cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

head.S (25621B)


      1/* SPDX-License-Identifier: GPL-2.0-only */
      2/*
      3 * Low-level CPU initialisation
      4 * Based on arch/arm/kernel/head.S
      5 *
      6 * Copyright (C) 1994-2002 Russell King
      7 * Copyright (C) 2003-2012 ARM Ltd.
      8 * Authors:	Catalin Marinas <catalin.marinas@arm.com>
      9 *		Will Deacon <will.deacon@arm.com>
     10 */
     11
     12#include <linux/linkage.h>
     13#include <linux/init.h>
     14#include <linux/pgtable.h>
     15
     16#include <asm/asm_pointer_auth.h>
     17#include <asm/assembler.h>
     18#include <asm/boot.h>
     19#include <asm/bug.h>
     20#include <asm/ptrace.h>
     21#include <asm/asm-offsets.h>
     22#include <asm/cache.h>
     23#include <asm/cputype.h>
     24#include <asm/el2_setup.h>
     25#include <asm/elf.h>
     26#include <asm/image.h>
     27#include <asm/kernel-pgtable.h>
     28#include <asm/kvm_arm.h>
     29#include <asm/memory.h>
     30#include <asm/pgtable-hwdef.h>
     31#include <asm/page.h>
     32#include <asm/scs.h>
     33#include <asm/smp.h>
     34#include <asm/sysreg.h>
     35#include <asm/thread_info.h>
     36#include <asm/virt.h>
     37
     38#include "efi-header.S"
     39
     40#define __PHYS_OFFSET	KERNEL_START
     41
     42#if (PAGE_OFFSET & 0x1fffff) != 0
     43#error PAGE_OFFSET must be at least 2MB aligned
     44#endif
     45
     46/*
     47 * Kernel startup entry point.
     48 * ---------------------------
     49 *
     50 * The requirements are:
     51 *   MMU = off, D-cache = off, I-cache = on or off,
     52 *   x0 = physical address to the FDT blob.
     53 *
     54 * This code is mostly position independent so you call this at
     55 * __pa(PAGE_OFFSET).
     56 *
     57 * Note that the callee-saved registers are used for storing variables
     58 * that are useful before the MMU is enabled. The allocations are described
     59 * in the entry routines.
     60 */
     61	__HEAD
     62	/*
     63	 * DO NOT MODIFY. Image header expected by Linux boot-loaders.
     64	 */
     65	efi_signature_nop			// special NOP to identity as PE/COFF executable
     66	b	primary_entry			// branch to kernel start, magic
     67	.quad	0				// Image load offset from start of RAM, little-endian
     68	le64sym	_kernel_size_le			// Effective size of kernel image, little-endian
     69	le64sym	_kernel_flags_le		// Informative flags, little-endian
     70	.quad	0				// reserved
     71	.quad	0				// reserved
     72	.quad	0				// reserved
     73	.ascii	ARM64_IMAGE_MAGIC		// Magic number
     74	.long	.Lpe_header_offset		// Offset to the PE header.
     75
     76	__EFI_PE_HEADER
     77
     78	__INIT
     79
     80	/*
     81	 * The following callee saved general purpose registers are used on the
     82	 * primary lowlevel boot path:
     83	 *
     84	 *  Register   Scope                      Purpose
     85	 *  x21        primary_entry() .. start_kernel()        FDT pointer passed at boot in x0
     86	 *  x23        primary_entry() .. start_kernel()        physical misalignment/KASLR offset
     87	 *  x28        __create_page_tables()                   callee preserved temp register
     88	 *  x19/x20    __primary_switch()                       callee preserved temp registers
     89	 *  x24        __primary_switch() .. relocate_kernel()  current RELR displacement
     90	 */
     91SYM_CODE_START(primary_entry)
     92	bl	preserve_boot_args
     93	bl	init_kernel_el			// w0=cpu_boot_mode
     94	adrp	x23, __PHYS_OFFSET
     95	and	x23, x23, MIN_KIMG_ALIGN - 1	// KASLR offset, defaults to 0
     96	bl	set_cpu_boot_mode_flag
     97	bl	__create_page_tables
     98	/*
     99	 * The following calls CPU setup code, see arch/arm64/mm/proc.S for
    100	 * details.
    101	 * On return, the CPU will be ready for the MMU to be turned on and
    102	 * the TCR will have been set.
    103	 */
    104	bl	__cpu_setup			// initialise processor
    105	b	__primary_switch
    106SYM_CODE_END(primary_entry)
    107
    108/*
    109 * Preserve the arguments passed by the bootloader in x0 .. x3
    110 */
    111SYM_CODE_START_LOCAL(preserve_boot_args)
    112	mov	x21, x0				// x21=FDT
    113
    114	adr_l	x0, boot_args			// record the contents of
    115	stp	x21, x1, [x0]			// x0 .. x3 at kernel entry
    116	stp	x2, x3, [x0, #16]
    117
    118	dmb	sy				// needed before dc ivac with
    119						// MMU off
    120
    121	add	x1, x0, #0x20			// 4 x 8 bytes
    122	b	dcache_inval_poc		// tail call
    123SYM_CODE_END(preserve_boot_args)
    124
    125/*
    126 * Macro to create a table entry to the next page.
    127 *
    128 *	tbl:	page table address
    129 *	virt:	virtual address
    130 *	shift:	#imm page table shift
    131 *	ptrs:	#imm pointers per table page
    132 *
    133 * Preserves:	virt
    134 * Corrupts:	ptrs, tmp1, tmp2
    135 * Returns:	tbl -> next level table page address
    136 */
    137	.macro	create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2
    138	add	\tmp1, \tbl, #PAGE_SIZE
    139	phys_to_pte \tmp2, \tmp1
    140	orr	\tmp2, \tmp2, #PMD_TYPE_TABLE	// address of next table and entry type
    141	lsr	\tmp1, \virt, #\shift
    142	sub	\ptrs, \ptrs, #1
    143	and	\tmp1, \tmp1, \ptrs		// table index
    144	str	\tmp2, [\tbl, \tmp1, lsl #3]
    145	add	\tbl, \tbl, #PAGE_SIZE		// next level table page
    146	.endm
    147
    148/*
    149 * Macro to populate page table entries, these entries can be pointers to the next level
    150 * or last level entries pointing to physical memory.
    151 *
    152 *	tbl:	page table address
    153 *	rtbl:	pointer to page table or physical memory
    154 *	index:	start index to write
    155 *	eindex:	end index to write - [index, eindex] written to
    156 *	flags:	flags for pagetable entry to or in
    157 *	inc:	increment to rtbl between each entry
    158 *	tmp1:	temporary variable
    159 *
    160 * Preserves:	tbl, eindex, flags, inc
    161 * Corrupts:	index, tmp1
    162 * Returns:	rtbl
    163 */
    164	.macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1
    165.Lpe\@:	phys_to_pte \tmp1, \rtbl
    166	orr	\tmp1, \tmp1, \flags	// tmp1 = table entry
    167	str	\tmp1, [\tbl, \index, lsl #3]
    168	add	\rtbl, \rtbl, \inc	// rtbl = pa next level
    169	add	\index, \index, #1
    170	cmp	\index, \eindex
    171	b.ls	.Lpe\@
    172	.endm
    173
    174/*
    175 * Compute indices of table entries from virtual address range. If multiple entries
    176 * were needed in the previous page table level then the next page table level is assumed
    177 * to be composed of multiple pages. (This effectively scales the end index).
    178 *
    179 *	vstart:	virtual address of start of range
    180 *	vend:	virtual address of end of range - we map [vstart, vend]
    181 *	shift:	shift used to transform virtual address into index
    182 *	ptrs:	number of entries in page table
    183 *	istart:	index in table corresponding to vstart
    184 *	iend:	index in table corresponding to vend
    185 *	count:	On entry: how many extra entries were required in previous level, scales
    186 *			  our end index.
    187 *		On exit: returns how many extra entries required for next page table level
    188 *
    189 * Preserves:	vstart, vend, shift, ptrs
    190 * Returns:	istart, iend, count
    191 */
    192	.macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count
    193	lsr	\iend, \vend, \shift
    194	mov	\istart, \ptrs
    195	sub	\istart, \istart, #1
    196	and	\iend, \iend, \istart	// iend = (vend >> shift) & (ptrs - 1)
    197	mov	\istart, \ptrs
    198	mul	\istart, \istart, \count
    199	add	\iend, \iend, \istart	// iend += count * ptrs
    200					// our entries span multiple tables
    201
    202	lsr	\istart, \vstart, \shift
    203	mov	\count, \ptrs
    204	sub	\count, \count, #1
    205	and	\istart, \istart, \count
    206
    207	sub	\count, \iend, \istart
    208	.endm
    209
    210/*
    211 * Map memory for specified virtual address range. Each level of page table needed supports
    212 * multiple entries. If a level requires n entries the next page table level is assumed to be
    213 * formed from n pages.
    214 *
    215 *	tbl:	location of page table
    216 *	rtbl:	address to be used for first level page table entry (typically tbl + PAGE_SIZE)
    217 *	vstart:	virtual address of start of range
    218 *	vend:	virtual address of end of range - we map [vstart, vend - 1]
    219 *	flags:	flags to use to map last level entries
    220 *	phys:	physical address corresponding to vstart - physical memory is contiguous
    221 *	pgds:	the number of pgd entries
    222 *
    223 * Temporaries:	istart, iend, tmp, count, sv - these need to be different registers
    224 * Preserves:	vstart, flags
    225 * Corrupts:	tbl, rtbl, vend, istart, iend, tmp, count, sv
    226 */
    227	.macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv
    228	sub \vend, \vend, #1
    229	add \rtbl, \tbl, #PAGE_SIZE
    230	mov \sv, \rtbl
    231	mov \count, #0
    232	compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count
    233	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
    234	mov \tbl, \sv
    235	mov \sv, \rtbl
    236
    237#if SWAPPER_PGTABLE_LEVELS > 3
    238	compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count
    239	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
    240	mov \tbl, \sv
    241	mov \sv, \rtbl
    242#endif
    243
    244#if SWAPPER_PGTABLE_LEVELS > 2
    245	compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count
    246	populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp
    247	mov \tbl, \sv
    248#endif
    249
    250	compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count
    251	bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1
    252	populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp
    253	.endm
    254
    255/*
    256 * Setup the initial page tables. We only setup the barest amount which is
    257 * required to get the kernel running. The following sections are required:
    258 *   - identity mapping to enable the MMU (low address, TTBR0)
    259 *   - first few MB of the kernel linear mapping to jump to once the MMU has
    260 *     been enabled
    261 */
    262SYM_FUNC_START_LOCAL(__create_page_tables)
    263	mov	x28, lr
    264
    265	/*
    266	 * Invalidate the init page tables to avoid potential dirty cache lines
    267	 * being evicted. Other page tables are allocated in rodata as part of
    268	 * the kernel image, and thus are clean to the PoC per the boot
    269	 * protocol.
    270	 */
    271	adrp	x0, init_pg_dir
    272	adrp	x1, init_pg_end
    273	bl	dcache_inval_poc
    274
    275	/*
    276	 * Clear the init page tables.
    277	 */
    278	adrp	x0, init_pg_dir
    279	adrp	x1, init_pg_end
    280	sub	x1, x1, x0
    2811:	stp	xzr, xzr, [x0], #16
    282	stp	xzr, xzr, [x0], #16
    283	stp	xzr, xzr, [x0], #16
    284	stp	xzr, xzr, [x0], #16
    285	subs	x1, x1, #64
    286	b.ne	1b
    287
    288	mov	x7, SWAPPER_MM_MMUFLAGS
    289
    290	/*
    291	 * Create the identity mapping.
    292	 */
    293	adrp	x0, idmap_pg_dir
    294	adrp	x3, __idmap_text_start		// __pa(__idmap_text_start)
    295
    296#ifdef CONFIG_ARM64_VA_BITS_52
    297	mrs_s	x6, SYS_ID_AA64MMFR2_EL1
    298	and	x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
    299	mov	x5, #52
    300	cbnz	x6, 1f
    301#endif
    302	mov	x5, #VA_BITS_MIN
    3031:
    304	adr_l	x6, vabits_actual
    305	str	x5, [x6]
    306	dmb	sy
    307	dc	ivac, x6		// Invalidate potentially stale cache line
    308
    309	/*
    310	 * VA_BITS may be too small to allow for an ID mapping to be created
    311	 * that covers system RAM if that is located sufficiently high in the
    312	 * physical address space. So for the ID map, use an extended virtual
    313	 * range in that case, and configure an additional translation level
    314	 * if needed.
    315	 *
    316	 * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the
    317	 * entire ID map region can be mapped. As T0SZ == (64 - #bits used),
    318	 * this number conveniently equals the number of leading zeroes in
    319	 * the physical address of __idmap_text_end.
    320	 */
    321	adrp	x5, __idmap_text_end
    322	clz	x5, x5
    323	cmp	x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough?
    324	b.ge	1f			// .. then skip VA range extension
    325
    326	adr_l	x6, idmap_t0sz
    327	str	x5, [x6]
    328	dmb	sy
    329	dc	ivac, x6		// Invalidate potentially stale cache line
    330
    331#if (VA_BITS < 48)
    332#define EXTRA_SHIFT	(PGDIR_SHIFT + PAGE_SHIFT - 3)
    333#define EXTRA_PTRS	(1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT))
    334
    335	/*
    336	 * If VA_BITS < 48, we have to configure an additional table level.
    337	 * First, we have to verify our assumption that the current value of
    338	 * VA_BITS was chosen such that all translation levels are fully
    339	 * utilised, and that lowering T0SZ will always result in an additional
    340	 * translation level to be configured.
    341	 */
    342#if VA_BITS != EXTRA_SHIFT
    343#error "Mismatch between VA_BITS and page size/number of translation levels"
    344#endif
    345
    346	mov	x4, EXTRA_PTRS
    347	create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6
    348#else
    349	/*
    350	 * If VA_BITS == 48, we don't have to configure an additional
    351	 * translation level, but the top-level table has more entries.
    352	 */
    353	mov	x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT)
    354	str_l	x4, idmap_ptrs_per_pgd, x5
    355#endif
    3561:
    357	ldr_l	x4, idmap_ptrs_per_pgd
    358	adr_l	x6, __idmap_text_end		// __pa(__idmap_text_end)
    359
    360	map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14
    361
    362	/*
    363	 * Map the kernel image (starting with PHYS_OFFSET).
    364	 */
    365	adrp	x0, init_pg_dir
    366	mov_q	x5, KIMAGE_VADDR		// compile time __va(_text)
    367	add	x5, x5, x23			// add KASLR displacement
    368	mov	x4, PTRS_PER_PGD
    369	adrp	x6, _end			// runtime __pa(_end)
    370	adrp	x3, _text			// runtime __pa(_text)
    371	sub	x6, x6, x3			// _end - _text
    372	add	x6, x6, x5			// runtime __va(_end)
    373
    374	map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14
    375
    376	/*
    377	 * Since the page tables have been populated with non-cacheable
    378	 * accesses (MMU disabled), invalidate those tables again to
    379	 * remove any speculatively loaded cache lines.
    380	 */
    381	dmb	sy
    382
    383	adrp	x0, idmap_pg_dir
    384	adrp	x1, idmap_pg_end
    385	bl	dcache_inval_poc
    386
    387	adrp	x0, init_pg_dir
    388	adrp	x1, init_pg_end
    389	bl	dcache_inval_poc
    390
    391	ret	x28
    392SYM_FUNC_END(__create_page_tables)
    393
    394	/*
    395	 * Initialize CPU registers with task-specific and cpu-specific context.
    396	 *
    397	 * Create a final frame record at task_pt_regs(current)->stackframe, so
    398	 * that the unwinder can identify the final frame record of any task by
    399	 * its location in the task stack. We reserve the entire pt_regs space
    400	 * for consistency with user tasks and kthreads.
    401	 */
    402	.macro	init_cpu_task tsk, tmp1, tmp2
    403	msr	sp_el0, \tsk
    404
    405	ldr	\tmp1, [\tsk, #TSK_STACK]
    406	add	sp, \tmp1, #THREAD_SIZE
    407	sub	sp, sp, #PT_REGS_SIZE
    408
    409	stp	xzr, xzr, [sp, #S_STACKFRAME]
    410	add	x29, sp, #S_STACKFRAME
    411
    412	scs_load \tsk
    413
    414	adr_l	\tmp1, __per_cpu_offset
    415	ldr	w\tmp2, [\tsk, #TSK_TI_CPU]
    416	ldr	\tmp1, [\tmp1, \tmp2, lsl #3]
    417	set_this_cpu_offset \tmp1
    418	.endm
    419
    420/*
    421 * The following fragment of code is executed with the MMU enabled.
    422 *
    423 *   x0 = __PHYS_OFFSET
    424 */
    425SYM_FUNC_START_LOCAL(__primary_switched)
    426	adr_l	x4, init_task
    427	init_cpu_task x4, x5, x6
    428
    429	adr_l	x8, vectors			// load VBAR_EL1 with virtual
    430	msr	vbar_el1, x8			// vector table address
    431	isb
    432
    433	stp	x29, x30, [sp, #-16]!
    434	mov	x29, sp
    435
    436	str_l	x21, __fdt_pointer, x5		// Save FDT pointer
    437
    438	ldr_l	x4, kimage_vaddr		// Save the offset between
    439	sub	x4, x4, x0			// the kernel virtual and
    440	str_l	x4, kimage_voffset, x5		// physical mappings
    441
    442	// Clear BSS
    443	adr_l	x0, __bss_start
    444	mov	x1, xzr
    445	adr_l	x2, __bss_stop
    446	sub	x2, x2, x0
    447	bl	__pi_memset
    448	dsb	ishst				// Make zero page visible to PTW
    449
    450#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
    451	bl	kasan_early_init
    452#endif
    453	mov	x0, x21				// pass FDT address in x0
    454	bl	early_fdt_map			// Try mapping the FDT early
    455	bl	init_feature_override		// Parse cpu feature overrides
    456#ifdef CONFIG_RANDOMIZE_BASE
    457	tst	x23, ~(MIN_KIMG_ALIGN - 1)	// already running randomized?
    458	b.ne	0f
    459	bl	kaslr_early_init		// parse FDT for KASLR options
    460	cbz	x0, 0f				// KASLR disabled? just proceed
    461	orr	x23, x23, x0			// record KASLR offset
    462	ldp	x29, x30, [sp], #16		// we must enable KASLR, return
    463	ret					// to __primary_switch()
    4640:
    465#endif
    466	bl	switch_to_vhe			// Prefer VHE if possible
    467	ldp	x29, x30, [sp], #16
    468	bl	start_kernel
    469	ASM_BUG()
    470SYM_FUNC_END(__primary_switched)
    471
    472	.pushsection ".rodata", "a"
    473SYM_DATA_START(kimage_vaddr)
    474	.quad		_text
    475SYM_DATA_END(kimage_vaddr)
    476EXPORT_SYMBOL(kimage_vaddr)
    477	.popsection
    478
    479/*
    480 * end early head section, begin head code that is also used for
    481 * hotplug and needs to have the same protections as the text region
    482 */
    483	.section ".idmap.text","awx"
    484
    485/*
    486 * Starting from EL2 or EL1, configure the CPU to execute at the highest
    487 * reachable EL supported by the kernel in a chosen default state. If dropping
    488 * from EL2 to EL1, configure EL2 before configuring EL1.
    489 *
    490 * Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
    491 * SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
    492 *
    493 * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if
    494 * booted in EL1 or EL2 respectively.
    495 */
    496SYM_FUNC_START(init_kernel_el)
    497	mrs	x0, CurrentEL
    498	cmp	x0, #CurrentEL_EL2
    499	b.eq	init_el2
    500
    501SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
    502	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
    503	msr	sctlr_el1, x0
    504	isb
    505	mov_q	x0, INIT_PSTATE_EL1
    506	msr	spsr_el1, x0
    507	msr	elr_el1, lr
    508	mov	w0, #BOOT_CPU_MODE_EL1
    509	eret
    510
    511SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
    512	mov_q	x0, HCR_HOST_NVHE_FLAGS
    513	msr	hcr_el2, x0
    514	isb
    515
    516	init_el2_state
    517
    518	/* Hypervisor stub */
    519	adr_l	x0, __hyp_stub_vectors
    520	msr	vbar_el2, x0
    521	isb
    522
    523	/*
    524	 * Fruity CPUs seem to have HCR_EL2.E2H set to RES1,
    525	 * making it impossible to start in nVHE mode. Is that
    526	 * compliant with the architecture? Absolutely not!
    527	 */
    528	mrs	x0, hcr_el2
    529	and	x0, x0, #HCR_E2H
    530	cbz	x0, 1f
    531
    532	/* Switching to VHE requires a sane SCTLR_EL1 as a start */
    533	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
    534	msr_s	SYS_SCTLR_EL12, x0
    535
    536	/*
    537	 * Force an eret into a helper "function", and let it return
    538	 * to our original caller... This makes sure that we have
    539	 * initialised the basic PSTATE state.
    540	 */
    541	mov	x0, #INIT_PSTATE_EL2
    542	msr	spsr_el1, x0
    543	adr	x0, __cpu_stick_to_vhe
    544	msr	elr_el1, x0
    545	eret
    546
    5471:
    548	mov_q	x0, INIT_SCTLR_EL1_MMU_OFF
    549	msr	sctlr_el1, x0
    550
    551	msr	elr_el2, lr
    552	mov	w0, #BOOT_CPU_MODE_EL2
    553	eret
    554
    555__cpu_stick_to_vhe:
    556	mov	x0, #HVC_VHE_RESTART
    557	hvc	#0
    558	mov	x0, #BOOT_CPU_MODE_EL2
    559	ret
    560SYM_FUNC_END(init_kernel_el)
    561
    562/*
    563 * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
    564 * in w0. See arch/arm64/include/asm/virt.h for more info.
    565 */
    566SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
    567	adr_l	x1, __boot_cpu_mode
    568	cmp	w0, #BOOT_CPU_MODE_EL2
    569	b.ne	1f
    570	add	x1, x1, #4
    5711:	str	w0, [x1]			// Save CPU boot mode
    572	dmb	sy
    573	dc	ivac, x1			// Invalidate potentially stale cache line
    574	ret
    575SYM_FUNC_END(set_cpu_boot_mode_flag)
    576
    577/*
    578 * These values are written with the MMU off, but read with the MMU on.
    579 * Writers will invalidate the corresponding address, discarding up to a
    580 * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures
    581 * sufficient alignment that the CWG doesn't overlap another section.
    582 */
    583	.pushsection ".mmuoff.data.write", "aw"
    584/*
    585 * We need to find out the CPU boot mode long after boot, so we need to
    586 * store it in a writable variable.
    587 *
    588 * This is not in .bss, because we set it sufficiently early that the boot-time
    589 * zeroing of .bss would clobber it.
    590 */
    591SYM_DATA_START(__boot_cpu_mode)
    592	.long	BOOT_CPU_MODE_EL2
    593	.long	BOOT_CPU_MODE_EL1
    594SYM_DATA_END(__boot_cpu_mode)
    595/*
    596 * The booting CPU updates the failed status @__early_cpu_boot_status,
    597 * with MMU turned off.
    598 */
    599SYM_DATA_START(__early_cpu_boot_status)
    600	.quad 	0
    601SYM_DATA_END(__early_cpu_boot_status)
    602
    603	.popsection
    604
    605	/*
    606	 * This provides a "holding pen" for platforms to hold all secondary
    607	 * cores are held until we're ready for them to initialise.
    608	 */
    609SYM_FUNC_START(secondary_holding_pen)
    610	bl	init_kernel_el			// w0=cpu_boot_mode
    611	bl	set_cpu_boot_mode_flag
    612	mrs	x0, mpidr_el1
    613	mov_q	x1, MPIDR_HWID_BITMASK
    614	and	x0, x0, x1
    615	adr_l	x3, secondary_holding_pen_release
    616pen:	ldr	x4, [x3]
    617	cmp	x4, x0
    618	b.eq	secondary_startup
    619	wfe
    620	b	pen
    621SYM_FUNC_END(secondary_holding_pen)
    622
    623	/*
    624	 * Secondary entry point that jumps straight into the kernel. Only to
    625	 * be used where CPUs are brought online dynamically by the kernel.
    626	 */
    627SYM_FUNC_START(secondary_entry)
    628	bl	init_kernel_el			// w0=cpu_boot_mode
    629	bl	set_cpu_boot_mode_flag
    630	b	secondary_startup
    631SYM_FUNC_END(secondary_entry)
    632
    633SYM_FUNC_START_LOCAL(secondary_startup)
    634	/*
    635	 * Common entry point for secondary CPUs.
    636	 */
    637	bl	switch_to_vhe
    638	bl	__cpu_secondary_check52bitva
    639	bl	__cpu_setup			// initialise processor
    640	adrp	x1, swapper_pg_dir
    641	bl	__enable_mmu
    642	ldr	x8, =__secondary_switched
    643	br	x8
    644SYM_FUNC_END(secondary_startup)
    645
    646SYM_FUNC_START_LOCAL(__secondary_switched)
    647	adr_l	x5, vectors
    648	msr	vbar_el1, x5
    649	isb
    650
    651	adr_l	x0, secondary_data
    652	ldr	x2, [x0, #CPU_BOOT_TASK]
    653	cbz	x2, __secondary_too_slow
    654
    655	init_cpu_task x2, x1, x3
    656
    657#ifdef CONFIG_ARM64_PTR_AUTH
    658	ptrauth_keys_init_cpu x2, x3, x4, x5
    659#endif
    660
    661	bl	secondary_start_kernel
    662	ASM_BUG()
    663SYM_FUNC_END(__secondary_switched)
    664
    665SYM_FUNC_START_LOCAL(__secondary_too_slow)
    666	wfe
    667	wfi
    668	b	__secondary_too_slow
    669SYM_FUNC_END(__secondary_too_slow)
    670
    671/*
    672 * The booting CPU updates the failed status @__early_cpu_boot_status,
    673 * with MMU turned off.
    674 *
    675 * update_early_cpu_boot_status tmp, status
    676 *  - Corrupts tmp1, tmp2
    677 *  - Writes 'status' to __early_cpu_boot_status and makes sure
    678 *    it is committed to memory.
    679 */
    680
    681	.macro	update_early_cpu_boot_status status, tmp1, tmp2
    682	mov	\tmp2, #\status
    683	adr_l	\tmp1, __early_cpu_boot_status
    684	str	\tmp2, [\tmp1]
    685	dmb	sy
    686	dc	ivac, \tmp1			// Invalidate potentially stale cache line
    687	.endm
    688
    689/*
    690 * Enable the MMU.
    691 *
    692 *  x0  = SCTLR_EL1 value for turning on the MMU.
    693 *  x1  = TTBR1_EL1 value
    694 *
    695 * Returns to the caller via x30/lr. This requires the caller to be covered
    696 * by the .idmap.text section.
    697 *
    698 * Checks if the selected granule size is supported by the CPU.
    699 * If it isn't, park the CPU
    700 */
    701SYM_FUNC_START(__enable_mmu)
    702	mrs	x2, ID_AA64MMFR0_EL1
    703	ubfx	x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4
    704	cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN
    705	b.lt    __no_granule_support
    706	cmp     x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX
    707	b.gt    __no_granule_support
    708	update_early_cpu_boot_status 0, x2, x3
    709	adrp	x2, idmap_pg_dir
    710	phys_to_ttbr x1, x1
    711	phys_to_ttbr x2, x2
    712	msr	ttbr0_el1, x2			// load TTBR0
    713	offset_ttbr1 x1, x3
    714	msr	ttbr1_el1, x1			// load TTBR1
    715	isb
    716
    717	set_sctlr_el1	x0
    718
    719	ret
    720SYM_FUNC_END(__enable_mmu)
    721
    722SYM_FUNC_START(__cpu_secondary_check52bitva)
    723#ifdef CONFIG_ARM64_VA_BITS_52
    724	ldr_l	x0, vabits_actual
    725	cmp	x0, #52
    726	b.ne	2f
    727
    728	mrs_s	x0, SYS_ID_AA64MMFR2_EL1
    729	and	x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT)
    730	cbnz	x0, 2f
    731
    732	update_early_cpu_boot_status \
    733		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
    7341:	wfe
    735	wfi
    736	b	1b
    737
    738#endif
    7392:	ret
    740SYM_FUNC_END(__cpu_secondary_check52bitva)
    741
    742SYM_FUNC_START_LOCAL(__no_granule_support)
    743	/* Indicate that this CPU can't boot and is stuck in the kernel */
    744	update_early_cpu_boot_status \
    745		CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
    7461:
    747	wfe
    748	wfi
    749	b	1b
    750SYM_FUNC_END(__no_granule_support)
    751
    752#ifdef CONFIG_RELOCATABLE
    753SYM_FUNC_START_LOCAL(__relocate_kernel)
    754	/*
    755	 * Iterate over each entry in the relocation table, and apply the
    756	 * relocations in place.
    757	 */
    758	ldr	w9, =__rela_offset		// offset to reloc table
    759	ldr	w10, =__rela_size		// size of reloc table
    760
    761	mov_q	x11, KIMAGE_VADDR		// default virtual offset
    762	add	x11, x11, x23			// actual virtual offset
    763	add	x9, x9, x11			// __va(.rela)
    764	add	x10, x9, x10			// __va(.rela) + sizeof(.rela)
    765
    7660:	cmp	x9, x10
    767	b.hs	1f
    768	ldp	x12, x13, [x9], #24
    769	ldr	x14, [x9, #-8]
    770	cmp	w13, #R_AARCH64_RELATIVE
    771	b.ne	0b
    772	add	x14, x14, x23			// relocate
    773	str	x14, [x12, x23]
    774	b	0b
    775
    7761:
    777#ifdef CONFIG_RELR
    778	/*
    779	 * Apply RELR relocations.
    780	 *
    781	 * RELR is a compressed format for storing relative relocations. The
    782	 * encoded sequence of entries looks like:
    783	 * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
    784	 *
    785	 * i.e. start with an address, followed by any number of bitmaps. The
    786	 * address entry encodes 1 relocation. The subsequent bitmap entries
    787	 * encode up to 63 relocations each, at subsequent offsets following
    788	 * the last address entry.
    789	 *
    790	 * The bitmap entries must have 1 in the least significant bit. The
    791	 * assumption here is that an address cannot have 1 in lsb. Odd
    792	 * addresses are not supported. Any odd addresses are stored in the RELA
    793	 * section, which is handled above.
    794	 *
    795	 * Excluding the least significant bit in the bitmap, each non-zero
    796	 * bit in the bitmap represents a relocation to be applied to
    797	 * a corresponding machine word that follows the base address
    798	 * word. The second least significant bit represents the machine
    799	 * word immediately following the initial address, and each bit
    800	 * that follows represents the next word, in linear order. As such,
    801	 * a single bitmap can encode up to 63 relocations in a 64-bit object.
    802	 *
    803	 * In this implementation we store the address of the next RELR table
    804	 * entry in x9, the address being relocated by the current address or
    805	 * bitmap entry in x13 and the address being relocated by the current
    806	 * bit in x14.
    807	 *
    808	 * Because addends are stored in place in the binary, RELR relocations
    809	 * cannot be applied idempotently. We use x24 to keep track of the
    810	 * currently applied displacement so that we can correctly relocate if
    811	 * __relocate_kernel is called twice with non-zero displacements (i.e.
    812	 * if there is both a physical misalignment and a KASLR displacement).
    813	 */
    814	ldr	w9, =__relr_offset		// offset to reloc table
    815	ldr	w10, =__relr_size		// size of reloc table
    816	add	x9, x9, x11			// __va(.relr)
    817	add	x10, x9, x10			// __va(.relr) + sizeof(.relr)
    818
    819	sub	x15, x23, x24			// delta from previous offset
    820	cbz	x15, 7f				// nothing to do if unchanged
    821	mov	x24, x23			// save new offset
    822
    8232:	cmp	x9, x10
    824	b.hs	7f
    825	ldr	x11, [x9], #8
    826	tbnz	x11, #0, 3f			// branch to handle bitmaps
    827	add	x13, x11, x23
    828	ldr	x12, [x13]			// relocate address entry
    829	add	x12, x12, x15
    830	str	x12, [x13], #8			// adjust to start of bitmap
    831	b	2b
    832
    8333:	mov	x14, x13
    8344:	lsr	x11, x11, #1
    835	cbz	x11, 6f
    836	tbz	x11, #0, 5f			// skip bit if not set
    837	ldr	x12, [x14]			// relocate bit
    838	add	x12, x12, x15
    839	str	x12, [x14]
    840
    8415:	add	x14, x14, #8			// move to next bit's address
    842	b	4b
    843
    8446:	/*
    845	 * Move to the next bitmap's address. 8 is the word size, and 63 is the
    846	 * number of significant bits in a bitmap entry.
    847	 */
    848	add	x13, x13, #(8 * 63)
    849	b	2b
    850
    8517:
    852#endif
    853	ret
    854
    855SYM_FUNC_END(__relocate_kernel)
    856#endif
    857
    858SYM_FUNC_START_LOCAL(__primary_switch)
    859#ifdef CONFIG_RANDOMIZE_BASE
    860	mov	x19, x0				// preserve new SCTLR_EL1 value
    861	mrs	x20, sctlr_el1			// preserve old SCTLR_EL1 value
    862#endif
    863
    864	adrp	x1, init_pg_dir
    865	bl	__enable_mmu
    866#ifdef CONFIG_RELOCATABLE
    867#ifdef CONFIG_RELR
    868	mov	x24, #0				// no RELR displacement yet
    869#endif
    870	bl	__relocate_kernel
    871#ifdef CONFIG_RANDOMIZE_BASE
    872	ldr	x8, =__primary_switched
    873	adrp	x0, __PHYS_OFFSET
    874	blr	x8
    875
    876	/*
    877	 * If we return here, we have a KASLR displacement in x23 which we need
    878	 * to take into account by discarding the current kernel mapping and
    879	 * creating a new one.
    880	 */
    881	pre_disable_mmu_workaround
    882	msr	sctlr_el1, x20			// disable the MMU
    883	isb
    884	bl	__create_page_tables		// recreate kernel mapping
    885
    886	tlbi	vmalle1				// Remove any stale TLB entries
    887	dsb	nsh
    888	isb
    889
    890	set_sctlr_el1	x19			// re-enable the MMU
    891
    892	bl	__relocate_kernel
    893#endif
    894#endif
    895	ldr	x8, =__primary_switched
    896	adrp	x0, __PHYS_OFFSET
    897	br	x8
    898SYM_FUNC_END(__primary_switch)