547	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
    548#define pgprot_device(prot) \
    549	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
    550#define pgprot_tagged(prot) \
    551	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
    552#define pgprot_mhp	pgprot_tagged
    553/*
    554 * DMA allocations for non-coherent devices use what the Arm architecture calls
    555 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
    556 * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
    557 * is intended for MMIO and thus forbids speculation, preserves access size,
    558 * requires strict alignment and can also force write responses to come from the
    559 * endpoint.
    560 */
    561#define pgprot_dmacoherent(prot) \
    562	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
    563			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
    564
    565#define __HAVE_PHYS_MEM_ACCESS_PROT
    566struct file;
    567extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
    568				     unsigned long size, pgprot_t vma_prot);
    569
    570#define pmd_none(pmd)		(!pmd_val(pmd))
    571
    572#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
    573				 PMD_TYPE_TABLE)
    574#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
    575				 PMD_TYPE_SECT)
    576#define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
    577#define pmd_bad(pmd)		(!pmd_table(pmd))
    578
    579#define pmd_leaf_size(pmd)	(pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE)
    580#define pte_leaf_size(pte)	(pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE)
    581
    582#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
    583static inline bool pud_sect(pud_t pud) { return false; }
    584static inline bool pud_table(pud_t pud) { return true; }
    585#else
    586#define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
    587				 PUD_TYPE_SECT)
    588#define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
    589				 PUD_TYPE_TABLE)
    590#endif
    591
    592extern pgd_t init_pg_dir[PTRS_PER_PGD];
    593extern pgd_t init_pg_end[];
    594extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
    595extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
    596extern pgd_t idmap_pg_end[];
    597extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
    598extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
    599
    600extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
    601
    602static inline bool in_swapper_pgdir(void *addr)
    603{
    604	return ((unsigned long)addr & PAGE_MASK) ==
    605	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
    606}
    607
    608static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
    609{
    610#ifdef __PAGETABLE_PMD_FOLDED
    611	if (in_swapper_pgdir(pmdp)) {
    612		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
    613		return;
    614	}
    615#endif /* __PAGETABLE_PMD_FOLDED */
    616
    617	WRITE_ONCE(*pmdp, pmd);
    618
    619	if (pmd_valid(pmd)) {
    620		dsb(ishst);
    621		isb();
    622	}
    623}
    624
    625static inline void pmd_clear(pmd_t *pmdp)
    626{
    627	set_pmd(pmdp, __pmd(0));
    628}
    629
    630static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
    631{
    632	return __pmd_to_phys(pmd);
    633}
    634
    635static inline unsigned long pmd_page_vaddr(pmd_t pmd)
    636{
    637	return (unsigned long)__va(pmd_page_paddr(pmd));
    638}
    639
    640/* Find an entry in the third-level page table. */
    641#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
    642
    643#define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
    644#define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
    645#define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
    646
    647#define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
    648
    649/* use ONLY for statically allocated translation tables */
    650#define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
    651
    652/*
    653 * Conversion functions: convert a page and protection to a page entry,
    654 * and a page entry and page directory to the page they refer to.
    655 */
    656#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
    657
    658#if CONFIG_PGTABLE_LEVELS > 2
    659
    660#define pmd_ERROR(e)	\
    661	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
    662
    663#define pud_none(pud)		(!pud_val(pud))
    664#define pud_bad(pud)		(!pud_table(pud))
    665#define pud_present(pud)	pte_present(pud_pte(pud))
    666#define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
    667#define pud_valid(pud)		pte_valid(pud_pte(pud))
    668#define pud_user(pud)		pte_user(pud_pte(pud))
    669
    670
    671static inline void set_pud(pud_t *pudp, pud_t pud)
    672{
    673#ifdef __PAGETABLE_PUD_FOLDED
    674	if (in_swapper_pgdir(pudp)) {
    675		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
    676		return;
    677	}
    678#endif /* __PAGETABLE_PUD_FOLDED */
    679
    680	WRITE_ONCE(*pudp, pud);
    681
    682	if (pud_valid(pud)) {
    683		dsb(ishst);
    684		isb();
    685	}
    686}
    687
    688static inline void pud_clear(pud_t *pudp)
    689{
    690	set_pud(pudp, __pud(0));
    691}
    692
    693static inline phys_addr_t pud_page_paddr(pud_t pud)
    694{
    695	return __pud_to_phys(pud);
    696}
    697
    698static inline pmd_t *pud_pgtable(pud_t pud)
    699{
    700	return (pmd_t *)__va(pud_page_paddr(pud));
    701}
    702
    703/* Find an entry in the second-level page table. */
    704#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
    705
    706#define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
    707#define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
    708#define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
    709
    710#define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
    711
    712/* use ONLY for statically allocated translation tables */
    713#define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
    714
    715#else
    716
    717#define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
    718
    719/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
    720#define pmd_set_fixmap(addr)		NULL
    721#define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
    722#define pmd_clear_fixmap()
    723
    724#define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
    725
    726#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
    727
    728#if CONFIG_PGTABLE_LEVELS > 3
    729
    730#define pud_ERROR(e)	\
    731	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
    732
    733#define p4d_none(p4d)		(!p4d_val(p4d))
    734#define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
    735#define p4d_present(p4d)	(p4d_val(p4d))
    736
    737static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
    738{
    739	if (in_swapper_pgdir(p4dp)) {
    740		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
    741		return;
    742	}
    743
    744	WRITE_ONCE(*p4dp, p4d);
    745	dsb(ishst);
    746	isb();
    747}
    748
    749static inline void p4d_clear(p4d_t *p4dp)
    750{
    751	set_p4d(p4dp, __p4d(0));
    752}
    753
    754static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
    755{
    756	return __p4d_to_phys(p4d);
    757}
    758
    759static inline pud_t *p4d_pgtable(p4d_t p4d)
    760{
    761	return (pud_t *)__va(p4d_page_paddr(p4d));
    762}
    763
    764/* Find an entry in the first-level page table. */
    765#define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
    766
    767#define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
    768#define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
    769#define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
    770
    771#define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
    772
    773/* use ONLY for statically allocated translation tables */
    774#define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
    775
    776#else
    777
    778#define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
    779#define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
    780
    781/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
    782#define pud_set_fixmap(addr)		NULL
    783#define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
    784#define pud_clear_fixmap()
    785
    786#define pud_offset_kimg(dir,addr)	((pud_t *)dir)
    787
    788#endif  /* CONFIG_PGTABLE_LEVELS > 3 */
    789
    790#define pgd_ERROR(e)	\
    791	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
    792
    793#define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
    794#define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
    795
    796static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
    797{
    798	/*
    799	 * Normal and Normal-Tagged are two different memory types and indices
    800	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
    801	 */
    802	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
    803			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
    804			      PTE_ATTRINDX_MASK;
    805	/* preserve the hardware dirty information */
    806	if (pte_hw_dirty(pte))
    807		pte = pte_mkdirty(pte);
    808	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
    809	return pte;
    810}
    811
    812static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
    813{
    814	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
    815}
    816
    817#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
    818extern int ptep_set_access_flags(struct vm_area_struct *vma,
    819				 unsigned long address, pte_t *ptep,
    820				 pte_t entry, int dirty);
    821
    822#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    823#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
    824static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
    825					unsigned long address, pmd_t *pmdp,
    826					pmd_t entry, int dirty)
    827{
    828	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
    829}
    830
    831static inline int pud_devmap(pud_t pud)
    832{
    833	return 0;
    834}
    835
    836static inline int pgd_devmap(pgd_t pgd)
    837{
    838	return 0;
    839}
    840#endif
    841
    842#ifdef CONFIG_PAGE_TABLE_CHECK
    843static inline bool pte_user_accessible_page(pte_t pte)
    844{
    845	return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte));
    846}
    847
    848static inline bool pmd_user_accessible_page(pmd_t pmd)
    849{
    850	return pmd_present(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd));
    851}
    852
    853static inline bool pud_user_accessible_page(pud_t pud)
    854{
    855	return pud_present(pud) && pud_user(pud);
    856}
    857#endif
    858
    859/*
    860 * Atomic pte/pmd modifications.
    861 */
    862#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
    863static inline int __ptep_test_and_clear_young(pte_t *ptep)
    864{
    865	pte_t old_pte, pte;
    866
    867	pte = READ_ONCE(*ptep);
    868	do {
    869		old_pte = pte;
    870		pte = pte_mkold(pte);
    871		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
    872					       pte_val(old_pte), pte_val(pte));
    873	} while (pte_val(pte) != pte_val(old_pte));
    874
    875	return pte_young(pte);
    876}
    877
    878static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
    879					    unsigned long address,
    880					    pte_t *ptep)
    881{
    882	return __ptep_test_and_clear_young(ptep);
    883}
    884
    885#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
    886static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
    887					 unsigned long address, pte_t *ptep)
    888{
    889	int young = ptep_test_and_clear_young(vma, address, ptep);
    890
    891	if (young) {
    892		/*
    893		 * We can elide the trailing DSB here since the worst that can
    894		 * happen is that a CPU continues to use the young entry in its
    895		 * TLB and we mistakenly reclaim the associated page. The
    896		 * window for such an event is bounded by the next
    897		 * context-switch, which provides a DSB to complete the TLB
    898		 * invalidation.
    899		 */
    900		flush_tlb_page_nosync(vma, address);
    901	}
    902
    903	return young;
    904}
    905
    906#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    907#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
    908static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
    909					    unsigned long address,
    910					    pmd_t *pmdp)
    911{
    912	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
    913}
    914#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    915
    916#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
    917static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
    918				       unsigned long address, pte_t *ptep)
    919{
    920	pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0));
    921
    922	page_table_check_pte_clear(mm, address, pte);
    923
    924	return pte;
    925}
    926
    927#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    928#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
    929static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
    930					    unsigned long address, pmd_t *pmdp)
    931{
    932	pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0));
    933
    934	page_table_check_pmd_clear(mm, address, pmd);
    935
    936	return pmd;
    937}
    938#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
    939
    940/*
    941 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
    942 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
    943 */
    944#define __HAVE_ARCH_PTEP_SET_WRPROTECT
    945static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
    946{
    947	pte_t old_pte, pte;
    948
    949	pte = READ_ONCE(*ptep);
    950	do {
    951		old_pte = pte;
    952		pte = pte_wrprotect(pte);
    953		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
    954					       pte_val(old_pte), pte_val(pte));
    955	} while (pte_val(pte) != pte_val(old_pte));
    956}
    957
    958#ifdef CONFIG_TRANSPARENT_HUGEPAGE
    959#define __HAVE_ARCH_PMDP_SET_WRPROTECT
    960static inline void pmdp_set_wrprotect(struct mm_struct *mm,
    961				      unsigned long address, pmd_t *pmdp)
    962{
    963	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
    964}
    965
    966#define pmdp_establish pmdp_establish
    967static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
    968		unsigned long address, pmd_t *pmdp, pmd_t pmd)
    969{
    970	page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
    971	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
    972}
    973#endif
    974
    975/*
    976 * Encode and decode a swap entry:
    977 *	bits 0-1:	present (must be zero)
    978 *	bits 2:		remember PG_anon_exclusive
    979 *	bits 3-7:	swap type
    980 *	bits 8-57:	swap offset
    981 *	bit  58:	PTE_PROT_NONE (must be zero)
    982 */
    983#define __SWP_TYPE_SHIFT	3
    984#define __SWP_TYPE_BITS		5
    985#define __SWP_OFFSET_BITS	50
    986#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
    987#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
    988#define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
    989
    990#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
    991#define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
    992#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
    993
    994#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
    995#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
    996
    997#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
    998#define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
    999#define __swp_entry_to_pmd(swp)		__pmd((swp).val)
   1000#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
   1001
   1002/*
   1003 * Ensure that there are not more swap files than can be encoded in the kernel
   1004 * PTEs.
   1005 */
   1006#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
   1007
   1008extern int kern_addr_valid(unsigned long addr);
   1009
   1010#ifdef CONFIG_ARM64_MTE
   1011
   1012#define __HAVE_ARCH_PREPARE_TO_SWAP
   1013static inline int arch_prepare_to_swap(struct page *page)
   1014{
   1015	if (system_supports_mte())
   1016		return mte_save_tags(page);
   1017	return 0;
   1018}
   1019
   1020#define __HAVE_ARCH_SWAP_INVALIDATE
   1021static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
   1022{
   1023	if (system_supports_mte())
   1024		mte_invalidate_tags(type, offset);
   1025}
   1026
   1027static inline void arch_swap_invalidate_area(int type)
   1028{
   1029	if (system_supports_mte())
   1030		mte_invalidate_tags_area(type);
   1031}
   1032
   1033#define __HAVE_ARCH_SWAP_RESTORE
   1034static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
   1035{
   1036	if (system_supports_mte() && mte_restore_tags(entry, &folio->page))
   1037		set_bit(PG_mte_tagged, &folio->flags);
   1038}
   1039
   1040#endif /* CONFIG_ARM64_MTE */
   1041
   1042/*
   1043 * On AArch64, the cache coherency is handled via the set_pte_at() function.
   1044 */
   1045static inline void update_mmu_cache(struct vm_area_struct *vma,
   1046				    unsigned long addr, pte_t *ptep)
   1047{
   1048	/*
   1049	 * We don't do anything here, so there's a very small chance of
   1050	 * us retaking a user fault which we just fixed up. The alternative
   1051	 * is doing a dsb(ishst), but that penalises the fastpath.
   1052	 */
   1053}
   1054
   1055#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
   1056
   1057#ifdef CONFIG_ARM64_PA_BITS_52
   1058#define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
   1059#else
   1060#define phys_to_ttbr(addr)	(addr)
   1061#endif
   1062
   1063/*
   1064 * On arm64 without hardware Access Flag, copying from user will fail because
   1065 * the pte is old and cannot be marked young. So we always end up with zeroed
   1066 * page after fork() + CoW for pfn mappings. We don't always have a
   1067 * hardware-managed access flag on arm64.
   1068 */
   1069static inline bool arch_faults_on_old_pte(void)
   1070{
   1071	/* The register read below requires a stable CPU to make any sense */
   1072	cant_migrate();
   1073
   1074	return !cpu_has_hw_af();
   1075}
   1076#define arch_faults_on_old_pte		arch_faults_on_old_pte
   1077
   1078/*
   1079 * Experimentally, it's cheap to set the access flag in hardware and we
   1080 * benefit from prefaulting mappings as 'old' to start with.
   1081 */
   1082static inline bool arch_wants_old_prefaulted_pte(void)
   1083{
   1084	return !arch_faults_on_old_pte();
   1085}
   1086#define arch_wants_old_prefaulted_pte	arch_wants_old_prefaulted_pte
   1087
   1088static inline bool pud_sect_supported(void)
   1089{
   1090	return PAGE_SIZE == SZ_4K;
   1091}
   1092
   1093
   1094#endif /* !__ASSEMBLY__ */
   1095
   1096#endif /* __ASM_PGTABLE_H */