cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

mte.c (14856B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2020 ARM Ltd.
      4 */
      5
      6#include <linux/bitops.h>
      7#include <linux/cpu.h>
      8#include <linux/kernel.h>
      9#include <linux/mm.h>
     10#include <linux/prctl.h>
     11#include <linux/sched.h>
     12#include <linux/sched/mm.h>
     13#include <linux/string.h>
     14#include <linux/swap.h>
     15#include <linux/swapops.h>
     16#include <linux/thread_info.h>
     17#include <linux/types.h>
     18#include <linux/uaccess.h>
     19#include <linux/uio.h>
     20
     21#include <asm/barrier.h>
     22#include <asm/cpufeature.h>
     23#include <asm/mte.h>
     24#include <asm/ptrace.h>
     25#include <asm/sysreg.h>
     26
     27static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
     28
     29#ifdef CONFIG_KASAN_HW_TAGS
     30/*
     31 * The asynchronous and asymmetric MTE modes have the same behavior for
     32 * store operations. This flag is set when either of these modes is enabled.
     33 */
     34DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
     35EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
     36#endif
     37
     38static void mte_sync_page_tags(struct page *page, pte_t old_pte,
     39			       bool check_swap, bool pte_is_tagged)
     40{
     41	if (check_swap && is_swap_pte(old_pte)) {
     42		swp_entry_t entry = pte_to_swp_entry(old_pte);
     43
     44		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
     45			return;
     46	}
     47
     48	if (!pte_is_tagged)
     49		return;
     50
     51	page_kasan_tag_reset(page);
     52	/*
     53	 * We need smp_wmb() in between setting the flags and clearing the
     54	 * tags because if another thread reads page->flags and builds a
     55	 * tagged address out of it, there is an actual dependency to the
     56	 * memory access, but on the current thread we do not guarantee that
     57	 * the new page->flags are visible before the tags were updated.
     58	 */
     59	smp_wmb();
     60	mte_clear_page_tags(page_address(page));
     61}
     62
     63void mte_sync_tags(pte_t old_pte, pte_t pte)
     64{
     65	struct page *page = pte_page(pte);
     66	long i, nr_pages = compound_nr(page);
     67	bool check_swap = nr_pages == 1;
     68	bool pte_is_tagged = pte_tagged(pte);
     69
     70	/* Early out if there's nothing to do */
     71	if (!check_swap && !pte_is_tagged)
     72		return;
     73
     74	/* if PG_mte_tagged is set, tags have already been initialised */
     75	for (i = 0; i < nr_pages; i++, page++) {
     76		if (!test_and_set_bit(PG_mte_tagged, &page->flags))
     77			mte_sync_page_tags(page, old_pte, check_swap,
     78					   pte_is_tagged);
     79	}
     80
     81	/* ensure the tags are visible before the PTE is set */
     82	smp_wmb();
     83}
     84
     85int memcmp_pages(struct page *page1, struct page *page2)
     86{
     87	char *addr1, *addr2;
     88	int ret;
     89
     90	addr1 = page_address(page1);
     91	addr2 = page_address(page2);
     92	ret = memcmp(addr1, addr2, PAGE_SIZE);
     93
     94	if (!system_supports_mte() || ret)
     95		return ret;
     96
     97	/*
     98	 * If the page content is identical but at least one of the pages is
     99	 * tagged, return non-zero to avoid KSM merging. If only one of the
    100	 * pages is tagged, set_pte_at() may zero or change the tags of the
    101	 * other page via mte_sync_tags().
    102	 */
    103	if (test_bit(PG_mte_tagged, &page1->flags) ||
    104	    test_bit(PG_mte_tagged, &page2->flags))
    105		return addr1 != addr2;
    106
    107	return ret;
    108}
    109
    110static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
    111{
    112	/* Enable MTE Sync Mode for EL1. */
    113	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
    114			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
    115	isb();
    116
    117	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
    118}
    119
    120#ifdef CONFIG_KASAN_HW_TAGS
    121void mte_enable_kernel_sync(void)
    122{
    123	/*
    124	 * Make sure we enter this function when no PE has set
    125	 * async mode previously.
    126	 */
    127	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
    128			"MTE async mode enabled system wide!");
    129
    130	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
    131}
    132
    133void mte_enable_kernel_async(void)
    134{
    135	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
    136
    137	/*
    138	 * MTE async mode is set system wide by the first PE that
    139	 * executes this function.
    140	 *
    141	 * Note: If in future KASAN acquires a runtime switching
    142	 * mode in between sync and async, this strategy needs
    143	 * to be reviewed.
    144	 */
    145	if (!system_uses_mte_async_or_asymm_mode())
    146		static_branch_enable(&mte_async_or_asymm_mode);
    147}
    148
    149void mte_enable_kernel_asymm(void)
    150{
    151	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
    152		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
    153
    154		/*
    155		 * MTE asymm mode behaves as async mode for store
    156		 * operations. The mode is set system wide by the
    157		 * first PE that executes this function.
    158		 *
    159		 * Note: If in future KASAN acquires a runtime switching
    160		 * mode in between sync and async, this strategy needs
    161		 * to be reviewed.
    162		 */
    163		if (!system_uses_mte_async_or_asymm_mode())
    164			static_branch_enable(&mte_async_or_asymm_mode);
    165	} else {
    166		/*
    167		 * If the CPU does not support MTE asymmetric mode the
    168		 * kernel falls back on synchronous mode which is the
    169		 * default for kasan=on.
    170		 */
    171		mte_enable_kernel_sync();
    172	}
    173}
    174#endif
    175
    176#ifdef CONFIG_KASAN_HW_TAGS
    177void mte_check_tfsr_el1(void)
    178{
    179	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
    180
    181	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
    182		/*
    183		 * Note: isb() is not required after this direct write
    184		 * because there is no indirect read subsequent to it
    185		 * (per ARM DDI 0487F.c table D13-1).
    186		 */
    187		write_sysreg_s(0, SYS_TFSR_EL1);
    188
    189		kasan_report_async();
    190	}
    191}
    192#endif
    193
    194/*
    195 * This is where we actually resolve the system and process MTE mode
    196 * configuration into an actual value in SCTLR_EL1 that affects
    197 * userspace.
    198 */
    199static void mte_update_sctlr_user(struct task_struct *task)
    200{
    201	/*
    202	 * This must be called with preemption disabled and can only be called
    203	 * on the current or next task since the CPU must match where the thread
    204	 * is going to run. The caller is responsible for calling
    205	 * update_sctlr_el1() later in the same preemption disabled block.
    206	 */
    207	unsigned long sctlr = task->thread.sctlr_user;
    208	unsigned long mte_ctrl = task->thread.mte_ctrl;
    209	unsigned long pref, resolved_mte_tcf;
    210
    211	pref = __this_cpu_read(mte_tcf_preferred);
    212	/*
    213	 * If there is no overlap between the system preferred and
    214	 * program requested values go with what was requested.
    215	 */
    216	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
    217	sctlr &= ~SCTLR_EL1_TCF0_MASK;
    218	/*
    219	 * Pick an actual setting. The order in which we check for
    220	 * set bits and map into register values determines our
    221	 * default order.
    222	 */
    223	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
    224		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
    225	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
    226		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
    227	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
    228		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
    229	task->thread.sctlr_user = sctlr;
    230}
    231
    232static void mte_update_gcr_excl(struct task_struct *task)
    233{
    234	/*
    235	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
    236	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
    237	 */
    238	if (kasan_hw_tags_enabled())
    239		return;
    240
    241	write_sysreg_s(
    242		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
    243		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
    244		SYS_GCR_EL1);
    245}
    246
    247#ifdef CONFIG_KASAN_HW_TAGS
    248/* Only called from assembly, silence sparse */
    249void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
    250				 __le32 *updptr, int nr_inst);
    251
    252void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
    253				 __le32 *updptr, int nr_inst)
    254{
    255	BUG_ON(nr_inst != 1); /* Branch -> NOP */
    256
    257	if (kasan_hw_tags_enabled())
    258		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
    259}
    260#endif
    261
    262void mte_thread_init_user(void)
    263{
    264	if (!system_supports_mte())
    265		return;
    266
    267	/* clear any pending asynchronous tag fault */
    268	dsb(ish);
    269	write_sysreg_s(0, SYS_TFSRE0_EL1);
    270	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
    271	/* disable tag checking and reset tag generation mask */
    272	set_mte_ctrl(current, 0);
    273}
    274
    275void mte_thread_switch(struct task_struct *next)
    276{
    277	if (!system_supports_mte())
    278		return;
    279
    280	mte_update_sctlr_user(next);
    281	mte_update_gcr_excl(next);
    282
    283	/* TCO may not have been disabled on exception entry for the current task. */
    284	mte_disable_tco_entry(next);
    285
    286	/*
    287	 * Check if an async tag exception occurred at EL1.
    288	 *
    289	 * Note: On the context switch path we rely on the dsb() present
    290	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
    291	 * are synchronized before this point.
    292	 */
    293	isb();
    294	mte_check_tfsr_el1();
    295}
    296
    297void mte_suspend_enter(void)
    298{
    299	if (!system_supports_mte())
    300		return;
    301
    302	/*
    303	 * The barriers are required to guarantee that the indirect writes
    304	 * to TFSR_EL1 are synchronized before we report the state.
    305	 */
    306	dsb(nsh);
    307	isb();
    308
    309	/* Report SYS_TFSR_EL1 before suspend entry */
    310	mte_check_tfsr_el1();
    311}
    312
    313long set_mte_ctrl(struct task_struct *task, unsigned long arg)
    314{
    315	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
    316			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
    317
    318	if (!system_supports_mte())
    319		return 0;
    320
    321	if (arg & PR_MTE_TCF_ASYNC)
    322		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
    323	if (arg & PR_MTE_TCF_SYNC)
    324		mte_ctrl |= MTE_CTRL_TCF_SYNC;
    325
    326	/*
    327	 * If the system supports it and both sync and async modes are
    328	 * specified then implicitly enable asymmetric mode.
    329	 * Userspace could see a mix of both sync and async anyway due
    330	 * to differing or changing defaults on CPUs.
    331	 */
    332	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
    333	    (arg & PR_MTE_TCF_ASYNC) &&
    334	    (arg & PR_MTE_TCF_SYNC))
    335		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
    336
    337	task->thread.mte_ctrl = mte_ctrl;
    338	if (task == current) {
    339		preempt_disable();
    340		mte_update_sctlr_user(task);
    341		mte_update_gcr_excl(task);
    342		update_sctlr_el1(task->thread.sctlr_user);
    343		preempt_enable();
    344	}
    345
    346	return 0;
    347}
    348
    349long get_mte_ctrl(struct task_struct *task)
    350{
    351	unsigned long ret;
    352	u64 mte_ctrl = task->thread.mte_ctrl;
    353	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
    354		   SYS_GCR_EL1_EXCL_MASK;
    355
    356	if (!system_supports_mte())
    357		return 0;
    358
    359	ret = incl << PR_MTE_TAG_SHIFT;
    360	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
    361		ret |= PR_MTE_TCF_ASYNC;
    362	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
    363		ret |= PR_MTE_TCF_SYNC;
    364
    365	return ret;
    366}
    367
    368/*
    369 * Access MTE tags in another process' address space as given in mm. Update
    370 * the number of tags copied. Return 0 if any tags copied, error otherwise.
    371 * Inspired by __access_remote_vm().
    372 */
    373static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
    374				struct iovec *kiov, unsigned int gup_flags)
    375{
    376	struct vm_area_struct *vma;
    377	void __user *buf = kiov->iov_base;
    378	size_t len = kiov->iov_len;
    379	int ret;
    380	int write = gup_flags & FOLL_WRITE;
    381
    382	if (!access_ok(buf, len))
    383		return -EFAULT;
    384
    385	if (mmap_read_lock_killable(mm))
    386		return -EIO;
    387
    388	while (len) {
    389		unsigned long tags, offset;
    390		void *maddr;
    391		struct page *page = NULL;
    392
    393		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
    394					    &vma, NULL);
    395		if (ret <= 0)
    396			break;
    397
    398		/*
    399		 * Only copy tags if the page has been mapped as PROT_MTE
    400		 * (PG_mte_tagged set). Otherwise the tags are not valid and
    401		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
    402		 * would cause the existing tags to be cleared if the page
    403		 * was never mapped with PROT_MTE.
    404		 */
    405		if (!(vma->vm_flags & VM_MTE)) {
    406			ret = -EOPNOTSUPP;
    407			put_page(page);
    408			break;
    409		}
    410		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
    411
    412		/* limit access to the end of the page */
    413		offset = offset_in_page(addr);
    414		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
    415
    416		maddr = page_address(page);
    417		if (write) {
    418			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
    419			set_page_dirty_lock(page);
    420		} else {
    421			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
    422		}
    423		put_page(page);
    424
    425		/* error accessing the tracer's buffer */
    426		if (!tags)
    427			break;
    428
    429		len -= tags;
    430		buf += tags;
    431		addr += tags * MTE_GRANULE_SIZE;
    432	}
    433	mmap_read_unlock(mm);
    434
    435	/* return an error if no tags copied */
    436	kiov->iov_len = buf - kiov->iov_base;
    437	if (!kiov->iov_len) {
    438		/* check for error accessing the tracee's address space */
    439		if (ret <= 0)
    440			return -EIO;
    441		else
    442			return -EFAULT;
    443	}
    444
    445	return 0;
    446}
    447
    448/*
    449 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
    450 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
    451 */
    452static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
    453			      struct iovec *kiov, unsigned int gup_flags)
    454{
    455	struct mm_struct *mm;
    456	int ret;
    457
    458	mm = get_task_mm(tsk);
    459	if (!mm)
    460		return -EPERM;
    461
    462	if (!tsk->ptrace || (current != tsk->parent) ||
    463	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
    464	     !ptracer_capable(tsk, mm->user_ns))) {
    465		mmput(mm);
    466		return -EPERM;
    467	}
    468
    469	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
    470	mmput(mm);
    471
    472	return ret;
    473}
    474
    475int mte_ptrace_copy_tags(struct task_struct *child, long request,
    476			 unsigned long addr, unsigned long data)
    477{
    478	int ret;
    479	struct iovec kiov;
    480	struct iovec __user *uiov = (void __user *)data;
    481	unsigned int gup_flags = FOLL_FORCE;
    482
    483	if (!system_supports_mte())
    484		return -EIO;
    485
    486	if (get_user(kiov.iov_base, &uiov->iov_base) ||
    487	    get_user(kiov.iov_len, &uiov->iov_len))
    488		return -EFAULT;
    489
    490	if (request == PTRACE_POKEMTETAGS)
    491		gup_flags |= FOLL_WRITE;
    492
    493	/* align addr to the MTE tag granule */
    494	addr &= MTE_GRANULE_MASK;
    495
    496	ret = access_remote_tags(child, addr, &kiov, gup_flags);
    497	if (!ret)
    498		ret = put_user(kiov.iov_len, &uiov->iov_len);
    499
    500	return ret;
    501}
    502
    503static ssize_t mte_tcf_preferred_show(struct device *dev,
    504				      struct device_attribute *attr, char *buf)
    505{
    506	switch (per_cpu(mte_tcf_preferred, dev->id)) {
    507	case MTE_CTRL_TCF_ASYNC:
    508		return sysfs_emit(buf, "async\n");
    509	case MTE_CTRL_TCF_SYNC:
    510		return sysfs_emit(buf, "sync\n");
    511	case MTE_CTRL_TCF_ASYMM:
    512		return sysfs_emit(buf, "asymm\n");
    513	default:
    514		return sysfs_emit(buf, "???\n");
    515	}
    516}
    517
    518static ssize_t mte_tcf_preferred_store(struct device *dev,
    519				       struct device_attribute *attr,
    520				       const char *buf, size_t count)
    521{
    522	u64 tcf;
    523
    524	if (sysfs_streq(buf, "async"))
    525		tcf = MTE_CTRL_TCF_ASYNC;
    526	else if (sysfs_streq(buf, "sync"))
    527		tcf = MTE_CTRL_TCF_SYNC;
    528	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
    529		tcf = MTE_CTRL_TCF_ASYMM;
    530	else
    531		return -EINVAL;
    532
    533	device_lock(dev);
    534	per_cpu(mte_tcf_preferred, dev->id) = tcf;
    535	device_unlock(dev);
    536
    537	return count;
    538}
    539static DEVICE_ATTR_RW(mte_tcf_preferred);
    540
    541static int register_mte_tcf_preferred_sysctl(void)
    542{
    543	unsigned int cpu;
    544
    545	if (!system_supports_mte())
    546		return 0;
    547
    548	for_each_possible_cpu(cpu) {
    549		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
    550		device_create_file(get_cpu_device(cpu),
    551				   &dev_attr_mte_tcf_preferred);
    552	}
    553
    554	return 0;
    555}
    556subsys_initcall(register_mte_tcf_preferred_sysctl);
    557
    558/*
    559 * Return 0 on success, the number of bytes not probed otherwise.
    560 */
    561size_t mte_probe_user_range(const char __user *uaddr, size_t size)
    562{
    563	const char __user *end = uaddr + size;
    564	int err = 0;
    565	char val;
    566
    567	__raw_get_user(val, uaddr, err);
    568	if (err)
    569		return size;
    570
    571	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
    572	while (uaddr < end) {
    573		/*
    574		 * A read is sufficient for mte, the caller should have probed
    575		 * for the pte write permission if required.
    576		 */
    577		__raw_get_user(val, uaddr, err);
    578		if (err)
    579			return end - uaddr;
    580		uaddr += MTE_GRANULE_SIZE;
    581	}
    582	(void)val;
    583
    584	return 0;
    585}