cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

kaslr.c (6057B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
      4 */
      5
      6#include <linux/cache.h>
      7#include <linux/crc32.h>
      8#include <linux/init.h>
      9#include <linux/libfdt.h>
     10#include <linux/mm_types.h>
     11#include <linux/sched.h>
     12#include <linux/types.h>
     13#include <linux/pgtable.h>
     14#include <linux/random.h>
     15
     16#include <asm/cacheflush.h>
     17#include <asm/fixmap.h>
     18#include <asm/kernel-pgtable.h>
     19#include <asm/memory.h>
     20#include <asm/mmu.h>
     21#include <asm/sections.h>
     22#include <asm/setup.h>
     23
     24enum kaslr_status {
     25	KASLR_ENABLED,
     26	KASLR_DISABLED_CMDLINE,
     27	KASLR_DISABLED_NO_SEED,
     28	KASLR_DISABLED_FDT_REMAP,
     29};
     30
     31static enum kaslr_status __initdata kaslr_status;
     32u64 __ro_after_init module_alloc_base;
     33u16 __initdata memstart_offset_seed;
     34
     35static __init u64 get_kaslr_seed(void *fdt)
     36{
     37	int node, len;
     38	fdt64_t *prop;
     39	u64 ret;
     40
     41	node = fdt_path_offset(fdt, "/chosen");
     42	if (node < 0)
     43		return 0;
     44
     45	prop = fdt_getprop_w(fdt, node, "kaslr-seed", &len);
     46	if (!prop || len != sizeof(u64))
     47		return 0;
     48
     49	ret = fdt64_to_cpu(*prop);
     50	*prop = 0;
     51	return ret;
     52}
     53
     54struct arm64_ftr_override kaslr_feature_override __initdata;
     55
     56/*
     57 * This routine will be executed with the kernel mapped at its default virtual
     58 * address, and if it returns successfully, the kernel will be remapped, and
     59 * start_kernel() will be executed from a randomized virtual offset. The
     60 * relocation will result in all absolute references (e.g., static variables
     61 * containing function pointers) to be reinitialized, and zero-initialized
     62 * .bss variables will be reset to 0.
     63 */
     64u64 __init kaslr_early_init(void)
     65{
     66	void *fdt;
     67	u64 seed, offset, mask, module_range;
     68	unsigned long raw;
     69
     70	/*
     71	 * Set a reasonable default for module_alloc_base in case
     72	 * we end up running with module randomization disabled.
     73	 */
     74	module_alloc_base = (u64)_etext - MODULES_VSIZE;
     75	dcache_clean_inval_poc((unsigned long)&module_alloc_base,
     76			    (unsigned long)&module_alloc_base +
     77				    sizeof(module_alloc_base));
     78
     79	/*
     80	 * Try to map the FDT early. If this fails, we simply bail,
     81	 * and proceed with KASLR disabled. We will make another
     82	 * attempt at mapping the FDT in setup_machine()
     83	 */
     84	fdt = get_early_fdt_ptr();
     85	if (!fdt) {
     86		kaslr_status = KASLR_DISABLED_FDT_REMAP;
     87		return 0;
     88	}
     89
     90	/*
     91	 * Retrieve (and wipe) the seed from the FDT
     92	 */
     93	seed = get_kaslr_seed(fdt);
     94
     95	/*
     96	 * Check if 'nokaslr' appears on the command line, and
     97	 * return 0 if that is the case.
     98	 */
     99	if (kaslr_feature_override.val & kaslr_feature_override.mask & 0xf) {
    100		kaslr_status = KASLR_DISABLED_CMDLINE;
    101		return 0;
    102	}
    103
    104	/*
    105	 * Mix in any entropy obtainable architecturally if enabled
    106	 * and supported.
    107	 */
    108
    109	if (arch_get_random_seed_long_early(&raw))
    110		seed ^= raw;
    111
    112	if (!seed) {
    113		kaslr_status = KASLR_DISABLED_NO_SEED;
    114		return 0;
    115	}
    116
    117	/*
    118	 * OK, so we are proceeding with KASLR enabled. Calculate a suitable
    119	 * kernel image offset from the seed. Let's place the kernel in the
    120	 * middle half of the VMALLOC area (VA_BITS_MIN - 2), and stay clear of
    121	 * the lower and upper quarters to avoid colliding with other
    122	 * allocations.
    123	 * Even if we could randomize at page granularity for 16k and 64k pages,
    124	 * let's always round to 2 MB so we don't interfere with the ability to
    125	 * map using contiguous PTEs
    126	 */
    127	mask = ((1UL << (VA_BITS_MIN - 2)) - 1) & ~(SZ_2M - 1);
    128	offset = BIT(VA_BITS_MIN - 3) + (seed & mask);
    129
    130	/* use the top 16 bits to randomize the linear region */
    131	memstart_offset_seed = seed >> 48;
    132
    133	if (!IS_ENABLED(CONFIG_KASAN_VMALLOC) &&
    134	    (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
    135	     IS_ENABLED(CONFIG_KASAN_SW_TAGS)))
    136		/*
    137		 * KASAN without KASAN_VMALLOC does not expect the module region
    138		 * to intersect the vmalloc region, since shadow memory is
    139		 * allocated for each module at load time, whereas the vmalloc
    140		 * region is shadowed by KASAN zero pages. So keep modules
    141		 * out of the vmalloc region if KASAN is enabled without
    142		 * KASAN_VMALLOC, and put the kernel well within 4 GB of the
    143		 * module region.
    144		 */
    145		return offset % SZ_2G;
    146
    147	if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
    148		/*
    149		 * Randomize the module region over a 2 GB window covering the
    150		 * kernel. This reduces the risk of modules leaking information
    151		 * about the address of the kernel itself, but results in
    152		 * branches between modules and the core kernel that are
    153		 * resolved via PLTs. (Branches between modules will be
    154		 * resolved normally.)
    155		 */
    156		module_range = SZ_2G - (u64)(_end - _stext);
    157		module_alloc_base = max((u64)_end + offset - SZ_2G,
    158					(u64)MODULES_VADDR);
    159	} else {
    160		/*
    161		 * Randomize the module region by setting module_alloc_base to
    162		 * a PAGE_SIZE multiple in the range [_etext - MODULES_VSIZE,
    163		 * _stext) . This guarantees that the resulting region still
    164		 * covers [_stext, _etext], and that all relative branches can
    165		 * be resolved without veneers unless this region is exhausted
    166		 * and we fall back to a larger 2GB window in module_alloc()
    167		 * when ARM64_MODULE_PLTS is enabled.
    168		 */
    169		module_range = MODULES_VSIZE - (u64)(_etext - _stext);
    170		module_alloc_base = (u64)_etext + offset - MODULES_VSIZE;
    171	}
    172
    173	/* use the lower 21 bits to randomize the base of the module region */
    174	module_alloc_base += (module_range * (seed & ((1 << 21) - 1))) >> 21;
    175	module_alloc_base &= PAGE_MASK;
    176
    177	dcache_clean_inval_poc((unsigned long)&module_alloc_base,
    178			    (unsigned long)&module_alloc_base +
    179				    sizeof(module_alloc_base));
    180	dcache_clean_inval_poc((unsigned long)&memstart_offset_seed,
    181			    (unsigned long)&memstart_offset_seed +
    182				    sizeof(memstart_offset_seed));
    183
    184	return offset;
    185}
    186
    187static int __init kaslr_init(void)
    188{
    189	switch (kaslr_status) {
    190	case KASLR_ENABLED:
    191		pr_info("KASLR enabled\n");
    192		break;
    193	case KASLR_DISABLED_CMDLINE:
    194		pr_info("KASLR disabled on command line\n");
    195		break;
    196	case KASLR_DISABLED_NO_SEED:
    197		pr_warn("KASLR disabled due to lack of seed\n");
    198		break;
    199	case KASLR_DISABLED_FDT_REMAP:
    200		pr_warn("KASLR disabled due to FDT remapping failure\n");
    201		break;
    202	}
    203
    204	return 0;
    205}
    206core_initcall(kaslr_init)