cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

module-plts.c (10974B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
      4 */
      5
      6#include <linux/elf.h>
      7#include <linux/ftrace.h>
      8#include <linux/kernel.h>
      9#include <linux/module.h>
     10#include <linux/sort.h>
     11
     12static struct plt_entry __get_adrp_add_pair(u64 dst, u64 pc,
     13					    enum aarch64_insn_register reg)
     14{
     15	u32 adrp, add;
     16
     17	adrp = aarch64_insn_gen_adr(pc, dst, reg, AARCH64_INSN_ADR_TYPE_ADRP);
     18	add = aarch64_insn_gen_add_sub_imm(reg, reg, dst % SZ_4K,
     19					   AARCH64_INSN_VARIANT_64BIT,
     20					   AARCH64_INSN_ADSB_ADD);
     21
     22	return (struct plt_entry){ cpu_to_le32(adrp), cpu_to_le32(add) };
     23}
     24
     25struct plt_entry get_plt_entry(u64 dst, void *pc)
     26{
     27	struct plt_entry plt;
     28	static u32 br;
     29
     30	if (!br)
     31		br = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_16,
     32						 AARCH64_INSN_BRANCH_NOLINK);
     33
     34	plt = __get_adrp_add_pair(dst, (u64)pc, AARCH64_INSN_REG_16);
     35	plt.br = cpu_to_le32(br);
     36
     37	return plt;
     38}
     39
     40bool plt_entries_equal(const struct plt_entry *a, const struct plt_entry *b)
     41{
     42	u64 p, q;
     43
     44	/*
     45	 * Check whether both entries refer to the same target:
     46	 * do the cheapest checks first.
     47	 * If the 'add' or 'br' opcodes are different, then the target
     48	 * cannot be the same.
     49	 */
     50	if (a->add != b->add || a->br != b->br)
     51		return false;
     52
     53	p = ALIGN_DOWN((u64)a, SZ_4K);
     54	q = ALIGN_DOWN((u64)b, SZ_4K);
     55
     56	/*
     57	 * If the 'adrp' opcodes are the same then we just need to check
     58	 * that they refer to the same 4k region.
     59	 */
     60	if (a->adrp == b->adrp && p == q)
     61		return true;
     62
     63	return (p + aarch64_insn_adrp_get_offset(le32_to_cpu(a->adrp))) ==
     64	       (q + aarch64_insn_adrp_get_offset(le32_to_cpu(b->adrp)));
     65}
     66
     67static bool in_init(const struct module *mod, void *loc)
     68{
     69	return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
     70}
     71
     72u64 module_emit_plt_entry(struct module *mod, Elf64_Shdr *sechdrs,
     73			  void *loc, const Elf64_Rela *rela,
     74			  Elf64_Sym *sym)
     75{
     76	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
     77							  &mod->arch.init;
     78	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
     79	int i = pltsec->plt_num_entries;
     80	int j = i - 1;
     81	u64 val = sym->st_value + rela->r_addend;
     82
     83	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
     84		i++;
     85
     86	plt[i] = get_plt_entry(val, &plt[i]);
     87
     88	/*
     89	 * Check if the entry we just created is a duplicate. Given that the
     90	 * relocations are sorted, this will be the last entry we allocated.
     91	 * (if one exists).
     92	 */
     93	if (j >= 0 && plt_entries_equal(plt + i, plt + j))
     94		return (u64)&plt[j];
     95
     96	pltsec->plt_num_entries += i - j;
     97	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
     98		return 0;
     99
    100	return (u64)&plt[i];
    101}
    102
    103#ifdef CONFIG_ARM64_ERRATUM_843419
    104u64 module_emit_veneer_for_adrp(struct module *mod, Elf64_Shdr *sechdrs,
    105				void *loc, u64 val)
    106{
    107	struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
    108							  &mod->arch.init;
    109	struct plt_entry *plt = (struct plt_entry *)sechdrs[pltsec->plt_shndx].sh_addr;
    110	int i = pltsec->plt_num_entries++;
    111	u32 br;
    112	int rd;
    113
    114	if (WARN_ON(pltsec->plt_num_entries > pltsec->plt_max_entries))
    115		return 0;
    116
    117	if (is_forbidden_offset_for_adrp(&plt[i].adrp))
    118		i = pltsec->plt_num_entries++;
    119
    120	/* get the destination register of the ADRP instruction */
    121	rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD,
    122					  le32_to_cpup((__le32 *)loc));
    123
    124	br = aarch64_insn_gen_branch_imm((u64)&plt[i].br, (u64)loc + 4,
    125					 AARCH64_INSN_BRANCH_NOLINK);
    126
    127	plt[i] = __get_adrp_add_pair(val, (u64)&plt[i], rd);
    128	plt[i].br = cpu_to_le32(br);
    129
    130	return (u64)&plt[i];
    131}
    132#endif
    133
    134#define cmp_3way(a, b)	((a) < (b) ? -1 : (a) > (b))
    135
    136static int cmp_rela(const void *a, const void *b)
    137{
    138	const Elf64_Rela *x = a, *y = b;
    139	int i;
    140
    141	/* sort by type, symbol index and addend */
    142	i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
    143	if (i == 0)
    144		i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
    145	if (i == 0)
    146		i = cmp_3way(x->r_addend, y->r_addend);
    147	return i;
    148}
    149
    150static bool duplicate_rel(const Elf64_Rela *rela, int num)
    151{
    152	/*
    153	 * Entries are sorted by type, symbol index and addend. That means
    154	 * that, if a duplicate entry exists, it must be in the preceding
    155	 * slot.
    156	 */
    157	return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
    158}
    159
    160static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
    161			       Elf64_Word dstidx, Elf_Shdr *dstsec)
    162{
    163	unsigned int ret = 0;
    164	Elf64_Sym *s;
    165	int i;
    166
    167	for (i = 0; i < num; i++) {
    168		u64 min_align;
    169
    170		switch (ELF64_R_TYPE(rela[i].r_info)) {
    171		case R_AARCH64_JUMP26:
    172		case R_AARCH64_CALL26:
    173			if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
    174				break;
    175
    176			/*
    177			 * We only have to consider branch targets that resolve
    178			 * to symbols that are defined in a different section.
    179			 * This is not simply a heuristic, it is a fundamental
    180			 * limitation, since there is no guaranteed way to emit
    181			 * PLT entries sufficiently close to the branch if the
    182			 * section size exceeds the range of a branch
    183			 * instruction. So ignore relocations against defined
    184			 * symbols if they live in the same section as the
    185			 * relocation target.
    186			 */
    187			s = syms + ELF64_R_SYM(rela[i].r_info);
    188			if (s->st_shndx == dstidx)
    189				break;
    190
    191			/*
    192			 * Jump relocations with non-zero addends against
    193			 * undefined symbols are supported by the ELF spec, but
    194			 * do not occur in practice (e.g., 'jump n bytes past
    195			 * the entry point of undefined function symbol f').
    196			 * So we need to support them, but there is no need to
    197			 * take them into consideration when trying to optimize
    198			 * this code. So let's only check for duplicates when
    199			 * the addend is zero: this allows us to record the PLT
    200			 * entry address in the symbol table itself, rather than
    201			 * having to search the list for duplicates each time we
    202			 * emit one.
    203			 */
    204			if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
    205				ret++;
    206			break;
    207		case R_AARCH64_ADR_PREL_PG_HI21_NC:
    208		case R_AARCH64_ADR_PREL_PG_HI21:
    209			if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) ||
    210			    !cpus_have_const_cap(ARM64_WORKAROUND_843419))
    211				break;
    212
    213			/*
    214			 * Determine the minimal safe alignment for this ADRP
    215			 * instruction: the section alignment at which it is
    216			 * guaranteed not to appear at a vulnerable offset.
    217			 *
    218			 * This comes down to finding the least significant zero
    219			 * bit in bits [11:3] of the section offset, and
    220			 * increasing the section's alignment so that the
    221			 * resulting address of this instruction is guaranteed
    222			 * to equal the offset in that particular bit (as well
    223			 * as all less significant bits). This ensures that the
    224			 * address modulo 4 KB != 0xfff8 or 0xfffc (which would
    225			 * have all ones in bits [11:3])
    226			 */
    227			min_align = 2ULL << ffz(rela[i].r_offset | 0x7);
    228
    229			/*
    230			 * Allocate veneer space for each ADRP that may appear
    231			 * at a vulnerable offset nonetheless. At relocation
    232			 * time, some of these will remain unused since some
    233			 * ADRP instructions can be patched to ADR instructions
    234			 * instead.
    235			 */
    236			if (min_align > SZ_4K)
    237				ret++;
    238			else
    239				dstsec->sh_addralign = max(dstsec->sh_addralign,
    240							   min_align);
    241			break;
    242		}
    243	}
    244
    245	if (IS_ENABLED(CONFIG_ARM64_ERRATUM_843419) &&
    246	    cpus_have_const_cap(ARM64_WORKAROUND_843419))
    247		/*
    248		 * Add some slack so we can skip PLT slots that may trigger
    249		 * the erratum due to the placement of the ADRP instruction.
    250		 */
    251		ret += DIV_ROUND_UP(ret, (SZ_4K / sizeof(struct plt_entry)));
    252
    253	return ret;
    254}
    255
    256static bool branch_rela_needs_plt(Elf64_Sym *syms, Elf64_Rela *rela,
    257				  Elf64_Word dstidx)
    258{
    259
    260	Elf64_Sym *s = syms + ELF64_R_SYM(rela->r_info);
    261
    262	if (s->st_shndx == dstidx)
    263		return false;
    264
    265	return ELF64_R_TYPE(rela->r_info) == R_AARCH64_JUMP26 ||
    266	       ELF64_R_TYPE(rela->r_info) == R_AARCH64_CALL26;
    267}
    268
    269/* Group branch PLT relas at the front end of the array. */
    270static int partition_branch_plt_relas(Elf64_Sym *syms, Elf64_Rela *rela,
    271				      int numrels, Elf64_Word dstidx)
    272{
    273	int i = 0, j = numrels - 1;
    274
    275	if (!IS_ENABLED(CONFIG_RANDOMIZE_BASE))
    276		return 0;
    277
    278	while (i < j) {
    279		if (branch_rela_needs_plt(syms, &rela[i], dstidx))
    280			i++;
    281		else if (branch_rela_needs_plt(syms, &rela[j], dstidx))
    282			swap(rela[i], rela[j]);
    283		else
    284			j--;
    285	}
    286
    287	return i;
    288}
    289
    290int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
    291			      char *secstrings, struct module *mod)
    292{
    293	unsigned long core_plts = 0;
    294	unsigned long init_plts = 0;
    295	Elf64_Sym *syms = NULL;
    296	Elf_Shdr *pltsec, *tramp = NULL;
    297	int i;
    298
    299	/*
    300	 * Find the empty .plt section so we can expand it to store the PLT
    301	 * entries. Record the symtab address as well.
    302	 */
    303	for (i = 0; i < ehdr->e_shnum; i++) {
    304		if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
    305			mod->arch.core.plt_shndx = i;
    306		else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
    307			mod->arch.init.plt_shndx = i;
    308		else if (!strcmp(secstrings + sechdrs[i].sh_name,
    309				 ".text.ftrace_trampoline"))
    310			tramp = sechdrs + i;
    311		else if (sechdrs[i].sh_type == SHT_SYMTAB)
    312			syms = (Elf64_Sym *)sechdrs[i].sh_addr;
    313	}
    314
    315	if (!mod->arch.core.plt_shndx || !mod->arch.init.plt_shndx) {
    316		pr_err("%s: module PLT section(s) missing\n", mod->name);
    317		return -ENOEXEC;
    318	}
    319	if (!syms) {
    320		pr_err("%s: module symtab section missing\n", mod->name);
    321		return -ENOEXEC;
    322	}
    323
    324	for (i = 0; i < ehdr->e_shnum; i++) {
    325		Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
    326		int nents, numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
    327		Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
    328
    329		if (sechdrs[i].sh_type != SHT_RELA)
    330			continue;
    331
    332		/* ignore relocations that operate on non-exec sections */
    333		if (!(dstsec->sh_flags & SHF_EXECINSTR))
    334			continue;
    335
    336		/*
    337		 * sort branch relocations requiring a PLT by type, symbol index
    338		 * and addend
    339		 */
    340		nents = partition_branch_plt_relas(syms, rels, numrels,
    341						   sechdrs[i].sh_info);
    342		if (nents)
    343			sort(rels, nents, sizeof(Elf64_Rela), cmp_rela, NULL);
    344
    345		if (!str_has_prefix(secstrings + dstsec->sh_name, ".init"))
    346			core_plts += count_plts(syms, rels, numrels,
    347						sechdrs[i].sh_info, dstsec);
    348		else
    349			init_plts += count_plts(syms, rels, numrels,
    350						sechdrs[i].sh_info, dstsec);
    351	}
    352
    353	pltsec = sechdrs + mod->arch.core.plt_shndx;
    354	pltsec->sh_type = SHT_NOBITS;
    355	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
    356	pltsec->sh_addralign = L1_CACHE_BYTES;
    357	pltsec->sh_size = (core_plts  + 1) * sizeof(struct plt_entry);
    358	mod->arch.core.plt_num_entries = 0;
    359	mod->arch.core.plt_max_entries = core_plts;
    360
    361	pltsec = sechdrs + mod->arch.init.plt_shndx;
    362	pltsec->sh_type = SHT_NOBITS;
    363	pltsec->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
    364	pltsec->sh_addralign = L1_CACHE_BYTES;
    365	pltsec->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
    366	mod->arch.init.plt_num_entries = 0;
    367	mod->arch.init.plt_max_entries = init_plts;
    368
    369	if (tramp) {
    370		tramp->sh_type = SHT_NOBITS;
    371		tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
    372		tramp->sh_addralign = __alignof__(struct plt_entry);
    373		tramp->sh_size = NR_FTRACE_PLTS * sizeof(struct plt_entry);
    374	}
    375
    376	return 0;
    377}