process.c (19962B)
1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Based on arch/arm/kernel/process.c 4 * 5 * Original Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1996-2000 Russell King - Converted to ARM. 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9#include <linux/compat.h> 10#include <linux/efi.h> 11#include <linux/elf.h> 12#include <linux/export.h> 13#include <linux/sched.h> 14#include <linux/sched/debug.h> 15#include <linux/sched/task.h> 16#include <linux/sched/task_stack.h> 17#include <linux/kernel.h> 18#include <linux/mman.h> 19#include <linux/mm.h> 20#include <linux/nospec.h> 21#include <linux/stddef.h> 22#include <linux/sysctl.h> 23#include <linux/unistd.h> 24#include <linux/user.h> 25#include <linux/delay.h> 26#include <linux/reboot.h> 27#include <linux/interrupt.h> 28#include <linux/init.h> 29#include <linux/cpu.h> 30#include <linux/elfcore.h> 31#include <linux/pm.h> 32#include <linux/tick.h> 33#include <linux/utsname.h> 34#include <linux/uaccess.h> 35#include <linux/random.h> 36#include <linux/hw_breakpoint.h> 37#include <linux/personality.h> 38#include <linux/notifier.h> 39#include <trace/events/power.h> 40#include <linux/percpu.h> 41#include <linux/thread_info.h> 42#include <linux/prctl.h> 43#include <linux/stacktrace.h> 44 45#include <asm/alternative.h> 46#include <asm/compat.h> 47#include <asm/cpufeature.h> 48#include <asm/cacheflush.h> 49#include <asm/exec.h> 50#include <asm/fpsimd.h> 51#include <asm/mmu_context.h> 52#include <asm/mte.h> 53#include <asm/processor.h> 54#include <asm/pointer_auth.h> 55#include <asm/stacktrace.h> 56#include <asm/switch_to.h> 57#include <asm/system_misc.h> 58 59#if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK) 60#include <linux/stackprotector.h> 61unsigned long __stack_chk_guard __ro_after_init; 62EXPORT_SYMBOL(__stack_chk_guard); 63#endif 64 65/* 66 * Function pointers to optional machine specific functions 67 */ 68void (*pm_power_off)(void); 69EXPORT_SYMBOL_GPL(pm_power_off); 70 71#ifdef CONFIG_HOTPLUG_CPU 72void arch_cpu_idle_dead(void) 73{ 74 cpu_die(); 75} 76#endif 77 78/* 79 * Called by kexec, immediately prior to machine_kexec(). 80 * 81 * This must completely disable all secondary CPUs; simply causing those CPUs 82 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the 83 * kexec'd kernel to use any and all RAM as it sees fit, without having to 84 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug 85 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this. 86 */ 87void machine_shutdown(void) 88{ 89 smp_shutdown_nonboot_cpus(reboot_cpu); 90} 91 92/* 93 * Halting simply requires that the secondary CPUs stop performing any 94 * activity (executing tasks, handling interrupts). smp_send_stop() 95 * achieves this. 96 */ 97void machine_halt(void) 98{ 99 local_irq_disable(); 100 smp_send_stop(); 101 while (1); 102} 103 104/* 105 * Power-off simply requires that the secondary CPUs stop performing any 106 * activity (executing tasks, handling interrupts). smp_send_stop() 107 * achieves this. When the system power is turned off, it will take all CPUs 108 * with it. 109 */ 110void machine_power_off(void) 111{ 112 local_irq_disable(); 113 smp_send_stop(); 114 do_kernel_power_off(); 115} 116 117/* 118 * Restart requires that the secondary CPUs stop performing any activity 119 * while the primary CPU resets the system. Systems with multiple CPUs must 120 * provide a HW restart implementation, to ensure that all CPUs reset at once. 121 * This is required so that any code running after reset on the primary CPU 122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still 123 * executing pre-reset code, and using RAM that the primary CPU's code wishes 124 * to use. Implementing such co-ordination would be essentially impossible. 125 */ 126void machine_restart(char *cmd) 127{ 128 /* Disable interrupts first */ 129 local_irq_disable(); 130 smp_send_stop(); 131 132 /* 133 * UpdateCapsule() depends on the system being reset via 134 * ResetSystem(). 135 */ 136 if (efi_enabled(EFI_RUNTIME_SERVICES)) 137 efi_reboot(reboot_mode, NULL); 138 139 /* Now call the architecture specific reboot code. */ 140 do_kernel_restart(cmd); 141 142 /* 143 * Whoops - the architecture was unable to reboot. 144 */ 145 printk("Reboot failed -- System halted\n"); 146 while (1); 147} 148 149#define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str 150static const char *const btypes[] = { 151 bstr(NONE, "--"), 152 bstr( JC, "jc"), 153 bstr( C, "-c"), 154 bstr( J , "j-") 155}; 156#undef bstr 157 158static void print_pstate(struct pt_regs *regs) 159{ 160 u64 pstate = regs->pstate; 161 162 if (compat_user_mode(regs)) { 163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n", 164 pstate, 165 pstate & PSR_AA32_N_BIT ? 'N' : 'n', 166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z', 167 pstate & PSR_AA32_C_BIT ? 'C' : 'c', 168 pstate & PSR_AA32_V_BIT ? 'V' : 'v', 169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q', 170 pstate & PSR_AA32_T_BIT ? "T32" : "A32", 171 pstate & PSR_AA32_E_BIT ? "BE" : "LE", 172 pstate & PSR_AA32_A_BIT ? 'A' : 'a', 173 pstate & PSR_AA32_I_BIT ? 'I' : 'i', 174 pstate & PSR_AA32_F_BIT ? 'F' : 'f', 175 pstate & PSR_AA32_DIT_BIT ? '+' : '-', 176 pstate & PSR_AA32_SSBS_BIT ? '+' : '-'); 177 } else { 178 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >> 179 PSR_BTYPE_SHIFT]; 180 181 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n", 182 pstate, 183 pstate & PSR_N_BIT ? 'N' : 'n', 184 pstate & PSR_Z_BIT ? 'Z' : 'z', 185 pstate & PSR_C_BIT ? 'C' : 'c', 186 pstate & PSR_V_BIT ? 'V' : 'v', 187 pstate & PSR_D_BIT ? 'D' : 'd', 188 pstate & PSR_A_BIT ? 'A' : 'a', 189 pstate & PSR_I_BIT ? 'I' : 'i', 190 pstate & PSR_F_BIT ? 'F' : 'f', 191 pstate & PSR_PAN_BIT ? '+' : '-', 192 pstate & PSR_UAO_BIT ? '+' : '-', 193 pstate & PSR_TCO_BIT ? '+' : '-', 194 pstate & PSR_DIT_BIT ? '+' : '-', 195 pstate & PSR_SSBS_BIT ? '+' : '-', 196 btype_str); 197 } 198} 199 200void __show_regs(struct pt_regs *regs) 201{ 202 int i, top_reg; 203 u64 lr, sp; 204 205 if (compat_user_mode(regs)) { 206 lr = regs->compat_lr; 207 sp = regs->compat_sp; 208 top_reg = 12; 209 } else { 210 lr = regs->regs[30]; 211 sp = regs->sp; 212 top_reg = 29; 213 } 214 215 show_regs_print_info(KERN_DEFAULT); 216 print_pstate(regs); 217 218 if (!user_mode(regs)) { 219 printk("pc : %pS\n", (void *)regs->pc); 220 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr)); 221 } else { 222 printk("pc : %016llx\n", regs->pc); 223 printk("lr : %016llx\n", lr); 224 } 225 226 printk("sp : %016llx\n", sp); 227 228 if (system_uses_irq_prio_masking()) 229 printk("pmr_save: %08llx\n", regs->pmr_save); 230 231 i = top_reg; 232 233 while (i >= 0) { 234 printk("x%-2d: %016llx", i, regs->regs[i]); 235 236 while (i-- % 3) 237 pr_cont(" x%-2d: %016llx", i, regs->regs[i]); 238 239 pr_cont("\n"); 240 } 241} 242 243void show_regs(struct pt_regs *regs) 244{ 245 __show_regs(regs); 246 dump_backtrace(regs, NULL, KERN_DEFAULT); 247} 248 249static void tls_thread_flush(void) 250{ 251 write_sysreg(0, tpidr_el0); 252 if (system_supports_tpidr2()) 253 write_sysreg_s(0, SYS_TPIDR2_EL0); 254 255 if (is_compat_task()) { 256 current->thread.uw.tp_value = 0; 257 258 /* 259 * We need to ensure ordering between the shadow state and the 260 * hardware state, so that we don't corrupt the hardware state 261 * with a stale shadow state during context switch. 262 */ 263 barrier(); 264 write_sysreg(0, tpidrro_el0); 265 } 266} 267 268static void flush_tagged_addr_state(void) 269{ 270 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI)) 271 clear_thread_flag(TIF_TAGGED_ADDR); 272} 273 274void flush_thread(void) 275{ 276 fpsimd_flush_thread(); 277 tls_thread_flush(); 278 flush_ptrace_hw_breakpoint(current); 279 flush_tagged_addr_state(); 280} 281 282void release_thread(struct task_struct *dead_task) 283{ 284} 285 286void arch_release_task_struct(struct task_struct *tsk) 287{ 288 fpsimd_release_task(tsk); 289} 290 291int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src) 292{ 293 if (current->mm) 294 fpsimd_preserve_current_state(); 295 *dst = *src; 296 297 /* We rely on the above assignment to initialize dst's thread_flags: */ 298 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK)); 299 300 /* 301 * Detach src's sve_state (if any) from dst so that it does not 302 * get erroneously used or freed prematurely. dst's copies 303 * will be allocated on demand later on if dst uses SVE. 304 * For consistency, also clear TIF_SVE here: this could be done 305 * later in copy_process(), but to avoid tripping up future 306 * maintainers it is best not to leave TIF flags and buffers in 307 * an inconsistent state, even temporarily. 308 */ 309 dst->thread.sve_state = NULL; 310 clear_tsk_thread_flag(dst, TIF_SVE); 311 312 /* 313 * In the unlikely event that we create a new thread with ZA 314 * enabled we should retain the ZA state so duplicate it here. 315 * This may be shortly freed if we exec() or if CLONE_SETTLS 316 * but it's simpler to do it here. To avoid confusing the rest 317 * of the code ensure that we have a sve_state allocated 318 * whenever za_state is allocated. 319 */ 320 if (thread_za_enabled(&src->thread)) { 321 dst->thread.sve_state = kzalloc(sve_state_size(src), 322 GFP_KERNEL); 323 if (!dst->thread.sve_state) 324 return -ENOMEM; 325 dst->thread.za_state = kmemdup(src->thread.za_state, 326 za_state_size(src), 327 GFP_KERNEL); 328 if (!dst->thread.za_state) { 329 kfree(dst->thread.sve_state); 330 dst->thread.sve_state = NULL; 331 return -ENOMEM; 332 } 333 } else { 334 dst->thread.za_state = NULL; 335 clear_tsk_thread_flag(dst, TIF_SME); 336 } 337 338 /* clear any pending asynchronous tag fault raised by the parent */ 339 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT); 340 341 return 0; 342} 343 344asmlinkage void ret_from_fork(void) asm("ret_from_fork"); 345 346int copy_thread(struct task_struct *p, const struct kernel_clone_args *args) 347{ 348 unsigned long clone_flags = args->flags; 349 unsigned long stack_start = args->stack; 350 unsigned long tls = args->tls; 351 struct pt_regs *childregs = task_pt_regs(p); 352 353 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context)); 354 355 /* 356 * In case p was allocated the same task_struct pointer as some 357 * other recently-exited task, make sure p is disassociated from 358 * any cpu that may have run that now-exited task recently. 359 * Otherwise we could erroneously skip reloading the FPSIMD 360 * registers for p. 361 */ 362 fpsimd_flush_task_state(p); 363 364 ptrauth_thread_init_kernel(p); 365 366 if (likely(!args->fn)) { 367 *childregs = *current_pt_regs(); 368 childregs->regs[0] = 0; 369 370 /* 371 * Read the current TLS pointer from tpidr_el0 as it may be 372 * out-of-sync with the saved value. 373 */ 374 *task_user_tls(p) = read_sysreg(tpidr_el0); 375 if (system_supports_tpidr2()) 376 p->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 377 378 if (stack_start) { 379 if (is_compat_thread(task_thread_info(p))) 380 childregs->compat_sp = stack_start; 381 else 382 childregs->sp = stack_start; 383 } 384 385 /* 386 * If a TLS pointer was passed to clone, use it for the new 387 * thread. We also reset TPIDR2 if it's in use. 388 */ 389 if (clone_flags & CLONE_SETTLS) { 390 p->thread.uw.tp_value = tls; 391 p->thread.tpidr2_el0 = 0; 392 } 393 } else { 394 /* 395 * A kthread has no context to ERET to, so ensure any buggy 396 * ERET is treated as an illegal exception return. 397 * 398 * When a user task is created from a kthread, childregs will 399 * be initialized by start_thread() or start_compat_thread(). 400 */ 401 memset(childregs, 0, sizeof(struct pt_regs)); 402 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT; 403 404 p->thread.cpu_context.x19 = (unsigned long)args->fn; 405 p->thread.cpu_context.x20 = (unsigned long)args->fn_arg; 406 } 407 p->thread.cpu_context.pc = (unsigned long)ret_from_fork; 408 p->thread.cpu_context.sp = (unsigned long)childregs; 409 /* 410 * For the benefit of the unwinder, set up childregs->stackframe 411 * as the final frame for the new task. 412 */ 413 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe; 414 415 ptrace_hw_copy_thread(p); 416 417 return 0; 418} 419 420void tls_preserve_current_state(void) 421{ 422 *task_user_tls(current) = read_sysreg(tpidr_el0); 423 if (system_supports_tpidr2() && !is_compat_task()) 424 current->thread.tpidr2_el0 = read_sysreg_s(SYS_TPIDR2_EL0); 425} 426 427static void tls_thread_switch(struct task_struct *next) 428{ 429 tls_preserve_current_state(); 430 431 if (is_compat_thread(task_thread_info(next))) 432 write_sysreg(next->thread.uw.tp_value, tpidrro_el0); 433 else if (!arm64_kernel_unmapped_at_el0()) 434 write_sysreg(0, tpidrro_el0); 435 436 write_sysreg(*task_user_tls(next), tpidr_el0); 437 if (system_supports_tpidr2()) 438 write_sysreg_s(next->thread.tpidr2_el0, SYS_TPIDR2_EL0); 439} 440 441/* 442 * Force SSBS state on context-switch, since it may be lost after migrating 443 * from a CPU which treats the bit as RES0 in a heterogeneous system. 444 */ 445static void ssbs_thread_switch(struct task_struct *next) 446{ 447 /* 448 * Nothing to do for kernel threads, but 'regs' may be junk 449 * (e.g. idle task) so check the flags and bail early. 450 */ 451 if (unlikely(next->flags & PF_KTHREAD)) 452 return; 453 454 /* 455 * If all CPUs implement the SSBS extension, then we just need to 456 * context-switch the PSTATE field. 457 */ 458 if (cpus_have_const_cap(ARM64_SSBS)) 459 return; 460 461 spectre_v4_enable_task_mitigation(next); 462} 463 464/* 465 * We store our current task in sp_el0, which is clobbered by userspace. Keep a 466 * shadow copy so that we can restore this upon entry from userspace. 467 * 468 * This is *only* for exception entry from EL0, and is not valid until we 469 * __switch_to() a user task. 470 */ 471DEFINE_PER_CPU(struct task_struct *, __entry_task); 472 473static void entry_task_switch(struct task_struct *next) 474{ 475 __this_cpu_write(__entry_task, next); 476} 477 478/* 479 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT. 480 * Ensure access is disabled when switching to a 32bit task, ensure 481 * access is enabled when switching to a 64bit task. 482 */ 483static void erratum_1418040_thread_switch(struct task_struct *next) 484{ 485 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040) || 486 !this_cpu_has_cap(ARM64_WORKAROUND_1418040)) 487 return; 488 489 if (is_compat_thread(task_thread_info(next))) 490 sysreg_clear_set(cntkctl_el1, ARCH_TIMER_USR_VCT_ACCESS_EN, 0); 491 else 492 sysreg_clear_set(cntkctl_el1, 0, ARCH_TIMER_USR_VCT_ACCESS_EN); 493} 494 495static void erratum_1418040_new_exec(void) 496{ 497 preempt_disable(); 498 erratum_1418040_thread_switch(current); 499 preempt_enable(); 500} 501 502/* 503 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore 504 * this function must be called with preemption disabled and the update to 505 * sctlr_user must be made in the same preemption disabled block so that 506 * __switch_to() does not see the variable update before the SCTLR_EL1 one. 507 */ 508void update_sctlr_el1(u64 sctlr) 509{ 510 /* 511 * EnIA must not be cleared while in the kernel as this is necessary for 512 * in-kernel PAC. It will be cleared on kernel exit if needed. 513 */ 514 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr); 515 516 /* ISB required for the kernel uaccess routines when setting TCF0. */ 517 isb(); 518} 519 520/* 521 * Thread switching. 522 */ 523__notrace_funcgraph __sched 524struct task_struct *__switch_to(struct task_struct *prev, 525 struct task_struct *next) 526{ 527 struct task_struct *last; 528 529 fpsimd_thread_switch(next); 530 tls_thread_switch(next); 531 hw_breakpoint_thread_switch(next); 532 contextidr_thread_switch(next); 533 entry_task_switch(next); 534 ssbs_thread_switch(next); 535 erratum_1418040_thread_switch(next); 536 ptrauth_thread_switch_user(next); 537 538 /* 539 * Complete any pending TLB or cache maintenance on this CPU in case 540 * the thread migrates to a different CPU. 541 * This full barrier is also required by the membarrier system 542 * call. 543 */ 544 dsb(ish); 545 546 /* 547 * MTE thread switching must happen after the DSB above to ensure that 548 * any asynchronous tag check faults have been logged in the TFSR*_EL1 549 * registers. 550 */ 551 mte_thread_switch(next); 552 /* avoid expensive SCTLR_EL1 accesses if no change */ 553 if (prev->thread.sctlr_user != next->thread.sctlr_user) 554 update_sctlr_el1(next->thread.sctlr_user); 555 556 /* the actual thread switch */ 557 last = cpu_switch_to(prev, next); 558 559 return last; 560} 561 562struct wchan_info { 563 unsigned long pc; 564 int count; 565}; 566 567static bool get_wchan_cb(void *arg, unsigned long pc) 568{ 569 struct wchan_info *wchan_info = arg; 570 571 if (!in_sched_functions(pc)) { 572 wchan_info->pc = pc; 573 return false; 574 } 575 return wchan_info->count++ < 16; 576} 577 578unsigned long __get_wchan(struct task_struct *p) 579{ 580 struct wchan_info wchan_info = { 581 .pc = 0, 582 .count = 0, 583 }; 584 585 if (!try_get_task_stack(p)) 586 return 0; 587 588 arch_stack_walk(get_wchan_cb, &wchan_info, p, NULL); 589 590 put_task_stack(p); 591 592 return wchan_info.pc; 593} 594 595unsigned long arch_align_stack(unsigned long sp) 596{ 597 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) 598 sp -= get_random_int() & ~PAGE_MASK; 599 return sp & ~0xf; 600} 601 602#ifdef CONFIG_COMPAT 603int compat_elf_check_arch(const struct elf32_hdr *hdr) 604{ 605 if (!system_supports_32bit_el0()) 606 return false; 607 608 if ((hdr)->e_machine != EM_ARM) 609 return false; 610 611 if (!((hdr)->e_flags & EF_ARM_EABI_MASK)) 612 return false; 613 614 /* 615 * Prevent execve() of a 32-bit program from a deadline task 616 * if the restricted affinity mask would be inadmissible on an 617 * asymmetric system. 618 */ 619 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) || 620 !dl_task_check_affinity(current, system_32bit_el0_cpumask()); 621} 622#endif 623 624/* 625 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY. 626 */ 627void arch_setup_new_exec(void) 628{ 629 unsigned long mmflags = 0; 630 631 if (is_compat_task()) { 632 mmflags = MMCF_AARCH32; 633 634 /* 635 * Restrict the CPU affinity mask for a 32-bit task so that 636 * it contains only 32-bit-capable CPUs. 637 * 638 * From the perspective of the task, this looks similar to 639 * what would happen if the 64-bit-only CPUs were hot-unplugged 640 * at the point of execve(), although we try a bit harder to 641 * honour the cpuset hierarchy. 642 */ 643 if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) 644 force_compatible_cpus_allowed_ptr(current); 645 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) { 646 relax_compatible_cpus_allowed_ptr(current); 647 } 648 649 current->mm->context.flags = mmflags; 650 ptrauth_thread_init_user(); 651 mte_thread_init_user(); 652 erratum_1418040_new_exec(); 653 654 if (task_spec_ssb_noexec(current)) { 655 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS, 656 PR_SPEC_ENABLE); 657 } 658} 659 660#ifdef CONFIG_ARM64_TAGGED_ADDR_ABI 661/* 662 * Control the relaxed ABI allowing tagged user addresses into the kernel. 663 */ 664static unsigned int tagged_addr_disabled; 665 666long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg) 667{ 668 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE; 669 struct thread_info *ti = task_thread_info(task); 670 671 if (is_compat_thread(ti)) 672 return -EINVAL; 673 674 if (system_supports_mte()) 675 valid_mask |= PR_MTE_TCF_SYNC | PR_MTE_TCF_ASYNC \ 676 | PR_MTE_TAG_MASK; 677 678 if (arg & ~valid_mask) 679 return -EINVAL; 680 681 /* 682 * Do not allow the enabling of the tagged address ABI if globally 683 * disabled via sysctl abi.tagged_addr_disabled. 684 */ 685 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled) 686 return -EINVAL; 687 688 if (set_mte_ctrl(task, arg) != 0) 689 return -EINVAL; 690 691 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE); 692 693 return 0; 694} 695 696long get_tagged_addr_ctrl(struct task_struct *task) 697{ 698 long ret = 0; 699 struct thread_info *ti = task_thread_info(task); 700 701 if (is_compat_thread(ti)) 702 return -EINVAL; 703 704 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR)) 705 ret = PR_TAGGED_ADDR_ENABLE; 706 707 ret |= get_mte_ctrl(task); 708 709 return ret; 710} 711 712/* 713 * Global sysctl to disable the tagged user addresses support. This control 714 * only prevents the tagged address ABI enabling via prctl() and does not 715 * disable it for tasks that already opted in to the relaxed ABI. 716 */ 717 718static struct ctl_table tagged_addr_sysctl_table[] = { 719 { 720 .procname = "tagged_addr_disabled", 721 .mode = 0644, 722 .data = &tagged_addr_disabled, 723 .maxlen = sizeof(int), 724 .proc_handler = proc_dointvec_minmax, 725 .extra1 = SYSCTL_ZERO, 726 .extra2 = SYSCTL_ONE, 727 }, 728 { } 729}; 730 731static int __init tagged_addr_init(void) 732{ 733 if (!register_sysctl("abi", tagged_addr_sysctl_table)) 734 return -EINVAL; 735 return 0; 736} 737 738core_initcall(tagged_addr_init); 739#endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */ 740 741#ifdef CONFIG_BINFMT_ELF 742int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state, 743 bool has_interp, bool is_interp) 744{ 745 /* 746 * For dynamically linked executables the interpreter is 747 * responsible for setting PROT_BTI on everything except 748 * itself. 749 */ 750 if (is_interp != has_interp) 751 return prot; 752 753 if (!(state->flags & ARM64_ELF_BTI)) 754 return prot; 755 756 if (prot & PROT_EXEC) 757 prot |= PROT_BTI; 758 759 return prot; 760} 761#endif