cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

smp.c (25152B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * SMP initialisation and IPI support
      4 * Based on arch/arm/kernel/smp.c
      5 *
      6 * Copyright (C) 2012 ARM Ltd.
      7 */
      8
      9#include <linux/acpi.h>
     10#include <linux/arm_sdei.h>
     11#include <linux/delay.h>
     12#include <linux/init.h>
     13#include <linux/spinlock.h>
     14#include <linux/sched/mm.h>
     15#include <linux/sched/hotplug.h>
     16#include <linux/sched/task_stack.h>
     17#include <linux/interrupt.h>
     18#include <linux/cache.h>
     19#include <linux/profile.h>
     20#include <linux/errno.h>
     21#include <linux/mm.h>
     22#include <linux/err.h>
     23#include <linux/cpu.h>
     24#include <linux/smp.h>
     25#include <linux/seq_file.h>
     26#include <linux/irq.h>
     27#include <linux/irqchip/arm-gic-v3.h>
     28#include <linux/percpu.h>
     29#include <linux/clockchips.h>
     30#include <linux/completion.h>
     31#include <linux/of.h>
     32#include <linux/irq_work.h>
     33#include <linux/kernel_stat.h>
     34#include <linux/kexec.h>
     35#include <linux/kvm_host.h>
     36
     37#include <asm/alternative.h>
     38#include <asm/atomic.h>
     39#include <asm/cacheflush.h>
     40#include <asm/cpu.h>
     41#include <asm/cputype.h>
     42#include <asm/cpu_ops.h>
     43#include <asm/daifflags.h>
     44#include <asm/kvm_mmu.h>
     45#include <asm/mmu_context.h>
     46#include <asm/numa.h>
     47#include <asm/processor.h>
     48#include <asm/smp_plat.h>
     49#include <asm/sections.h>
     50#include <asm/tlbflush.h>
     51#include <asm/ptrace.h>
     52#include <asm/virt.h>
     53
     54#define CREATE_TRACE_POINTS
     55#include <trace/events/ipi.h>
     56
     57DEFINE_PER_CPU_READ_MOSTLY(int, cpu_number);
     58EXPORT_PER_CPU_SYMBOL(cpu_number);
     59
     60/*
     61 * as from 2.5, kernels no longer have an init_tasks structure
     62 * so we need some other way of telling a new secondary core
     63 * where to place its SVC stack
     64 */
     65struct secondary_data secondary_data;
     66/* Number of CPUs which aren't online, but looping in kernel text. */
     67static int cpus_stuck_in_kernel;
     68
     69enum ipi_msg_type {
     70	IPI_RESCHEDULE,
     71	IPI_CALL_FUNC,
     72	IPI_CPU_STOP,
     73	IPI_CPU_CRASH_STOP,
     74	IPI_TIMER,
     75	IPI_IRQ_WORK,
     76	IPI_WAKEUP,
     77	NR_IPI
     78};
     79
     80static int ipi_irq_base __read_mostly;
     81static int nr_ipi __read_mostly = NR_IPI;
     82static struct irq_desc *ipi_desc[NR_IPI] __read_mostly;
     83
     84static void ipi_setup(int cpu);
     85
     86#ifdef CONFIG_HOTPLUG_CPU
     87static void ipi_teardown(int cpu);
     88static int op_cpu_kill(unsigned int cpu);
     89#else
     90static inline int op_cpu_kill(unsigned int cpu)
     91{
     92	return -ENOSYS;
     93}
     94#endif
     95
     96
     97/*
     98 * Boot a secondary CPU, and assign it the specified idle task.
     99 * This also gives us the initial stack to use for this CPU.
    100 */
    101static int boot_secondary(unsigned int cpu, struct task_struct *idle)
    102{
    103	const struct cpu_operations *ops = get_cpu_ops(cpu);
    104
    105	if (ops->cpu_boot)
    106		return ops->cpu_boot(cpu);
    107
    108	return -EOPNOTSUPP;
    109}
    110
    111static DECLARE_COMPLETION(cpu_running);
    112
    113int __cpu_up(unsigned int cpu, struct task_struct *idle)
    114{
    115	int ret;
    116	long status;
    117
    118	/*
    119	 * We need to tell the secondary core where to find its stack and the
    120	 * page tables.
    121	 */
    122	secondary_data.task = idle;
    123	update_cpu_boot_status(CPU_MMU_OFF);
    124
    125	/* Now bring the CPU into our world */
    126	ret = boot_secondary(cpu, idle);
    127	if (ret) {
    128		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
    129		return ret;
    130	}
    131
    132	/*
    133	 * CPU was successfully started, wait for it to come online or
    134	 * time out.
    135	 */
    136	wait_for_completion_timeout(&cpu_running,
    137				    msecs_to_jiffies(5000));
    138	if (cpu_online(cpu))
    139		return 0;
    140
    141	pr_crit("CPU%u: failed to come online\n", cpu);
    142	secondary_data.task = NULL;
    143	status = READ_ONCE(secondary_data.status);
    144	if (status == CPU_MMU_OFF)
    145		status = READ_ONCE(__early_cpu_boot_status);
    146
    147	switch (status & CPU_BOOT_STATUS_MASK) {
    148	default:
    149		pr_err("CPU%u: failed in unknown state : 0x%lx\n",
    150		       cpu, status);
    151		cpus_stuck_in_kernel++;
    152		break;
    153	case CPU_KILL_ME:
    154		if (!op_cpu_kill(cpu)) {
    155			pr_crit("CPU%u: died during early boot\n", cpu);
    156			break;
    157		}
    158		pr_crit("CPU%u: may not have shut down cleanly\n", cpu);
    159		fallthrough;
    160	case CPU_STUCK_IN_KERNEL:
    161		pr_crit("CPU%u: is stuck in kernel\n", cpu);
    162		if (status & CPU_STUCK_REASON_52_BIT_VA)
    163			pr_crit("CPU%u: does not support 52-bit VAs\n", cpu);
    164		if (status & CPU_STUCK_REASON_NO_GRAN) {
    165			pr_crit("CPU%u: does not support %luK granule\n",
    166				cpu, PAGE_SIZE / SZ_1K);
    167		}
    168		cpus_stuck_in_kernel++;
    169		break;
    170	case CPU_PANIC_KERNEL:
    171		panic("CPU%u detected unsupported configuration\n", cpu);
    172	}
    173
    174	return -EIO;
    175}
    176
    177static void init_gic_priority_masking(void)
    178{
    179	u32 cpuflags;
    180
    181	if (WARN_ON(!gic_enable_sre()))
    182		return;
    183
    184	cpuflags = read_sysreg(daif);
    185
    186	WARN_ON(!(cpuflags & PSR_I_BIT));
    187	WARN_ON(!(cpuflags & PSR_F_BIT));
    188
    189	gic_write_pmr(GIC_PRIO_IRQON | GIC_PRIO_PSR_I_SET);
    190}
    191
    192/*
    193 * This is the secondary CPU boot entry.  We're using this CPUs
    194 * idle thread stack, but a set of temporary page tables.
    195 */
    196asmlinkage notrace void secondary_start_kernel(void)
    197{
    198	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
    199	struct mm_struct *mm = &init_mm;
    200	const struct cpu_operations *ops;
    201	unsigned int cpu = smp_processor_id();
    202
    203	/*
    204	 * All kernel threads share the same mm context; grab a
    205	 * reference and switch to it.
    206	 */
    207	mmgrab(mm);
    208	current->active_mm = mm;
    209
    210	/*
    211	 * TTBR0 is only used for the identity mapping at this stage. Make it
    212	 * point to zero page to avoid speculatively fetching new entries.
    213	 */
    214	cpu_uninstall_idmap();
    215
    216	if (system_uses_irq_prio_masking())
    217		init_gic_priority_masking();
    218
    219	rcu_cpu_starting(cpu);
    220	trace_hardirqs_off();
    221
    222	/*
    223	 * If the system has established the capabilities, make sure
    224	 * this CPU ticks all of those. If it doesn't, the CPU will
    225	 * fail to come online.
    226	 */
    227	check_local_cpu_capabilities();
    228
    229	ops = get_cpu_ops(cpu);
    230	if (ops->cpu_postboot)
    231		ops->cpu_postboot();
    232
    233	/*
    234	 * Log the CPU info before it is marked online and might get read.
    235	 */
    236	cpuinfo_store_cpu();
    237	store_cpu_topology(cpu);
    238
    239	/*
    240	 * Enable GIC and timers.
    241	 */
    242	notify_cpu_starting(cpu);
    243
    244	ipi_setup(cpu);
    245
    246	numa_add_cpu(cpu);
    247
    248	/*
    249	 * OK, now it's safe to let the boot CPU continue.  Wait for
    250	 * the CPU migration code to notice that the CPU is online
    251	 * before we continue.
    252	 */
    253	pr_info("CPU%u: Booted secondary processor 0x%010lx [0x%08x]\n",
    254					 cpu, (unsigned long)mpidr,
    255					 read_cpuid_id());
    256	update_cpu_boot_status(CPU_BOOT_SUCCESS);
    257	set_cpu_online(cpu, true);
    258	complete(&cpu_running);
    259
    260	local_daif_restore(DAIF_PROCCTX);
    261
    262	/*
    263	 * OK, it's off to the idle thread for us
    264	 */
    265	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
    266}
    267
    268#ifdef CONFIG_HOTPLUG_CPU
    269static int op_cpu_disable(unsigned int cpu)
    270{
    271	const struct cpu_operations *ops = get_cpu_ops(cpu);
    272
    273	/*
    274	 * If we don't have a cpu_die method, abort before we reach the point
    275	 * of no return. CPU0 may not have an cpu_ops, so test for it.
    276	 */
    277	if (!ops || !ops->cpu_die)
    278		return -EOPNOTSUPP;
    279
    280	/*
    281	 * We may need to abort a hot unplug for some other mechanism-specific
    282	 * reason.
    283	 */
    284	if (ops->cpu_disable)
    285		return ops->cpu_disable(cpu);
    286
    287	return 0;
    288}
    289
    290/*
    291 * __cpu_disable runs on the processor to be shutdown.
    292 */
    293int __cpu_disable(void)
    294{
    295	unsigned int cpu = smp_processor_id();
    296	int ret;
    297
    298	ret = op_cpu_disable(cpu);
    299	if (ret)
    300		return ret;
    301
    302	remove_cpu_topology(cpu);
    303	numa_remove_cpu(cpu);
    304
    305	/*
    306	 * Take this CPU offline.  Once we clear this, we can't return,
    307	 * and we must not schedule until we're ready to give up the cpu.
    308	 */
    309	set_cpu_online(cpu, false);
    310	ipi_teardown(cpu);
    311
    312	/*
    313	 * OK - migrate IRQs away from this CPU
    314	 */
    315	irq_migrate_all_off_this_cpu();
    316
    317	return 0;
    318}
    319
    320static int op_cpu_kill(unsigned int cpu)
    321{
    322	const struct cpu_operations *ops = get_cpu_ops(cpu);
    323
    324	/*
    325	 * If we have no means of synchronising with the dying CPU, then assume
    326	 * that it is really dead. We can only wait for an arbitrary length of
    327	 * time and hope that it's dead, so let's skip the wait and just hope.
    328	 */
    329	if (!ops->cpu_kill)
    330		return 0;
    331
    332	return ops->cpu_kill(cpu);
    333}
    334
    335/*
    336 * called on the thread which is asking for a CPU to be shutdown -
    337 * waits until shutdown has completed, or it is timed out.
    338 */
    339void __cpu_die(unsigned int cpu)
    340{
    341	int err;
    342
    343	if (!cpu_wait_death(cpu, 5)) {
    344		pr_crit("CPU%u: cpu didn't die\n", cpu);
    345		return;
    346	}
    347	pr_debug("CPU%u: shutdown\n", cpu);
    348
    349	/*
    350	 * Now that the dying CPU is beyond the point of no return w.r.t.
    351	 * in-kernel synchronisation, try to get the firwmare to help us to
    352	 * verify that it has really left the kernel before we consider
    353	 * clobbering anything it might still be using.
    354	 */
    355	err = op_cpu_kill(cpu);
    356	if (err)
    357		pr_warn("CPU%d may not have shut down cleanly: %d\n", cpu, err);
    358}
    359
    360/*
    361 * Called from the idle thread for the CPU which has been shutdown.
    362 *
    363 */
    364void cpu_die(void)
    365{
    366	unsigned int cpu = smp_processor_id();
    367	const struct cpu_operations *ops = get_cpu_ops(cpu);
    368
    369	idle_task_exit();
    370
    371	local_daif_mask();
    372
    373	/* Tell __cpu_die() that this CPU is now safe to dispose of */
    374	(void)cpu_report_death();
    375
    376	/*
    377	 * Actually shutdown the CPU. This must never fail. The specific hotplug
    378	 * mechanism must perform all required cache maintenance to ensure that
    379	 * no dirty lines are lost in the process of shutting down the CPU.
    380	 */
    381	ops->cpu_die(cpu);
    382
    383	BUG();
    384}
    385#endif
    386
    387static void __cpu_try_die(int cpu)
    388{
    389#ifdef CONFIG_HOTPLUG_CPU
    390	const struct cpu_operations *ops = get_cpu_ops(cpu);
    391
    392	if (ops && ops->cpu_die)
    393		ops->cpu_die(cpu);
    394#endif
    395}
    396
    397/*
    398 * Kill the calling secondary CPU, early in bringup before it is turned
    399 * online.
    400 */
    401void cpu_die_early(void)
    402{
    403	int cpu = smp_processor_id();
    404
    405	pr_crit("CPU%d: will not boot\n", cpu);
    406
    407	/* Mark this CPU absent */
    408	set_cpu_present(cpu, 0);
    409	rcu_report_dead(cpu);
    410
    411	if (IS_ENABLED(CONFIG_HOTPLUG_CPU)) {
    412		update_cpu_boot_status(CPU_KILL_ME);
    413		__cpu_try_die(cpu);
    414	}
    415
    416	update_cpu_boot_status(CPU_STUCK_IN_KERNEL);
    417
    418	cpu_park_loop();
    419}
    420
    421static void __init hyp_mode_check(void)
    422{
    423	if (is_hyp_mode_available())
    424		pr_info("CPU: All CPU(s) started at EL2\n");
    425	else if (is_hyp_mode_mismatched())
    426		WARN_TAINT(1, TAINT_CPU_OUT_OF_SPEC,
    427			   "CPU: CPUs started in inconsistent modes");
    428	else
    429		pr_info("CPU: All CPU(s) started at EL1\n");
    430	if (IS_ENABLED(CONFIG_KVM) && !is_kernel_in_hyp_mode()) {
    431		kvm_compute_layout();
    432		kvm_apply_hyp_relocations();
    433	}
    434}
    435
    436void __init smp_cpus_done(unsigned int max_cpus)
    437{
    438	pr_info("SMP: Total of %d processors activated.\n", num_online_cpus());
    439	setup_cpu_features();
    440	hyp_mode_check();
    441	apply_alternatives_all();
    442	mark_linear_text_alias_ro();
    443}
    444
    445void __init smp_prepare_boot_cpu(void)
    446{
    447	/*
    448	 * The runtime per-cpu areas have been allocated by
    449	 * setup_per_cpu_areas(), and CPU0's boot time per-cpu area will be
    450	 * freed shortly, so we must move over to the runtime per-cpu area.
    451	 */
    452	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
    453	cpuinfo_store_boot_cpu();
    454
    455	/*
    456	 * We now know enough about the boot CPU to apply the
    457	 * alternatives that cannot wait until interrupt handling
    458	 * and/or scheduling is enabled.
    459	 */
    460	apply_boot_alternatives();
    461
    462	/* Conditionally switch to GIC PMR for interrupt masking */
    463	if (system_uses_irq_prio_masking())
    464		init_gic_priority_masking();
    465
    466	kasan_init_hw_tags();
    467}
    468
    469/*
    470 * Duplicate MPIDRs are a recipe for disaster. Scan all initialized
    471 * entries and check for duplicates. If any is found just ignore the
    472 * cpu. cpu_logical_map was initialized to INVALID_HWID to avoid
    473 * matching valid MPIDR values.
    474 */
    475static bool __init is_mpidr_duplicate(unsigned int cpu, u64 hwid)
    476{
    477	unsigned int i;
    478
    479	for (i = 1; (i < cpu) && (i < NR_CPUS); i++)
    480		if (cpu_logical_map(i) == hwid)
    481			return true;
    482	return false;
    483}
    484
    485/*
    486 * Initialize cpu operations for a logical cpu and
    487 * set it in the possible mask on success
    488 */
    489static int __init smp_cpu_setup(int cpu)
    490{
    491	const struct cpu_operations *ops;
    492
    493	if (init_cpu_ops(cpu))
    494		return -ENODEV;
    495
    496	ops = get_cpu_ops(cpu);
    497	if (ops->cpu_init(cpu))
    498		return -ENODEV;
    499
    500	set_cpu_possible(cpu, true);
    501
    502	return 0;
    503}
    504
    505static bool bootcpu_valid __initdata;
    506static unsigned int cpu_count = 1;
    507
    508#ifdef CONFIG_ACPI
    509static struct acpi_madt_generic_interrupt cpu_madt_gicc[NR_CPUS];
    510
    511struct acpi_madt_generic_interrupt *acpi_cpu_get_madt_gicc(int cpu)
    512{
    513	return &cpu_madt_gicc[cpu];
    514}
    515EXPORT_SYMBOL_GPL(acpi_cpu_get_madt_gicc);
    516
    517/*
    518 * acpi_map_gic_cpu_interface - parse processor MADT entry
    519 *
    520 * Carry out sanity checks on MADT processor entry and initialize
    521 * cpu_logical_map on success
    522 */
    523static void __init
    524acpi_map_gic_cpu_interface(struct acpi_madt_generic_interrupt *processor)
    525{
    526	u64 hwid = processor->arm_mpidr;
    527
    528	if (!(processor->flags & ACPI_MADT_ENABLED)) {
    529		pr_debug("skipping disabled CPU entry with 0x%llx MPIDR\n", hwid);
    530		return;
    531	}
    532
    533	if (hwid & ~MPIDR_HWID_BITMASK || hwid == INVALID_HWID) {
    534		pr_err("skipping CPU entry with invalid MPIDR 0x%llx\n", hwid);
    535		return;
    536	}
    537
    538	if (is_mpidr_duplicate(cpu_count, hwid)) {
    539		pr_err("duplicate CPU MPIDR 0x%llx in MADT\n", hwid);
    540		return;
    541	}
    542
    543	/* Check if GICC structure of boot CPU is available in the MADT */
    544	if (cpu_logical_map(0) == hwid) {
    545		if (bootcpu_valid) {
    546			pr_err("duplicate boot CPU MPIDR: 0x%llx in MADT\n",
    547			       hwid);
    548			return;
    549		}
    550		bootcpu_valid = true;
    551		cpu_madt_gicc[0] = *processor;
    552		return;
    553	}
    554
    555	if (cpu_count >= NR_CPUS)
    556		return;
    557
    558	/* map the logical cpu id to cpu MPIDR */
    559	set_cpu_logical_map(cpu_count, hwid);
    560
    561	cpu_madt_gicc[cpu_count] = *processor;
    562
    563	/*
    564	 * Set-up the ACPI parking protocol cpu entries
    565	 * while initializing the cpu_logical_map to
    566	 * avoid parsing MADT entries multiple times for
    567	 * nothing (ie a valid cpu_logical_map entry should
    568	 * contain a valid parking protocol data set to
    569	 * initialize the cpu if the parking protocol is
    570	 * the only available enable method).
    571	 */
    572	acpi_set_mailbox_entry(cpu_count, processor);
    573
    574	cpu_count++;
    575}
    576
    577static int __init
    578acpi_parse_gic_cpu_interface(union acpi_subtable_headers *header,
    579			     const unsigned long end)
    580{
    581	struct acpi_madt_generic_interrupt *processor;
    582
    583	processor = (struct acpi_madt_generic_interrupt *)header;
    584	if (BAD_MADT_GICC_ENTRY(processor, end))
    585		return -EINVAL;
    586
    587	acpi_table_print_madt_entry(&header->common);
    588
    589	acpi_map_gic_cpu_interface(processor);
    590
    591	return 0;
    592}
    593
    594static void __init acpi_parse_and_init_cpus(void)
    595{
    596	int i;
    597
    598	/*
    599	 * do a walk of MADT to determine how many CPUs
    600	 * we have including disabled CPUs, and get information
    601	 * we need for SMP init.
    602	 */
    603	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
    604				      acpi_parse_gic_cpu_interface, 0);
    605
    606	/*
    607	 * In ACPI, SMP and CPU NUMA information is provided in separate
    608	 * static tables, namely the MADT and the SRAT.
    609	 *
    610	 * Thus, it is simpler to first create the cpu logical map through
    611	 * an MADT walk and then map the logical cpus to their node ids
    612	 * as separate steps.
    613	 */
    614	acpi_map_cpus_to_nodes();
    615
    616	for (i = 0; i < nr_cpu_ids; i++)
    617		early_map_cpu_to_node(i, acpi_numa_get_nid(i));
    618}
    619#else
    620#define acpi_parse_and_init_cpus(...)	do { } while (0)
    621#endif
    622
    623/*
    624 * Enumerate the possible CPU set from the device tree and build the
    625 * cpu logical map array containing MPIDR values related to logical
    626 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
    627 */
    628static void __init of_parse_and_init_cpus(void)
    629{
    630	struct device_node *dn;
    631
    632	for_each_of_cpu_node(dn) {
    633		u64 hwid = of_get_cpu_hwid(dn, 0);
    634
    635		if (hwid & ~MPIDR_HWID_BITMASK)
    636			goto next;
    637
    638		if (is_mpidr_duplicate(cpu_count, hwid)) {
    639			pr_err("%pOF: duplicate cpu reg properties in the DT\n",
    640				dn);
    641			goto next;
    642		}
    643
    644		/*
    645		 * The numbering scheme requires that the boot CPU
    646		 * must be assigned logical id 0. Record it so that
    647		 * the logical map built from DT is validated and can
    648		 * be used.
    649		 */
    650		if (hwid == cpu_logical_map(0)) {
    651			if (bootcpu_valid) {
    652				pr_err("%pOF: duplicate boot cpu reg property in DT\n",
    653					dn);
    654				goto next;
    655			}
    656
    657			bootcpu_valid = true;
    658			early_map_cpu_to_node(0, of_node_to_nid(dn));
    659
    660			/*
    661			 * cpu_logical_map has already been
    662			 * initialized and the boot cpu doesn't need
    663			 * the enable-method so continue without
    664			 * incrementing cpu.
    665			 */
    666			continue;
    667		}
    668
    669		if (cpu_count >= NR_CPUS)
    670			goto next;
    671
    672		pr_debug("cpu logical map 0x%llx\n", hwid);
    673		set_cpu_logical_map(cpu_count, hwid);
    674
    675		early_map_cpu_to_node(cpu_count, of_node_to_nid(dn));
    676next:
    677		cpu_count++;
    678	}
    679}
    680
    681/*
    682 * Enumerate the possible CPU set from the device tree or ACPI and build the
    683 * cpu logical map array containing MPIDR values related to logical
    684 * cpus. Assumes that cpu_logical_map(0) has already been initialized.
    685 */
    686void __init smp_init_cpus(void)
    687{
    688	int i;
    689
    690	if (acpi_disabled)
    691		of_parse_and_init_cpus();
    692	else
    693		acpi_parse_and_init_cpus();
    694
    695	if (cpu_count > nr_cpu_ids)
    696		pr_warn("Number of cores (%d) exceeds configured maximum of %u - clipping\n",
    697			cpu_count, nr_cpu_ids);
    698
    699	if (!bootcpu_valid) {
    700		pr_err("missing boot CPU MPIDR, not enabling secondaries\n");
    701		return;
    702	}
    703
    704	/*
    705	 * We need to set the cpu_logical_map entries before enabling
    706	 * the cpus so that cpu processor description entries (DT cpu nodes
    707	 * and ACPI MADT entries) can be retrieved by matching the cpu hwid
    708	 * with entries in cpu_logical_map while initializing the cpus.
    709	 * If the cpu set-up fails, invalidate the cpu_logical_map entry.
    710	 */
    711	for (i = 1; i < nr_cpu_ids; i++) {
    712		if (cpu_logical_map(i) != INVALID_HWID) {
    713			if (smp_cpu_setup(i))
    714				set_cpu_logical_map(i, INVALID_HWID);
    715		}
    716	}
    717}
    718
    719void __init smp_prepare_cpus(unsigned int max_cpus)
    720{
    721	const struct cpu_operations *ops;
    722	int err;
    723	unsigned int cpu;
    724	unsigned int this_cpu;
    725
    726	init_cpu_topology();
    727
    728	this_cpu = smp_processor_id();
    729	store_cpu_topology(this_cpu);
    730	numa_store_cpu_info(this_cpu);
    731	numa_add_cpu(this_cpu);
    732
    733	/*
    734	 * If UP is mandated by "nosmp" (which implies "maxcpus=0"), don't set
    735	 * secondary CPUs present.
    736	 */
    737	if (max_cpus == 0)
    738		return;
    739
    740	/*
    741	 * Initialise the present map (which describes the set of CPUs
    742	 * actually populated at the present time) and release the
    743	 * secondaries from the bootloader.
    744	 */
    745	for_each_possible_cpu(cpu) {
    746
    747		per_cpu(cpu_number, cpu) = cpu;
    748
    749		if (cpu == smp_processor_id())
    750			continue;
    751
    752		ops = get_cpu_ops(cpu);
    753		if (!ops)
    754			continue;
    755
    756		err = ops->cpu_prepare(cpu);
    757		if (err)
    758			continue;
    759
    760		set_cpu_present(cpu, true);
    761		numa_store_cpu_info(cpu);
    762	}
    763}
    764
    765static const char *ipi_types[NR_IPI] __tracepoint_string = {
    766	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
    767	[IPI_CALL_FUNC]		= "Function call interrupts",
    768	[IPI_CPU_STOP]		= "CPU stop interrupts",
    769	[IPI_CPU_CRASH_STOP]	= "CPU stop (for crash dump) interrupts",
    770	[IPI_TIMER]		= "Timer broadcast interrupts",
    771	[IPI_IRQ_WORK]		= "IRQ work interrupts",
    772	[IPI_WAKEUP]		= "CPU wake-up interrupts",
    773};
    774
    775static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
    776
    777unsigned long irq_err_count;
    778
    779int arch_show_interrupts(struct seq_file *p, int prec)
    780{
    781	unsigned int cpu, i;
    782
    783	for (i = 0; i < NR_IPI; i++) {
    784		seq_printf(p, "%*s%u:%s", prec - 1, "IPI", i,
    785			   prec >= 4 ? " " : "");
    786		for_each_online_cpu(cpu)
    787			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
    788		seq_printf(p, "      %s\n", ipi_types[i]);
    789	}
    790
    791	seq_printf(p, "%*s: %10lu\n", prec, "Err", irq_err_count);
    792	return 0;
    793}
    794
    795void arch_send_call_function_ipi_mask(const struct cpumask *mask)
    796{
    797	smp_cross_call(mask, IPI_CALL_FUNC);
    798}
    799
    800void arch_send_call_function_single_ipi(int cpu)
    801{
    802	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
    803}
    804
    805#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
    806void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
    807{
    808	smp_cross_call(mask, IPI_WAKEUP);
    809}
    810#endif
    811
    812#ifdef CONFIG_IRQ_WORK
    813void arch_irq_work_raise(void)
    814{
    815	smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
    816}
    817#endif
    818
    819static void local_cpu_stop(void)
    820{
    821	set_cpu_online(smp_processor_id(), false);
    822
    823	local_daif_mask();
    824	sdei_mask_local_cpu();
    825	cpu_park_loop();
    826}
    827
    828/*
    829 * We need to implement panic_smp_self_stop() for parallel panic() calls, so
    830 * that cpu_online_mask gets correctly updated and smp_send_stop() can skip
    831 * CPUs that have already stopped themselves.
    832 */
    833void panic_smp_self_stop(void)
    834{
    835	local_cpu_stop();
    836}
    837
    838#ifdef CONFIG_KEXEC_CORE
    839static atomic_t waiting_for_crash_ipi = ATOMIC_INIT(0);
    840#endif
    841
    842static void ipi_cpu_crash_stop(unsigned int cpu, struct pt_regs *regs)
    843{
    844#ifdef CONFIG_KEXEC_CORE
    845	crash_save_cpu(regs, cpu);
    846
    847	atomic_dec(&waiting_for_crash_ipi);
    848
    849	local_irq_disable();
    850	sdei_mask_local_cpu();
    851
    852	if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
    853		__cpu_try_die(cpu);
    854
    855	/* just in case */
    856	cpu_park_loop();
    857#endif
    858}
    859
    860/*
    861 * Main handler for inter-processor interrupts
    862 */
    863static void do_handle_IPI(int ipinr)
    864{
    865	unsigned int cpu = smp_processor_id();
    866
    867	if ((unsigned)ipinr < NR_IPI)
    868		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
    869
    870	switch (ipinr) {
    871	case IPI_RESCHEDULE:
    872		scheduler_ipi();
    873		break;
    874
    875	case IPI_CALL_FUNC:
    876		generic_smp_call_function_interrupt();
    877		break;
    878
    879	case IPI_CPU_STOP:
    880		local_cpu_stop();
    881		break;
    882
    883	case IPI_CPU_CRASH_STOP:
    884		if (IS_ENABLED(CONFIG_KEXEC_CORE)) {
    885			ipi_cpu_crash_stop(cpu, get_irq_regs());
    886
    887			unreachable();
    888		}
    889		break;
    890
    891#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    892	case IPI_TIMER:
    893		tick_receive_broadcast();
    894		break;
    895#endif
    896
    897#ifdef CONFIG_IRQ_WORK
    898	case IPI_IRQ_WORK:
    899		irq_work_run();
    900		break;
    901#endif
    902
    903#ifdef CONFIG_ARM64_ACPI_PARKING_PROTOCOL
    904	case IPI_WAKEUP:
    905		WARN_ONCE(!acpi_parking_protocol_valid(cpu),
    906			  "CPU%u: Wake-up IPI outside the ACPI parking protocol\n",
    907			  cpu);
    908		break;
    909#endif
    910
    911	default:
    912		pr_crit("CPU%u: Unknown IPI message 0x%x\n", cpu, ipinr);
    913		break;
    914	}
    915
    916	if ((unsigned)ipinr < NR_IPI)
    917		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
    918}
    919
    920static irqreturn_t ipi_handler(int irq, void *data)
    921{
    922	do_handle_IPI(irq - ipi_irq_base);
    923	return IRQ_HANDLED;
    924}
    925
    926static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
    927{
    928	trace_ipi_raise(target, ipi_types[ipinr]);
    929	__ipi_send_mask(ipi_desc[ipinr], target);
    930}
    931
    932static void ipi_setup(int cpu)
    933{
    934	int i;
    935
    936	if (WARN_ON_ONCE(!ipi_irq_base))
    937		return;
    938
    939	for (i = 0; i < nr_ipi; i++)
    940		enable_percpu_irq(ipi_irq_base + i, 0);
    941}
    942
    943#ifdef CONFIG_HOTPLUG_CPU
    944static void ipi_teardown(int cpu)
    945{
    946	int i;
    947
    948	if (WARN_ON_ONCE(!ipi_irq_base))
    949		return;
    950
    951	for (i = 0; i < nr_ipi; i++)
    952		disable_percpu_irq(ipi_irq_base + i);
    953}
    954#endif
    955
    956void __init set_smp_ipi_range(int ipi_base, int n)
    957{
    958	int i;
    959
    960	WARN_ON(n < NR_IPI);
    961	nr_ipi = min(n, NR_IPI);
    962
    963	for (i = 0; i < nr_ipi; i++) {
    964		int err;
    965
    966		err = request_percpu_irq(ipi_base + i, ipi_handler,
    967					 "IPI", &cpu_number);
    968		WARN_ON(err);
    969
    970		ipi_desc[i] = irq_to_desc(ipi_base + i);
    971		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
    972	}
    973
    974	ipi_irq_base = ipi_base;
    975
    976	/* Setup the boot CPU immediately */
    977	ipi_setup(smp_processor_id());
    978}
    979
    980void smp_send_reschedule(int cpu)
    981{
    982	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
    983}
    984
    985#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
    986void tick_broadcast(const struct cpumask *mask)
    987{
    988	smp_cross_call(mask, IPI_TIMER);
    989}
    990#endif
    991
    992/*
    993 * The number of CPUs online, not counting this CPU (which may not be
    994 * fully online and so not counted in num_online_cpus()).
    995 */
    996static inline unsigned int num_other_online_cpus(void)
    997{
    998	unsigned int this_cpu_online = cpu_online(smp_processor_id());
    999
   1000	return num_online_cpus() - this_cpu_online;
   1001}
   1002
   1003void smp_send_stop(void)
   1004{
   1005	unsigned long timeout;
   1006
   1007	if (num_other_online_cpus()) {
   1008		cpumask_t mask;
   1009
   1010		cpumask_copy(&mask, cpu_online_mask);
   1011		cpumask_clear_cpu(smp_processor_id(), &mask);
   1012
   1013		if (system_state <= SYSTEM_RUNNING)
   1014			pr_crit("SMP: stopping secondary CPUs\n");
   1015		smp_cross_call(&mask, IPI_CPU_STOP);
   1016	}
   1017
   1018	/* Wait up to one second for other CPUs to stop */
   1019	timeout = USEC_PER_SEC;
   1020	while (num_other_online_cpus() && timeout--)
   1021		udelay(1);
   1022
   1023	if (num_other_online_cpus())
   1024		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
   1025			cpumask_pr_args(cpu_online_mask));
   1026
   1027	sdei_mask_local_cpu();
   1028}
   1029
   1030#ifdef CONFIG_KEXEC_CORE
   1031void crash_smp_send_stop(void)
   1032{
   1033	static int cpus_stopped;
   1034	cpumask_t mask;
   1035	unsigned long timeout;
   1036
   1037	/*
   1038	 * This function can be called twice in panic path, but obviously
   1039	 * we execute this only once.
   1040	 */
   1041	if (cpus_stopped)
   1042		return;
   1043
   1044	cpus_stopped = 1;
   1045
   1046	/*
   1047	 * If this cpu is the only one alive at this point in time, online or
   1048	 * not, there are no stop messages to be sent around, so just back out.
   1049	 */
   1050	if (num_other_online_cpus() == 0) {
   1051		sdei_mask_local_cpu();
   1052		return;
   1053	}
   1054
   1055	cpumask_copy(&mask, cpu_online_mask);
   1056	cpumask_clear_cpu(smp_processor_id(), &mask);
   1057
   1058	atomic_set(&waiting_for_crash_ipi, num_other_online_cpus());
   1059
   1060	pr_crit("SMP: stopping secondary CPUs\n");
   1061	smp_cross_call(&mask, IPI_CPU_CRASH_STOP);
   1062
   1063	/* Wait up to one second for other CPUs to stop */
   1064	timeout = USEC_PER_SEC;
   1065	while ((atomic_read(&waiting_for_crash_ipi) > 0) && timeout--)
   1066		udelay(1);
   1067
   1068	if (atomic_read(&waiting_for_crash_ipi) > 0)
   1069		pr_warn("SMP: failed to stop secondary CPUs %*pbl\n",
   1070			cpumask_pr_args(&mask));
   1071
   1072	sdei_mask_local_cpu();
   1073}
   1074
   1075bool smp_crash_stop_failed(void)
   1076{
   1077	return (atomic_read(&waiting_for_crash_ipi) > 0);
   1078}
   1079#endif
   1080
   1081/*
   1082 * not supported here
   1083 */
   1084int setup_profiling_timer(unsigned int multiplier)
   1085{
   1086	return -EINVAL;
   1087}
   1088
   1089static bool have_cpu_die(void)
   1090{
   1091#ifdef CONFIG_HOTPLUG_CPU
   1092	int any_cpu = raw_smp_processor_id();
   1093	const struct cpu_operations *ops = get_cpu_ops(any_cpu);
   1094
   1095	if (ops && ops->cpu_die)
   1096		return true;
   1097#endif
   1098	return false;
   1099}
   1100
   1101bool cpus_are_stuck_in_kernel(void)
   1102{
   1103	bool smp_spin_tables = (num_possible_cpus() > 1 && !have_cpu_die());
   1104
   1105	return !!cpus_stuck_in_kernel || smp_spin_tables ||
   1106		is_protected_kvm_enabled();
   1107}