cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

module.c (14480B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * AArch64 loadable module support.
      4 *
      5 * Copyright (C) 2012 ARM Limited
      6 *
      7 * Author: Will Deacon <will.deacon@arm.com>
      8 */
      9
     10#include <linux/bitops.h>
     11#include <linux/elf.h>
     12#include <linux/ftrace.h>
     13#include <linux/gfp.h>
     14#include <linux/kasan.h>
     15#include <linux/kernel.h>
     16#include <linux/mm.h>
     17#include <linux/moduleloader.h>
     18#include <linux/vmalloc.h>
     19#include <asm/alternative.h>
     20#include <asm/insn.h>
     21#include <asm/sections.h>
     22
     23void *module_alloc(unsigned long size)
     24{
     25	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
     26	gfp_t gfp_mask = GFP_KERNEL;
     27	void *p;
     28
     29	/* Silence the initial allocation */
     30	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
     31		gfp_mask |= __GFP_NOWARN;
     32
     33	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
     34	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
     35		/* don't exceed the static module region - see below */
     36		module_alloc_end = MODULES_END;
     37
     38	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
     39				module_alloc_end, gfp_mask, PAGE_KERNEL, VM_DEFER_KMEMLEAK,
     40				NUMA_NO_NODE, __builtin_return_address(0));
     41
     42	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
     43	    (IS_ENABLED(CONFIG_KASAN_VMALLOC) ||
     44	     (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
     45	      !IS_ENABLED(CONFIG_KASAN_SW_TAGS))))
     46		/*
     47		 * KASAN without KASAN_VMALLOC can only deal with module
     48		 * allocations being served from the reserved module region,
     49		 * since the remainder of the vmalloc region is already
     50		 * backed by zero shadow pages, and punching holes into it
     51		 * is non-trivial. Since the module region is not randomized
     52		 * when KASAN is enabled without KASAN_VMALLOC, it is even
     53		 * less likely that the module region gets exhausted, so we
     54		 * can simply omit this fallback in that case.
     55		 */
     56		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
     57				module_alloc_base + SZ_2G, GFP_KERNEL,
     58				PAGE_KERNEL, 0, NUMA_NO_NODE,
     59				__builtin_return_address(0));
     60
     61	if (p && (kasan_alloc_module_shadow(p, size, gfp_mask) < 0)) {
     62		vfree(p);
     63		return NULL;
     64	}
     65
     66	/* Memory is intended to be executable, reset the pointer tag. */
     67	return kasan_reset_tag(p);
     68}
     69
     70enum aarch64_reloc_op {
     71	RELOC_OP_NONE,
     72	RELOC_OP_ABS,
     73	RELOC_OP_PREL,
     74	RELOC_OP_PAGE,
     75};
     76
     77static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
     78{
     79	switch (reloc_op) {
     80	case RELOC_OP_ABS:
     81		return val;
     82	case RELOC_OP_PREL:
     83		return val - (u64)place;
     84	case RELOC_OP_PAGE:
     85		return (val & ~0xfff) - ((u64)place & ~0xfff);
     86	case RELOC_OP_NONE:
     87		return 0;
     88	}
     89
     90	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
     91	return 0;
     92}
     93
     94static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
     95{
     96	s64 sval = do_reloc(op, place, val);
     97
     98	/*
     99	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
    100	 * relative and absolute relocations as having a range of [-2^15, 2^16)
    101	 * or [-2^31, 2^32), respectively. However, in order to be able to
    102	 * detect overflows reliably, we have to choose whether we interpret
    103	 * such quantities as signed or as unsigned, and stick with it.
    104	 * The way we organize our address space requires a signed
    105	 * interpretation of 32-bit relative references, so let's use that
    106	 * for all R_AARCH64_PRELxx relocations. This means our upper
    107	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
    108	 */
    109
    110	switch (len) {
    111	case 16:
    112		*(s16 *)place = sval;
    113		switch (op) {
    114		case RELOC_OP_ABS:
    115			if (sval < 0 || sval > U16_MAX)
    116				return -ERANGE;
    117			break;
    118		case RELOC_OP_PREL:
    119			if (sval < S16_MIN || sval > S16_MAX)
    120				return -ERANGE;
    121			break;
    122		default:
    123			pr_err("Invalid 16-bit data relocation (%d)\n", op);
    124			return 0;
    125		}
    126		break;
    127	case 32:
    128		*(s32 *)place = sval;
    129		switch (op) {
    130		case RELOC_OP_ABS:
    131			if (sval < 0 || sval > U32_MAX)
    132				return -ERANGE;
    133			break;
    134		case RELOC_OP_PREL:
    135			if (sval < S32_MIN || sval > S32_MAX)
    136				return -ERANGE;
    137			break;
    138		default:
    139			pr_err("Invalid 32-bit data relocation (%d)\n", op);
    140			return 0;
    141		}
    142		break;
    143	case 64:
    144		*(s64 *)place = sval;
    145		break;
    146	default:
    147		pr_err("Invalid length (%d) for data relocation\n", len);
    148		return 0;
    149	}
    150	return 0;
    151}
    152
    153enum aarch64_insn_movw_imm_type {
    154	AARCH64_INSN_IMM_MOVNZ,
    155	AARCH64_INSN_IMM_MOVKZ,
    156};
    157
    158static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
    159			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
    160{
    161	u64 imm;
    162	s64 sval;
    163	u32 insn = le32_to_cpu(*place);
    164
    165	sval = do_reloc(op, place, val);
    166	imm = sval >> lsb;
    167
    168	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
    169		/*
    170		 * For signed MOVW relocations, we have to manipulate the
    171		 * instruction encoding depending on whether or not the
    172		 * immediate is less than zero.
    173		 */
    174		insn &= ~(3 << 29);
    175		if (sval >= 0) {
    176			/* >=0: Set the instruction to MOVZ (opcode 10b). */
    177			insn |= 2 << 29;
    178		} else {
    179			/*
    180			 * <0: Set the instruction to MOVN (opcode 00b).
    181			 *     Since we've masked the opcode already, we
    182			 *     don't need to do anything other than
    183			 *     inverting the new immediate field.
    184			 */
    185			imm = ~imm;
    186		}
    187	}
    188
    189	/* Update the instruction with the new encoding. */
    190	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
    191	*place = cpu_to_le32(insn);
    192
    193	if (imm > U16_MAX)
    194		return -ERANGE;
    195
    196	return 0;
    197}
    198
    199static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
    200			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
    201{
    202	u64 imm, imm_mask;
    203	s64 sval;
    204	u32 insn = le32_to_cpu(*place);
    205
    206	/* Calculate the relocation value. */
    207	sval = do_reloc(op, place, val);
    208	sval >>= lsb;
    209
    210	/* Extract the value bits and shift them to bit 0. */
    211	imm_mask = (BIT(lsb + len) - 1) >> lsb;
    212	imm = sval & imm_mask;
    213
    214	/* Update the instruction's immediate field. */
    215	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
    216	*place = cpu_to_le32(insn);
    217
    218	/*
    219	 * Extract the upper value bits (including the sign bit) and
    220	 * shift them to bit 0.
    221	 */
    222	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
    223
    224	/*
    225	 * Overflow has occurred if the upper bits are not all equal to
    226	 * the sign bit of the value.
    227	 */
    228	if ((u64)(sval + 1) >= 2)
    229		return -ERANGE;
    230
    231	return 0;
    232}
    233
    234static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
    235			   __le32 *place, u64 val)
    236{
    237	u32 insn;
    238
    239	if (!is_forbidden_offset_for_adrp(place))
    240		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
    241				      AARCH64_INSN_IMM_ADR);
    242
    243	/* patch ADRP to ADR if it is in range */
    244	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
    245			    AARCH64_INSN_IMM_ADR)) {
    246		insn = le32_to_cpu(*place);
    247		insn &= ~BIT(31);
    248	} else {
    249		/* out of range for ADR -> emit a veneer */
    250		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
    251		if (!val)
    252			return -ENOEXEC;
    253		insn = aarch64_insn_gen_branch_imm((u64)place, val,
    254						   AARCH64_INSN_BRANCH_NOLINK);
    255	}
    256
    257	*place = cpu_to_le32(insn);
    258	return 0;
    259}
    260
    261int apply_relocate_add(Elf64_Shdr *sechdrs,
    262		       const char *strtab,
    263		       unsigned int symindex,
    264		       unsigned int relsec,
    265		       struct module *me)
    266{
    267	unsigned int i;
    268	int ovf;
    269	bool overflow_check;
    270	Elf64_Sym *sym;
    271	void *loc;
    272	u64 val;
    273	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
    274
    275	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
    276		/* loc corresponds to P in the AArch64 ELF document. */
    277		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
    278			+ rel[i].r_offset;
    279
    280		/* sym is the ELF symbol we're referring to. */
    281		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
    282			+ ELF64_R_SYM(rel[i].r_info);
    283
    284		/* val corresponds to (S + A) in the AArch64 ELF document. */
    285		val = sym->st_value + rel[i].r_addend;
    286
    287		/* Check for overflow by default. */
    288		overflow_check = true;
    289
    290		/* Perform the static relocation. */
    291		switch (ELF64_R_TYPE(rel[i].r_info)) {
    292		/* Null relocations. */
    293		case R_ARM_NONE:
    294		case R_AARCH64_NONE:
    295			ovf = 0;
    296			break;
    297
    298		/* Data relocations. */
    299		case R_AARCH64_ABS64:
    300			overflow_check = false;
    301			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
    302			break;
    303		case R_AARCH64_ABS32:
    304			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
    305			break;
    306		case R_AARCH64_ABS16:
    307			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
    308			break;
    309		case R_AARCH64_PREL64:
    310			overflow_check = false;
    311			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
    312			break;
    313		case R_AARCH64_PREL32:
    314			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
    315			break;
    316		case R_AARCH64_PREL16:
    317			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
    318			break;
    319
    320		/* MOVW instruction relocations. */
    321		case R_AARCH64_MOVW_UABS_G0_NC:
    322			overflow_check = false;
    323			fallthrough;
    324		case R_AARCH64_MOVW_UABS_G0:
    325			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
    326					      AARCH64_INSN_IMM_MOVKZ);
    327			break;
    328		case R_AARCH64_MOVW_UABS_G1_NC:
    329			overflow_check = false;
    330			fallthrough;
    331		case R_AARCH64_MOVW_UABS_G1:
    332			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
    333					      AARCH64_INSN_IMM_MOVKZ);
    334			break;
    335		case R_AARCH64_MOVW_UABS_G2_NC:
    336			overflow_check = false;
    337			fallthrough;
    338		case R_AARCH64_MOVW_UABS_G2:
    339			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
    340					      AARCH64_INSN_IMM_MOVKZ);
    341			break;
    342		case R_AARCH64_MOVW_UABS_G3:
    343			/* We're using the top bits so we can't overflow. */
    344			overflow_check = false;
    345			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
    346					      AARCH64_INSN_IMM_MOVKZ);
    347			break;
    348		case R_AARCH64_MOVW_SABS_G0:
    349			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
    350					      AARCH64_INSN_IMM_MOVNZ);
    351			break;
    352		case R_AARCH64_MOVW_SABS_G1:
    353			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
    354					      AARCH64_INSN_IMM_MOVNZ);
    355			break;
    356		case R_AARCH64_MOVW_SABS_G2:
    357			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
    358					      AARCH64_INSN_IMM_MOVNZ);
    359			break;
    360		case R_AARCH64_MOVW_PREL_G0_NC:
    361			overflow_check = false;
    362			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
    363					      AARCH64_INSN_IMM_MOVKZ);
    364			break;
    365		case R_AARCH64_MOVW_PREL_G0:
    366			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
    367					      AARCH64_INSN_IMM_MOVNZ);
    368			break;
    369		case R_AARCH64_MOVW_PREL_G1_NC:
    370			overflow_check = false;
    371			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
    372					      AARCH64_INSN_IMM_MOVKZ);
    373			break;
    374		case R_AARCH64_MOVW_PREL_G1:
    375			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
    376					      AARCH64_INSN_IMM_MOVNZ);
    377			break;
    378		case R_AARCH64_MOVW_PREL_G2_NC:
    379			overflow_check = false;
    380			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
    381					      AARCH64_INSN_IMM_MOVKZ);
    382			break;
    383		case R_AARCH64_MOVW_PREL_G2:
    384			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
    385					      AARCH64_INSN_IMM_MOVNZ);
    386			break;
    387		case R_AARCH64_MOVW_PREL_G3:
    388			/* We're using the top bits so we can't overflow. */
    389			overflow_check = false;
    390			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
    391					      AARCH64_INSN_IMM_MOVNZ);
    392			break;
    393
    394		/* Immediate instruction relocations. */
    395		case R_AARCH64_LD_PREL_LO19:
    396			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
    397					     AARCH64_INSN_IMM_19);
    398			break;
    399		case R_AARCH64_ADR_PREL_LO21:
    400			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
    401					     AARCH64_INSN_IMM_ADR);
    402			break;
    403		case R_AARCH64_ADR_PREL_PG_HI21_NC:
    404			overflow_check = false;
    405			fallthrough;
    406		case R_AARCH64_ADR_PREL_PG_HI21:
    407			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
    408			if (ovf && ovf != -ERANGE)
    409				return ovf;
    410			break;
    411		case R_AARCH64_ADD_ABS_LO12_NC:
    412		case R_AARCH64_LDST8_ABS_LO12_NC:
    413			overflow_check = false;
    414			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
    415					     AARCH64_INSN_IMM_12);
    416			break;
    417		case R_AARCH64_LDST16_ABS_LO12_NC:
    418			overflow_check = false;
    419			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
    420					     AARCH64_INSN_IMM_12);
    421			break;
    422		case R_AARCH64_LDST32_ABS_LO12_NC:
    423			overflow_check = false;
    424			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
    425					     AARCH64_INSN_IMM_12);
    426			break;
    427		case R_AARCH64_LDST64_ABS_LO12_NC:
    428			overflow_check = false;
    429			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
    430					     AARCH64_INSN_IMM_12);
    431			break;
    432		case R_AARCH64_LDST128_ABS_LO12_NC:
    433			overflow_check = false;
    434			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
    435					     AARCH64_INSN_IMM_12);
    436			break;
    437		case R_AARCH64_TSTBR14:
    438			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
    439					     AARCH64_INSN_IMM_14);
    440			break;
    441		case R_AARCH64_CONDBR19:
    442			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
    443					     AARCH64_INSN_IMM_19);
    444			break;
    445		case R_AARCH64_JUMP26:
    446		case R_AARCH64_CALL26:
    447			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
    448					     AARCH64_INSN_IMM_26);
    449
    450			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
    451			    ovf == -ERANGE) {
    452				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
    453				if (!val)
    454					return -ENOEXEC;
    455				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
    456						     26, AARCH64_INSN_IMM_26);
    457			}
    458			break;
    459
    460		default:
    461			pr_err("module %s: unsupported RELA relocation: %llu\n",
    462			       me->name, ELF64_R_TYPE(rel[i].r_info));
    463			return -ENOEXEC;
    464		}
    465
    466		if (overflow_check && ovf == -ERANGE)
    467			goto overflow;
    468
    469	}
    470
    471	return 0;
    472
    473overflow:
    474	pr_err("module %s: overflow in relocation type %d val %Lx\n",
    475	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
    476	return -ENOEXEC;
    477}
    478
    479static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
    480				    const Elf_Shdr *sechdrs,
    481				    const char *name)
    482{
    483	const Elf_Shdr *s, *se;
    484	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
    485
    486	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
    487		if (strcmp(name, secstrs + s->sh_name) == 0)
    488			return s;
    489	}
    490
    491	return NULL;
    492}
    493
    494static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
    495{
    496	*plt = get_plt_entry(addr, plt);
    497}
    498
    499static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
    500				  const Elf_Shdr *sechdrs,
    501				  struct module *mod)
    502{
    503#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
    504	const Elf_Shdr *s;
    505	struct plt_entry *plts;
    506
    507	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
    508	if (!s)
    509		return -ENOEXEC;
    510
    511	plts = (void *)s->sh_addr;
    512
    513	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
    514
    515	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
    516		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
    517
    518	mod->arch.ftrace_trampolines = plts;
    519#endif
    520	return 0;
    521}
    522
    523int module_finalize(const Elf_Ehdr *hdr,
    524		    const Elf_Shdr *sechdrs,
    525		    struct module *me)
    526{
    527	const Elf_Shdr *s;
    528	s = find_section(hdr, sechdrs, ".altinstructions");
    529	if (s)
    530		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
    531
    532	return module_init_ftrace_plt(hdr, sechdrs, me);
    533}