pgtable.h (31563B)
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 ARM Ltd. 4 */ 5#ifndef __ASM_PGTABLE_H 6#define __ASM_PGTABLE_H 7 8#include <asm/bug.h> 9#include <asm/proc-fns.h> 10 11#include <asm/memory.h> 12#include <asm/mte.h> 13#include <asm/pgtable-hwdef.h> 14#include <asm/pgtable-prot.h> 15#include <asm/tlbflush.h> 16 17/* 18 * VMALLOC range. 19 * 20 * VMALLOC_START: beginning of the kernel vmalloc space 21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space 22 * and fixed mappings 23 */ 24#define VMALLOC_START (MODULES_END) 25#define VMALLOC_END (VMEMMAP_START - SZ_256M) 26 27#define vmemmap ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)) 28 29#ifndef __ASSEMBLY__ 30 31#include <asm/cmpxchg.h> 32#include <asm/fixmap.h> 33#include <linux/mmdebug.h> 34#include <linux/mm_types.h> 35#include <linux/sched.h> 36#include <linux/page_table_check.h> 37 38#ifdef CONFIG_TRANSPARENT_HUGEPAGE 39#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE 40 41/* Set stride and tlb_level in flush_*_tlb_range */ 42#define flush_pmd_tlb_range(vma, addr, end) \ 43 __flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2) 44#define flush_pud_tlb_range(vma, addr, end) \ 45 __flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1) 46#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 47 48/* 49 * Outside of a few very special situations (e.g. hibernation), we always 50 * use broadcast TLB invalidation instructions, therefore a spurious page 51 * fault on one CPU which has been handled concurrently by another CPU 52 * does not need to perform additional invalidation. 53 */ 54#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0) 55 56/* 57 * ZERO_PAGE is a global shared page that is always zero: used 58 * for zero-mapped memory areas etc.. 59 */ 60extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 61#define ZERO_PAGE(vaddr) phys_to_page(__pa_symbol(empty_zero_page)) 62 63#define pte_ERROR(e) \ 64 pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e)) 65 66/* 67 * Macros to convert between a physical address and its placement in a 68 * page table entry, taking care of 52-bit addresses. 69 */ 70#ifdef CONFIG_ARM64_PA_BITS_52 71static inline phys_addr_t __pte_to_phys(pte_t pte) 72{ 73 return (pte_val(pte) & PTE_ADDR_LOW) | 74 ((pte_val(pte) & PTE_ADDR_HIGH) << 36); 75} 76static inline pteval_t __phys_to_pte_val(phys_addr_t phys) 77{ 78 return (phys | (phys >> 36)) & PTE_ADDR_MASK; 79} 80#else 81#define __pte_to_phys(pte) (pte_val(pte) & PTE_ADDR_MASK) 82#define __phys_to_pte_val(phys) (phys) 83#endif 84 85#define pte_pfn(pte) (__pte_to_phys(pte) >> PAGE_SHIFT) 86#define pfn_pte(pfn,prot) \ 87 __pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 88 89#define pte_none(pte) (!pte_val(pte)) 90#define pte_clear(mm,addr,ptep) set_pte(ptep, __pte(0)) 91#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 92 93/* 94 * The following only work if pte_present(). Undefined behaviour otherwise. 95 */ 96#define pte_present(pte) (!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE))) 97#define pte_young(pte) (!!(pte_val(pte) & PTE_AF)) 98#define pte_special(pte) (!!(pte_val(pte) & PTE_SPECIAL)) 99#define pte_write(pte) (!!(pte_val(pte) & PTE_WRITE)) 100#define pte_user(pte) (!!(pte_val(pte) & PTE_USER)) 101#define pte_user_exec(pte) (!(pte_val(pte) & PTE_UXN)) 102#define pte_cont(pte) (!!(pte_val(pte) & PTE_CONT)) 103#define pte_devmap(pte) (!!(pte_val(pte) & PTE_DEVMAP)) 104#define pte_tagged(pte) ((pte_val(pte) & PTE_ATTRINDX_MASK) == \ 105 PTE_ATTRINDX(MT_NORMAL_TAGGED)) 106 107#define pte_cont_addr_end(addr, end) \ 108({ unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK; \ 109 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 110}) 111 112#define pmd_cont_addr_end(addr, end) \ 113({ unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK; \ 114 (__boundary - 1 < (end) - 1) ? __boundary : (end); \ 115}) 116 117#define pte_hw_dirty(pte) (pte_write(pte) && !(pte_val(pte) & PTE_RDONLY)) 118#define pte_sw_dirty(pte) (!!(pte_val(pte) & PTE_DIRTY)) 119#define pte_dirty(pte) (pte_sw_dirty(pte) || pte_hw_dirty(pte)) 120 121#define pte_valid(pte) (!!(pte_val(pte) & PTE_VALID)) 122/* 123 * Execute-only user mappings do not have the PTE_USER bit set. All valid 124 * kernel mappings have the PTE_UXN bit set. 125 */ 126#define pte_valid_not_user(pte) \ 127 ((pte_val(pte) & (PTE_VALID | PTE_USER | PTE_UXN)) == (PTE_VALID | PTE_UXN)) 128/* 129 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending 130 * so that we don't erroneously return false for pages that have been 131 * remapped as PROT_NONE but are yet to be flushed from the TLB. 132 * Note that we can't make any assumptions based on the state of the access 133 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the 134 * TLB. 135 */ 136#define pte_accessible(mm, pte) \ 137 (mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte)) 138 139/* 140 * p??_access_permitted() is true for valid user mappings (PTE_USER 141 * bit set, subject to the write permission check). For execute-only 142 * mappings, like PROT_EXEC with EPAN (both PTE_USER and PTE_UXN bits 143 * not set) must return false. PROT_NONE mappings do not have the 144 * PTE_VALID bit set. 145 */ 146#define pte_access_permitted(pte, write) \ 147 (((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER)) && (!(write) || pte_write(pte))) 148#define pmd_access_permitted(pmd, write) \ 149 (pte_access_permitted(pmd_pte(pmd), (write))) 150#define pud_access_permitted(pud, write) \ 151 (pte_access_permitted(pud_pte(pud), (write))) 152 153static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 154{ 155 pte_val(pte) &= ~pgprot_val(prot); 156 return pte; 157} 158 159static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 160{ 161 pte_val(pte) |= pgprot_val(prot); 162 return pte; 163} 164 165static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 166{ 167 pmd_val(pmd) &= ~pgprot_val(prot); 168 return pmd; 169} 170 171static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 172{ 173 pmd_val(pmd) |= pgprot_val(prot); 174 return pmd; 175} 176 177static inline pte_t pte_mkwrite(pte_t pte) 178{ 179 pte = set_pte_bit(pte, __pgprot(PTE_WRITE)); 180 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 181 return pte; 182} 183 184static inline pte_t pte_mkclean(pte_t pte) 185{ 186 pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY)); 187 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 188 189 return pte; 190} 191 192static inline pte_t pte_mkdirty(pte_t pte) 193{ 194 pte = set_pte_bit(pte, __pgprot(PTE_DIRTY)); 195 196 if (pte_write(pte)) 197 pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY)); 198 199 return pte; 200} 201 202static inline pte_t pte_wrprotect(pte_t pte) 203{ 204 /* 205 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY 206 * clear), set the PTE_DIRTY bit. 207 */ 208 if (pte_hw_dirty(pte)) 209 pte = pte_mkdirty(pte); 210 211 pte = clear_pte_bit(pte, __pgprot(PTE_WRITE)); 212 pte = set_pte_bit(pte, __pgprot(PTE_RDONLY)); 213 return pte; 214} 215 216static inline pte_t pte_mkold(pte_t pte) 217{ 218 return clear_pte_bit(pte, __pgprot(PTE_AF)); 219} 220 221static inline pte_t pte_mkyoung(pte_t pte) 222{ 223 return set_pte_bit(pte, __pgprot(PTE_AF)); 224} 225 226static inline pte_t pte_mkspecial(pte_t pte) 227{ 228 return set_pte_bit(pte, __pgprot(PTE_SPECIAL)); 229} 230 231static inline pte_t pte_mkcont(pte_t pte) 232{ 233 pte = set_pte_bit(pte, __pgprot(PTE_CONT)); 234 return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE)); 235} 236 237static inline pte_t pte_mknoncont(pte_t pte) 238{ 239 return clear_pte_bit(pte, __pgprot(PTE_CONT)); 240} 241 242static inline pte_t pte_mkpresent(pte_t pte) 243{ 244 return set_pte_bit(pte, __pgprot(PTE_VALID)); 245} 246 247static inline pmd_t pmd_mkcont(pmd_t pmd) 248{ 249 return __pmd(pmd_val(pmd) | PMD_SECT_CONT); 250} 251 252static inline pte_t pte_mkdevmap(pte_t pte) 253{ 254 return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL)); 255} 256 257static inline void set_pte(pte_t *ptep, pte_t pte) 258{ 259 WRITE_ONCE(*ptep, pte); 260 261 /* 262 * Only if the new pte is valid and kernel, otherwise TLB maintenance 263 * or update_mmu_cache() have the necessary barriers. 264 */ 265 if (pte_valid_not_user(pte)) { 266 dsb(ishst); 267 isb(); 268 } 269} 270 271extern void __sync_icache_dcache(pte_t pteval); 272 273/* 274 * PTE bits configuration in the presence of hardware Dirty Bit Management 275 * (PTE_WRITE == PTE_DBM): 276 * 277 * Dirty Writable | PTE_RDONLY PTE_WRITE PTE_DIRTY (sw) 278 * 0 0 | 1 0 0 279 * 0 1 | 1 1 0 280 * 1 0 | 1 0 1 281 * 1 1 | 0 1 x 282 * 283 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via 284 * the page fault mechanism. Checking the dirty status of a pte becomes: 285 * 286 * PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY) 287 */ 288 289static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep, 290 pte_t pte) 291{ 292 pte_t old_pte; 293 294 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 295 return; 296 297 old_pte = READ_ONCE(*ptep); 298 299 if (!pte_valid(old_pte) || !pte_valid(pte)) 300 return; 301 if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1) 302 return; 303 304 /* 305 * Check for potential race with hardware updates of the pte 306 * (ptep_set_access_flags safely changes valid ptes without going 307 * through an invalid entry). 308 */ 309 VM_WARN_ONCE(!pte_young(pte), 310 "%s: racy access flag clearing: 0x%016llx -> 0x%016llx", 311 __func__, pte_val(old_pte), pte_val(pte)); 312 VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte), 313 "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx", 314 __func__, pte_val(old_pte), pte_val(pte)); 315} 316 317static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, 318 pte_t *ptep, pte_t pte) 319{ 320 if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte)) 321 __sync_icache_dcache(pte); 322 323 /* 324 * If the PTE would provide user space access to the tags associated 325 * with it then ensure that the MTE tags are synchronised. Although 326 * pte_access_permitted() returns false for exec only mappings, they 327 * don't expose tags (instruction fetches don't check tags). 328 */ 329 if (system_supports_mte() && pte_access_permitted(pte, false) && 330 !pte_special(pte)) { 331 pte_t old_pte = READ_ONCE(*ptep); 332 /* 333 * We only need to synchronise if the new PTE has tags enabled 334 * or if swapping in (in which case another mapping may have 335 * set tags in the past even if this PTE isn't tagged). 336 * (!pte_none() && !pte_present()) is an open coded version of 337 * is_swap_pte() 338 */ 339 if (pte_tagged(pte) || (!pte_none(old_pte) && !pte_present(old_pte))) 340 mte_sync_tags(old_pte, pte); 341 } 342 343 __check_racy_pte_update(mm, ptep, pte); 344 345 set_pte(ptep, pte); 346} 347 348static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 349 pte_t *ptep, pte_t pte) 350{ 351 page_table_check_pte_set(mm, addr, ptep, pte); 352 return __set_pte_at(mm, addr, ptep, pte); 353} 354 355/* 356 * Huge pte definitions. 357 */ 358#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT)) 359 360/* 361 * Hugetlb definitions. 362 */ 363#define HUGE_MAX_HSTATE 4 364#define HPAGE_SHIFT PMD_SHIFT 365#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT) 366#define HPAGE_MASK (~(HPAGE_SIZE - 1)) 367#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT) 368 369static inline pte_t pgd_pte(pgd_t pgd) 370{ 371 return __pte(pgd_val(pgd)); 372} 373 374static inline pte_t p4d_pte(p4d_t p4d) 375{ 376 return __pte(p4d_val(p4d)); 377} 378 379static inline pte_t pud_pte(pud_t pud) 380{ 381 return __pte(pud_val(pud)); 382} 383 384static inline pud_t pte_pud(pte_t pte) 385{ 386 return __pud(pte_val(pte)); 387} 388 389static inline pmd_t pud_pmd(pud_t pud) 390{ 391 return __pmd(pud_val(pud)); 392} 393 394static inline pte_t pmd_pte(pmd_t pmd) 395{ 396 return __pte(pmd_val(pmd)); 397} 398 399static inline pmd_t pte_pmd(pte_t pte) 400{ 401 return __pmd(pte_val(pte)); 402} 403 404static inline pgprot_t mk_pud_sect_prot(pgprot_t prot) 405{ 406 return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT); 407} 408 409static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot) 410{ 411 return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT); 412} 413 414#define __HAVE_ARCH_PTE_SWP_EXCLUSIVE 415static inline pte_t pte_swp_mkexclusive(pte_t pte) 416{ 417 return set_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 418} 419 420static inline int pte_swp_exclusive(pte_t pte) 421{ 422 return pte_val(pte) & PTE_SWP_EXCLUSIVE; 423} 424 425static inline pte_t pte_swp_clear_exclusive(pte_t pte) 426{ 427 return clear_pte_bit(pte, __pgprot(PTE_SWP_EXCLUSIVE)); 428} 429 430#ifdef CONFIG_NUMA_BALANCING 431/* 432 * See the comment in include/linux/pgtable.h 433 */ 434static inline int pte_protnone(pte_t pte) 435{ 436 return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE; 437} 438 439static inline int pmd_protnone(pmd_t pmd) 440{ 441 return pte_protnone(pmd_pte(pmd)); 442} 443#endif 444 445#define pmd_present_invalid(pmd) (!!(pmd_val(pmd) & PMD_PRESENT_INVALID)) 446 447static inline int pmd_present(pmd_t pmd) 448{ 449 return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd); 450} 451 452/* 453 * THP definitions. 454 */ 455 456#ifdef CONFIG_TRANSPARENT_HUGEPAGE 457static inline int pmd_trans_huge(pmd_t pmd) 458{ 459 return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 460} 461#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 462 463#define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) 464#define pmd_young(pmd) pte_young(pmd_pte(pmd)) 465#define pmd_valid(pmd) pte_valid(pmd_pte(pmd)) 466#define pmd_user(pmd) pte_user(pmd_pte(pmd)) 467#define pmd_user_exec(pmd) pte_user_exec(pmd_pte(pmd)) 468#define pmd_cont(pmd) pte_cont(pmd_pte(pmd)) 469#define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) 470#define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) 471#define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) 472#define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) 473#define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) 474#define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) 475 476static inline pmd_t pmd_mkinvalid(pmd_t pmd) 477{ 478 pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID)); 479 pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID)); 480 481 return pmd; 482} 483 484#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd)) 485 486#define pmd_write(pmd) pte_write(pmd_pte(pmd)) 487 488#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT)) 489 490#ifdef CONFIG_TRANSPARENT_HUGEPAGE 491#define pmd_devmap(pmd) pte_devmap(pmd_pte(pmd)) 492#endif 493static inline pmd_t pmd_mkdevmap(pmd_t pmd) 494{ 495 return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP))); 496} 497 498#define __pmd_to_phys(pmd) __pte_to_phys(pmd_pte(pmd)) 499#define __phys_to_pmd_val(phys) __phys_to_pte_val(phys) 500#define pmd_pfn(pmd) ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT) 501#define pfn_pmd(pfn,prot) __pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 502#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot) 503 504#define pud_young(pud) pte_young(pud_pte(pud)) 505#define pud_mkyoung(pud) pte_pud(pte_mkyoung(pud_pte(pud))) 506#define pud_write(pud) pte_write(pud_pte(pud)) 507 508#define pud_mkhuge(pud) (__pud(pud_val(pud) & ~PUD_TABLE_BIT)) 509 510#define __pud_to_phys(pud) __pte_to_phys(pud_pte(pud)) 511#define __phys_to_pud_val(phys) __phys_to_pte_val(phys) 512#define pud_pfn(pud) ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT) 513#define pfn_pud(pfn,prot) __pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)) 514 515static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 516 pmd_t *pmdp, pmd_t pmd) 517{ 518 page_table_check_pmd_set(mm, addr, pmdp, pmd); 519 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 520} 521 522static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 523 pud_t *pudp, pud_t pud) 524{ 525 page_table_check_pud_set(mm, addr, pudp, pud); 526 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 527} 528 529#define __p4d_to_phys(p4d) __pte_to_phys(p4d_pte(p4d)) 530#define __phys_to_p4d_val(phys) __phys_to_pte_val(phys) 531 532#define __pgd_to_phys(pgd) __pte_to_phys(pgd_pte(pgd)) 533#define __phys_to_pgd_val(phys) __phys_to_pte_val(phys) 534 535#define __pgprot_modify(prot,mask,bits) \ 536 __pgprot((pgprot_val(prot) & ~(mask)) | (bits)) 537 538#define pgprot_nx(prot) \ 539 __pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN) 540 541/* 542 * Mark the prot value as uncacheable and unbufferable. 543 */ 544#define pgprot_noncached(prot) \ 545 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN) 546#define pgprot_writecombine(prot) \ 547 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 548#define pgprot_device(prot) \ 549 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN) 550#define pgprot_tagged(prot) \ 551 __pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED)) 552#define pgprot_mhp pgprot_tagged 553/* 554 * DMA allocations for non-coherent devices use what the Arm architecture calls 555 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses 556 * and merging of writes. This is different from "Device-nGnR[nE]" memory which 557 * is intended for MMIO and thus forbids speculation, preserves access size, 558 * requires strict alignment and can also force write responses to come from the 559 * endpoint. 560 */ 561#define pgprot_dmacoherent(prot) \ 562 __pgprot_modify(prot, PTE_ATTRINDX_MASK, \ 563 PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN) 564 565#define __HAVE_PHYS_MEM_ACCESS_PROT 566struct file; 567extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 568 unsigned long size, pgprot_t vma_prot); 569 570#define pmd_none(pmd) (!pmd_val(pmd)) 571 572#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 573 PMD_TYPE_TABLE) 574#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \ 575 PMD_TYPE_SECT) 576#define pmd_leaf(pmd) (pmd_present(pmd) && !pmd_table(pmd)) 577#define pmd_bad(pmd) (!pmd_table(pmd)) 578 579#define pmd_leaf_size(pmd) (pmd_cont(pmd) ? CONT_PMD_SIZE : PMD_SIZE) 580#define pte_leaf_size(pte) (pte_cont(pte) ? CONT_PTE_SIZE : PAGE_SIZE) 581 582#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3 583static inline bool pud_sect(pud_t pud) { return false; } 584static inline bool pud_table(pud_t pud) { return true; } 585#else 586#define pud_sect(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 587 PUD_TYPE_SECT) 588#define pud_table(pud) ((pud_val(pud) & PUD_TYPE_MASK) == \ 589 PUD_TYPE_TABLE) 590#endif 591 592extern pgd_t init_pg_dir[PTRS_PER_PGD]; 593extern pgd_t init_pg_end[]; 594extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 595extern pgd_t idmap_pg_dir[PTRS_PER_PGD]; 596extern pgd_t idmap_pg_end[]; 597extern pgd_t tramp_pg_dir[PTRS_PER_PGD]; 598extern pgd_t reserved_pg_dir[PTRS_PER_PGD]; 599 600extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd); 601 602static inline bool in_swapper_pgdir(void *addr) 603{ 604 return ((unsigned long)addr & PAGE_MASK) == 605 ((unsigned long)swapper_pg_dir & PAGE_MASK); 606} 607 608static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 609{ 610#ifdef __PAGETABLE_PMD_FOLDED 611 if (in_swapper_pgdir(pmdp)) { 612 set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd))); 613 return; 614 } 615#endif /* __PAGETABLE_PMD_FOLDED */ 616 617 WRITE_ONCE(*pmdp, pmd); 618 619 if (pmd_valid(pmd)) { 620 dsb(ishst); 621 isb(); 622 } 623} 624 625static inline void pmd_clear(pmd_t *pmdp) 626{ 627 set_pmd(pmdp, __pmd(0)); 628} 629 630static inline phys_addr_t pmd_page_paddr(pmd_t pmd) 631{ 632 return __pmd_to_phys(pmd); 633} 634 635static inline unsigned long pmd_page_vaddr(pmd_t pmd) 636{ 637 return (unsigned long)__va(pmd_page_paddr(pmd)); 638} 639 640/* Find an entry in the third-level page table. */ 641#define pte_offset_phys(dir,addr) (pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t)) 642 643#define pte_set_fixmap(addr) ((pte_t *)set_fixmap_offset(FIX_PTE, addr)) 644#define pte_set_fixmap_offset(pmd, addr) pte_set_fixmap(pte_offset_phys(pmd, addr)) 645#define pte_clear_fixmap() clear_fixmap(FIX_PTE) 646 647#define pmd_page(pmd) phys_to_page(__pmd_to_phys(pmd)) 648 649/* use ONLY for statically allocated translation tables */ 650#define pte_offset_kimg(dir,addr) ((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr)))) 651 652/* 653 * Conversion functions: convert a page and protection to a page entry, 654 * and a page entry and page directory to the page they refer to. 655 */ 656#define mk_pte(page,prot) pfn_pte(page_to_pfn(page),prot) 657 658#if CONFIG_PGTABLE_LEVELS > 2 659 660#define pmd_ERROR(e) \ 661 pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e)) 662 663#define pud_none(pud) (!pud_val(pud)) 664#define pud_bad(pud) (!pud_table(pud)) 665#define pud_present(pud) pte_present(pud_pte(pud)) 666#define pud_leaf(pud) (pud_present(pud) && !pud_table(pud)) 667#define pud_valid(pud) pte_valid(pud_pte(pud)) 668#define pud_user(pud) pte_user(pud_pte(pud)) 669 670 671static inline void set_pud(pud_t *pudp, pud_t pud) 672{ 673#ifdef __PAGETABLE_PUD_FOLDED 674 if (in_swapper_pgdir(pudp)) { 675 set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud))); 676 return; 677 } 678#endif /* __PAGETABLE_PUD_FOLDED */ 679 680 WRITE_ONCE(*pudp, pud); 681 682 if (pud_valid(pud)) { 683 dsb(ishst); 684 isb(); 685 } 686} 687 688static inline void pud_clear(pud_t *pudp) 689{ 690 set_pud(pudp, __pud(0)); 691} 692 693static inline phys_addr_t pud_page_paddr(pud_t pud) 694{ 695 return __pud_to_phys(pud); 696} 697 698static inline pmd_t *pud_pgtable(pud_t pud) 699{ 700 return (pmd_t *)__va(pud_page_paddr(pud)); 701} 702 703/* Find an entry in the second-level page table. */ 704#define pmd_offset_phys(dir, addr) (pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t)) 705 706#define pmd_set_fixmap(addr) ((pmd_t *)set_fixmap_offset(FIX_PMD, addr)) 707#define pmd_set_fixmap_offset(pud, addr) pmd_set_fixmap(pmd_offset_phys(pud, addr)) 708#define pmd_clear_fixmap() clear_fixmap(FIX_PMD) 709 710#define pud_page(pud) phys_to_page(__pud_to_phys(pud)) 711 712/* use ONLY for statically allocated translation tables */ 713#define pmd_offset_kimg(dir,addr) ((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr)))) 714 715#else 716 717#define pud_page_paddr(pud) ({ BUILD_BUG(); 0; }) 718 719/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */ 720#define pmd_set_fixmap(addr) NULL 721#define pmd_set_fixmap_offset(pudp, addr) ((pmd_t *)pudp) 722#define pmd_clear_fixmap() 723 724#define pmd_offset_kimg(dir,addr) ((pmd_t *)dir) 725 726#endif /* CONFIG_PGTABLE_LEVELS > 2 */ 727 728#if CONFIG_PGTABLE_LEVELS > 3 729 730#define pud_ERROR(e) \ 731 pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e)) 732 733#define p4d_none(p4d) (!p4d_val(p4d)) 734#define p4d_bad(p4d) (!(p4d_val(p4d) & 2)) 735#define p4d_present(p4d) (p4d_val(p4d)) 736 737static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 738{ 739 if (in_swapper_pgdir(p4dp)) { 740 set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d))); 741 return; 742 } 743 744 WRITE_ONCE(*p4dp, p4d); 745 dsb(ishst); 746 isb(); 747} 748 749static inline void p4d_clear(p4d_t *p4dp) 750{ 751 set_p4d(p4dp, __p4d(0)); 752} 753 754static inline phys_addr_t p4d_page_paddr(p4d_t p4d) 755{ 756 return __p4d_to_phys(p4d); 757} 758 759static inline pud_t *p4d_pgtable(p4d_t p4d) 760{ 761 return (pud_t *)__va(p4d_page_paddr(p4d)); 762} 763 764/* Find an entry in the first-level page table. */ 765#define pud_offset_phys(dir, addr) (p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t)) 766 767#define pud_set_fixmap(addr) ((pud_t *)set_fixmap_offset(FIX_PUD, addr)) 768#define pud_set_fixmap_offset(p4d, addr) pud_set_fixmap(pud_offset_phys(p4d, addr)) 769#define pud_clear_fixmap() clear_fixmap(FIX_PUD) 770 771#define p4d_page(p4d) pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d))) 772 773/* use ONLY for statically allocated translation tables */ 774#define pud_offset_kimg(dir,addr) ((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr)))) 775 776#else 777 778#define p4d_page_paddr(p4d) ({ BUILD_BUG(); 0;}) 779#define pgd_page_paddr(pgd) ({ BUILD_BUG(); 0;}) 780 781/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */ 782#define pud_set_fixmap(addr) NULL 783#define pud_set_fixmap_offset(pgdp, addr) ((pud_t *)pgdp) 784#define pud_clear_fixmap() 785 786#define pud_offset_kimg(dir,addr) ((pud_t *)dir) 787 788#endif /* CONFIG_PGTABLE_LEVELS > 3 */ 789 790#define pgd_ERROR(e) \ 791 pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e)) 792 793#define pgd_set_fixmap(addr) ((pgd_t *)set_fixmap_offset(FIX_PGD, addr)) 794#define pgd_clear_fixmap() clear_fixmap(FIX_PGD) 795 796static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 797{ 798 /* 799 * Normal and Normal-Tagged are two different memory types and indices 800 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK. 801 */ 802 const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY | 803 PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP | 804 PTE_ATTRINDX_MASK; 805 /* preserve the hardware dirty information */ 806 if (pte_hw_dirty(pte)) 807 pte = pte_mkdirty(pte); 808 pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask); 809 return pte; 810} 811 812static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 813{ 814 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 815} 816 817#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 818extern int ptep_set_access_flags(struct vm_area_struct *vma, 819 unsigned long address, pte_t *ptep, 820 pte_t entry, int dirty); 821 822#ifdef CONFIG_TRANSPARENT_HUGEPAGE 823#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 824static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 825 unsigned long address, pmd_t *pmdp, 826 pmd_t entry, int dirty) 827{ 828 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 829} 830 831static inline int pud_devmap(pud_t pud) 832{ 833 return 0; 834} 835 836static inline int pgd_devmap(pgd_t pgd) 837{ 838 return 0; 839} 840#endif 841 842#ifdef CONFIG_PAGE_TABLE_CHECK 843static inline bool pte_user_accessible_page(pte_t pte) 844{ 845 return pte_present(pte) && (pte_user(pte) || pte_user_exec(pte)); 846} 847 848static inline bool pmd_user_accessible_page(pmd_t pmd) 849{ 850 return pmd_present(pmd) && (pmd_user(pmd) || pmd_user_exec(pmd)); 851} 852 853static inline bool pud_user_accessible_page(pud_t pud) 854{ 855 return pud_present(pud) && pud_user(pud); 856} 857#endif 858 859/* 860 * Atomic pte/pmd modifications. 861 */ 862#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 863static inline int __ptep_test_and_clear_young(pte_t *ptep) 864{ 865 pte_t old_pte, pte; 866 867 pte = READ_ONCE(*ptep); 868 do { 869 old_pte = pte; 870 pte = pte_mkold(pte); 871 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 872 pte_val(old_pte), pte_val(pte)); 873 } while (pte_val(pte) != pte_val(old_pte)); 874 875 return pte_young(pte); 876} 877 878static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 879 unsigned long address, 880 pte_t *ptep) 881{ 882 return __ptep_test_and_clear_young(ptep); 883} 884 885#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 886static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 887 unsigned long address, pte_t *ptep) 888{ 889 int young = ptep_test_and_clear_young(vma, address, ptep); 890 891 if (young) { 892 /* 893 * We can elide the trailing DSB here since the worst that can 894 * happen is that a CPU continues to use the young entry in its 895 * TLB and we mistakenly reclaim the associated page. The 896 * window for such an event is bounded by the next 897 * context-switch, which provides a DSB to complete the TLB 898 * invalidation. 899 */ 900 flush_tlb_page_nosync(vma, address); 901 } 902 903 return young; 904} 905 906#ifdef CONFIG_TRANSPARENT_HUGEPAGE 907#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 908static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 909 unsigned long address, 910 pmd_t *pmdp) 911{ 912 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 913} 914#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 915 916#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 917static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 918 unsigned long address, pte_t *ptep) 919{ 920 pte_t pte = __pte(xchg_relaxed(&pte_val(*ptep), 0)); 921 922 page_table_check_pte_clear(mm, address, pte); 923 924 return pte; 925} 926 927#ifdef CONFIG_TRANSPARENT_HUGEPAGE 928#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 929static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 930 unsigned long address, pmd_t *pmdp) 931{ 932 pmd_t pmd = __pmd(xchg_relaxed(&pmd_val(*pmdp), 0)); 933 934 page_table_check_pmd_clear(mm, address, pmd); 935 936 return pmd; 937} 938#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 939 940/* 941 * ptep_set_wrprotect - mark read-only while trasferring potential hardware 942 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit. 943 */ 944#define __HAVE_ARCH_PTEP_SET_WRPROTECT 945static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep) 946{ 947 pte_t old_pte, pte; 948 949 pte = READ_ONCE(*ptep); 950 do { 951 old_pte = pte; 952 pte = pte_wrprotect(pte); 953 pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep), 954 pte_val(old_pte), pte_val(pte)); 955 } while (pte_val(pte) != pte_val(old_pte)); 956} 957 958#ifdef CONFIG_TRANSPARENT_HUGEPAGE 959#define __HAVE_ARCH_PMDP_SET_WRPROTECT 960static inline void pmdp_set_wrprotect(struct mm_struct *mm, 961 unsigned long address, pmd_t *pmdp) 962{ 963 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 964} 965 966#define pmdp_establish pmdp_establish 967static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 968 unsigned long address, pmd_t *pmdp, pmd_t pmd) 969{ 970 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 971 return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd))); 972} 973#endif 974 975/* 976 * Encode and decode a swap entry: 977 * bits 0-1: present (must be zero) 978 * bits 2: remember PG_anon_exclusive 979 * bits 3-7: swap type 980 * bits 8-57: swap offset 981 * bit 58: PTE_PROT_NONE (must be zero) 982 */ 983#define __SWP_TYPE_SHIFT 3 984#define __SWP_TYPE_BITS 5 985#define __SWP_OFFSET_BITS 50 986#define __SWP_TYPE_MASK ((1 << __SWP_TYPE_BITS) - 1) 987#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 988#define __SWP_OFFSET_MASK ((1UL << __SWP_OFFSET_BITS) - 1) 989 990#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 991#define __swp_offset(x) (((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK) 992#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) }) 993 994#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 995#define __swp_entry_to_pte(swp) ((pte_t) { (swp).val }) 996 997#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 998#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 999#define __swp_entry_to_pmd(swp) __pmd((swp).val) 1000#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 1001 1002/* 1003 * Ensure that there are not more swap files than can be encoded in the kernel 1004 * PTEs. 1005 */ 1006#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 1007 1008extern int kern_addr_valid(unsigned long addr); 1009 1010#ifdef CONFIG_ARM64_MTE 1011 1012#define __HAVE_ARCH_PREPARE_TO_SWAP 1013static inline int arch_prepare_to_swap(struct page *page) 1014{ 1015 if (system_supports_mte()) 1016 return mte_save_tags(page); 1017 return 0; 1018} 1019 1020#define __HAVE_ARCH_SWAP_INVALIDATE 1021static inline void arch_swap_invalidate_page(int type, pgoff_t offset) 1022{ 1023 if (system_supports_mte()) 1024 mte_invalidate_tags(type, offset); 1025} 1026 1027static inline void arch_swap_invalidate_area(int type) 1028{ 1029 if (system_supports_mte()) 1030 mte_invalidate_tags_area(type); 1031} 1032 1033#define __HAVE_ARCH_SWAP_RESTORE 1034static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio) 1035{ 1036 if (system_supports_mte() && mte_restore_tags(entry, &folio->page)) 1037 set_bit(PG_mte_tagged, &folio->flags); 1038} 1039 1040#endif /* CONFIG_ARM64_MTE */ 1041 1042/* 1043 * On AArch64, the cache coherency is handled via the set_pte_at() function. 1044 */ 1045static inline void update_mmu_cache(struct vm_area_struct *vma, 1046 unsigned long addr, pte_t *ptep) 1047{ 1048 /* 1049 * We don't do anything here, so there's a very small chance of 1050 * us retaking a user fault which we just fixed up. The alternative 1051 * is doing a dsb(ishst), but that penalises the fastpath. 1052 */ 1053} 1054 1055#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0) 1056 1057#ifdef CONFIG_ARM64_PA_BITS_52 1058#define phys_to_ttbr(addr) (((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52) 1059#else 1060#define phys_to_ttbr(addr) (addr) 1061#endif 1062 1063/* 1064 * On arm64 without hardware Access Flag, copying from user will fail because 1065 * the pte is old and cannot be marked young. So we always end up with zeroed 1066 * page after fork() + CoW for pfn mappings. We don't always have a 1067 * hardware-managed access flag on arm64. 1068 */ 1069static inline bool arch_faults_on_old_pte(void) 1070{ 1071 /* The register read below requires a stable CPU to make any sense */ 1072 cant_migrate(); 1073 1074 return !cpu_has_hw_af(); 1075} 1076#define arch_faults_on_old_pte arch_faults_on_old_pte 1077 1078/* 1079 * Experimentally, it's cheap to set the access flag in hardware and we 1080 * benefit from prefaulting mappings as 'old' to start with. 1081 */ 1082static inline bool arch_wants_old_prefaulted_pte(void) 1083{ 1084 return !arch_faults_on_old_pte(); 1085} 1086#define arch_wants_old_prefaulted_pte arch_wants_old_prefaulted_pte 1087 1088static inline bool pud_sect_supported(void) 1089{ 1090 return PAGE_SIZE == SZ_4K; 1091} 1092 1093 1094#endif /* !__ASSEMBLY__ */ 1095 1096#endif /* __ASM_PGTABLE_H */