cachepc-linux

Fork of AMDESE/linux with modifications for CachePC side-channel attack
git clone https://git.sinitax.com/sinitax/cachepc-linux
Log | Files | Refs | README | LICENSE | sfeed.txt

arch_timer.c (34204B)


      1// SPDX-License-Identifier: GPL-2.0-only
      2/*
      3 * Copyright (C) 2012 ARM Ltd.
      4 * Author: Marc Zyngier <marc.zyngier@arm.com>
      5 */
      6
      7#include <linux/cpu.h>
      8#include <linux/kvm.h>
      9#include <linux/kvm_host.h>
     10#include <linux/interrupt.h>
     11#include <linux/irq.h>
     12#include <linux/irqdomain.h>
     13#include <linux/uaccess.h>
     14
     15#include <clocksource/arm_arch_timer.h>
     16#include <asm/arch_timer.h>
     17#include <asm/kvm_emulate.h>
     18#include <asm/kvm_hyp.h>
     19
     20#include <kvm/arm_vgic.h>
     21#include <kvm/arm_arch_timer.h>
     22
     23#include "trace.h"
     24
     25static struct timecounter *timecounter;
     26static unsigned int host_vtimer_irq;
     27static unsigned int host_ptimer_irq;
     28static u32 host_vtimer_irq_flags;
     29static u32 host_ptimer_irq_flags;
     30
     31static DEFINE_STATIC_KEY_FALSE(has_gic_active_state);
     32
     33static const struct kvm_irq_level default_ptimer_irq = {
     34	.irq	= 30,
     35	.level	= 1,
     36};
     37
     38static const struct kvm_irq_level default_vtimer_irq = {
     39	.irq	= 27,
     40	.level	= 1,
     41};
     42
     43static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx);
     44static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
     45				 struct arch_timer_context *timer_ctx);
     46static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx);
     47static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
     48				struct arch_timer_context *timer,
     49				enum kvm_arch_timer_regs treg,
     50				u64 val);
     51static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
     52			      struct arch_timer_context *timer,
     53			      enum kvm_arch_timer_regs treg);
     54
     55u32 timer_get_ctl(struct arch_timer_context *ctxt)
     56{
     57	struct kvm_vcpu *vcpu = ctxt->vcpu;
     58
     59	switch(arch_timer_ctx_index(ctxt)) {
     60	case TIMER_VTIMER:
     61		return __vcpu_sys_reg(vcpu, CNTV_CTL_EL0);
     62	case TIMER_PTIMER:
     63		return __vcpu_sys_reg(vcpu, CNTP_CTL_EL0);
     64	default:
     65		WARN_ON(1);
     66		return 0;
     67	}
     68}
     69
     70u64 timer_get_cval(struct arch_timer_context *ctxt)
     71{
     72	struct kvm_vcpu *vcpu = ctxt->vcpu;
     73
     74	switch(arch_timer_ctx_index(ctxt)) {
     75	case TIMER_VTIMER:
     76		return __vcpu_sys_reg(vcpu, CNTV_CVAL_EL0);
     77	case TIMER_PTIMER:
     78		return __vcpu_sys_reg(vcpu, CNTP_CVAL_EL0);
     79	default:
     80		WARN_ON(1);
     81		return 0;
     82	}
     83}
     84
     85static u64 timer_get_offset(struct arch_timer_context *ctxt)
     86{
     87	struct kvm_vcpu *vcpu = ctxt->vcpu;
     88
     89	switch(arch_timer_ctx_index(ctxt)) {
     90	case TIMER_VTIMER:
     91		return __vcpu_sys_reg(vcpu, CNTVOFF_EL2);
     92	default:
     93		return 0;
     94	}
     95}
     96
     97static void timer_set_ctl(struct arch_timer_context *ctxt, u32 ctl)
     98{
     99	struct kvm_vcpu *vcpu = ctxt->vcpu;
    100
    101	switch(arch_timer_ctx_index(ctxt)) {
    102	case TIMER_VTIMER:
    103		__vcpu_sys_reg(vcpu, CNTV_CTL_EL0) = ctl;
    104		break;
    105	case TIMER_PTIMER:
    106		__vcpu_sys_reg(vcpu, CNTP_CTL_EL0) = ctl;
    107		break;
    108	default:
    109		WARN_ON(1);
    110	}
    111}
    112
    113static void timer_set_cval(struct arch_timer_context *ctxt, u64 cval)
    114{
    115	struct kvm_vcpu *vcpu = ctxt->vcpu;
    116
    117	switch(arch_timer_ctx_index(ctxt)) {
    118	case TIMER_VTIMER:
    119		__vcpu_sys_reg(vcpu, CNTV_CVAL_EL0) = cval;
    120		break;
    121	case TIMER_PTIMER:
    122		__vcpu_sys_reg(vcpu, CNTP_CVAL_EL0) = cval;
    123		break;
    124	default:
    125		WARN_ON(1);
    126	}
    127}
    128
    129static void timer_set_offset(struct arch_timer_context *ctxt, u64 offset)
    130{
    131	struct kvm_vcpu *vcpu = ctxt->vcpu;
    132
    133	switch(arch_timer_ctx_index(ctxt)) {
    134	case TIMER_VTIMER:
    135		__vcpu_sys_reg(vcpu, CNTVOFF_EL2) = offset;
    136		break;
    137	default:
    138		WARN(offset, "timer %ld\n", arch_timer_ctx_index(ctxt));
    139	}
    140}
    141
    142u64 kvm_phys_timer_read(void)
    143{
    144	return timecounter->cc->read(timecounter->cc);
    145}
    146
    147static void get_timer_map(struct kvm_vcpu *vcpu, struct timer_map *map)
    148{
    149	if (has_vhe()) {
    150		map->direct_vtimer = vcpu_vtimer(vcpu);
    151		map->direct_ptimer = vcpu_ptimer(vcpu);
    152		map->emul_ptimer = NULL;
    153	} else {
    154		map->direct_vtimer = vcpu_vtimer(vcpu);
    155		map->direct_ptimer = NULL;
    156		map->emul_ptimer = vcpu_ptimer(vcpu);
    157	}
    158
    159	trace_kvm_get_timer_map(vcpu->vcpu_id, map);
    160}
    161
    162static inline bool userspace_irqchip(struct kvm *kvm)
    163{
    164	return static_branch_unlikely(&userspace_irqchip_in_use) &&
    165		unlikely(!irqchip_in_kernel(kvm));
    166}
    167
    168static void soft_timer_start(struct hrtimer *hrt, u64 ns)
    169{
    170	hrtimer_start(hrt, ktime_add_ns(ktime_get(), ns),
    171		      HRTIMER_MODE_ABS_HARD);
    172}
    173
    174static void soft_timer_cancel(struct hrtimer *hrt)
    175{
    176	hrtimer_cancel(hrt);
    177}
    178
    179static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
    180{
    181	struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
    182	struct arch_timer_context *ctx;
    183	struct timer_map map;
    184
    185	/*
    186	 * We may see a timer interrupt after vcpu_put() has been called which
    187	 * sets the CPU's vcpu pointer to NULL, because even though the timer
    188	 * has been disabled in timer_save_state(), the hardware interrupt
    189	 * signal may not have been retired from the interrupt controller yet.
    190	 */
    191	if (!vcpu)
    192		return IRQ_HANDLED;
    193
    194	get_timer_map(vcpu, &map);
    195
    196	if (irq == host_vtimer_irq)
    197		ctx = map.direct_vtimer;
    198	else
    199		ctx = map.direct_ptimer;
    200
    201	if (kvm_timer_should_fire(ctx))
    202		kvm_timer_update_irq(vcpu, true, ctx);
    203
    204	if (userspace_irqchip(vcpu->kvm) &&
    205	    !static_branch_unlikely(&has_gic_active_state))
    206		disable_percpu_irq(host_vtimer_irq);
    207
    208	return IRQ_HANDLED;
    209}
    210
    211static u64 kvm_counter_compute_delta(struct arch_timer_context *timer_ctx,
    212				     u64 val)
    213{
    214	u64 now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
    215
    216	if (now < val) {
    217		u64 ns;
    218
    219		ns = cyclecounter_cyc2ns(timecounter->cc,
    220					 val - now,
    221					 timecounter->mask,
    222					 &timecounter->frac);
    223		return ns;
    224	}
    225
    226	return 0;
    227}
    228
    229static u64 kvm_timer_compute_delta(struct arch_timer_context *timer_ctx)
    230{
    231	return kvm_counter_compute_delta(timer_ctx, timer_get_cval(timer_ctx));
    232}
    233
    234static bool kvm_timer_irq_can_fire(struct arch_timer_context *timer_ctx)
    235{
    236	WARN_ON(timer_ctx && timer_ctx->loaded);
    237	return timer_ctx &&
    238		((timer_get_ctl(timer_ctx) &
    239		  (ARCH_TIMER_CTRL_IT_MASK | ARCH_TIMER_CTRL_ENABLE)) == ARCH_TIMER_CTRL_ENABLE);
    240}
    241
    242static bool vcpu_has_wfit_active(struct kvm_vcpu *vcpu)
    243{
    244	return (cpus_have_final_cap(ARM64_HAS_WFXT) &&
    245		(vcpu->arch.flags & KVM_ARM64_WFIT));
    246}
    247
    248static u64 wfit_delay_ns(struct kvm_vcpu *vcpu)
    249{
    250	struct arch_timer_context *ctx = vcpu_vtimer(vcpu);
    251	u64 val = vcpu_get_reg(vcpu, kvm_vcpu_sys_get_rt(vcpu));
    252
    253	return kvm_counter_compute_delta(ctx, val);
    254}
    255
    256/*
    257 * Returns the earliest expiration time in ns among guest timers.
    258 * Note that it will return 0 if none of timers can fire.
    259 */
    260static u64 kvm_timer_earliest_exp(struct kvm_vcpu *vcpu)
    261{
    262	u64 min_delta = ULLONG_MAX;
    263	int i;
    264
    265	for (i = 0; i < NR_KVM_TIMERS; i++) {
    266		struct arch_timer_context *ctx = &vcpu->arch.timer_cpu.timers[i];
    267
    268		WARN(ctx->loaded, "timer %d loaded\n", i);
    269		if (kvm_timer_irq_can_fire(ctx))
    270			min_delta = min(min_delta, kvm_timer_compute_delta(ctx));
    271	}
    272
    273	if (vcpu_has_wfit_active(vcpu))
    274		min_delta = min(min_delta, wfit_delay_ns(vcpu));
    275
    276	/* If none of timers can fire, then return 0 */
    277	if (min_delta == ULLONG_MAX)
    278		return 0;
    279
    280	return min_delta;
    281}
    282
    283static enum hrtimer_restart kvm_bg_timer_expire(struct hrtimer *hrt)
    284{
    285	struct arch_timer_cpu *timer;
    286	struct kvm_vcpu *vcpu;
    287	u64 ns;
    288
    289	timer = container_of(hrt, struct arch_timer_cpu, bg_timer);
    290	vcpu = container_of(timer, struct kvm_vcpu, arch.timer_cpu);
    291
    292	/*
    293	 * Check that the timer has really expired from the guest's
    294	 * PoV (NTP on the host may have forced it to expire
    295	 * early). If we should have slept longer, restart it.
    296	 */
    297	ns = kvm_timer_earliest_exp(vcpu);
    298	if (unlikely(ns)) {
    299		hrtimer_forward_now(hrt, ns_to_ktime(ns));
    300		return HRTIMER_RESTART;
    301	}
    302
    303	kvm_vcpu_wake_up(vcpu);
    304	return HRTIMER_NORESTART;
    305}
    306
    307static enum hrtimer_restart kvm_hrtimer_expire(struct hrtimer *hrt)
    308{
    309	struct arch_timer_context *ctx;
    310	struct kvm_vcpu *vcpu;
    311	u64 ns;
    312
    313	ctx = container_of(hrt, struct arch_timer_context, hrtimer);
    314	vcpu = ctx->vcpu;
    315
    316	trace_kvm_timer_hrtimer_expire(ctx);
    317
    318	/*
    319	 * Check that the timer has really expired from the guest's
    320	 * PoV (NTP on the host may have forced it to expire
    321	 * early). If not ready, schedule for a later time.
    322	 */
    323	ns = kvm_timer_compute_delta(ctx);
    324	if (unlikely(ns)) {
    325		hrtimer_forward_now(hrt, ns_to_ktime(ns));
    326		return HRTIMER_RESTART;
    327	}
    328
    329	kvm_timer_update_irq(vcpu, true, ctx);
    330	return HRTIMER_NORESTART;
    331}
    332
    333static bool kvm_timer_should_fire(struct arch_timer_context *timer_ctx)
    334{
    335	enum kvm_arch_timers index;
    336	u64 cval, now;
    337
    338	if (!timer_ctx)
    339		return false;
    340
    341	index = arch_timer_ctx_index(timer_ctx);
    342
    343	if (timer_ctx->loaded) {
    344		u32 cnt_ctl = 0;
    345
    346		switch (index) {
    347		case TIMER_VTIMER:
    348			cnt_ctl = read_sysreg_el0(SYS_CNTV_CTL);
    349			break;
    350		case TIMER_PTIMER:
    351			cnt_ctl = read_sysreg_el0(SYS_CNTP_CTL);
    352			break;
    353		case NR_KVM_TIMERS:
    354			/* GCC is braindead */
    355			cnt_ctl = 0;
    356			break;
    357		}
    358
    359		return  (cnt_ctl & ARCH_TIMER_CTRL_ENABLE) &&
    360		        (cnt_ctl & ARCH_TIMER_CTRL_IT_STAT) &&
    361		       !(cnt_ctl & ARCH_TIMER_CTRL_IT_MASK);
    362	}
    363
    364	if (!kvm_timer_irq_can_fire(timer_ctx))
    365		return false;
    366
    367	cval = timer_get_cval(timer_ctx);
    368	now = kvm_phys_timer_read() - timer_get_offset(timer_ctx);
    369
    370	return cval <= now;
    371}
    372
    373int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
    374{
    375	return vcpu_has_wfit_active(vcpu) && wfit_delay_ns(vcpu) == 0;
    376}
    377
    378/*
    379 * Reflect the timer output level into the kvm_run structure
    380 */
    381void kvm_timer_update_run(struct kvm_vcpu *vcpu)
    382{
    383	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
    384	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
    385	struct kvm_sync_regs *regs = &vcpu->run->s.regs;
    386
    387	/* Populate the device bitmap with the timer states */
    388	regs->device_irq_level &= ~(KVM_ARM_DEV_EL1_VTIMER |
    389				    KVM_ARM_DEV_EL1_PTIMER);
    390	if (kvm_timer_should_fire(vtimer))
    391		regs->device_irq_level |= KVM_ARM_DEV_EL1_VTIMER;
    392	if (kvm_timer_should_fire(ptimer))
    393		regs->device_irq_level |= KVM_ARM_DEV_EL1_PTIMER;
    394}
    395
    396static void kvm_timer_update_irq(struct kvm_vcpu *vcpu, bool new_level,
    397				 struct arch_timer_context *timer_ctx)
    398{
    399	int ret;
    400
    401	timer_ctx->irq.level = new_level;
    402	trace_kvm_timer_update_irq(vcpu->vcpu_id, timer_ctx->irq.irq,
    403				   timer_ctx->irq.level);
    404
    405	if (!userspace_irqchip(vcpu->kvm)) {
    406		ret = kvm_vgic_inject_irq(vcpu->kvm, vcpu->vcpu_id,
    407					  timer_ctx->irq.irq,
    408					  timer_ctx->irq.level,
    409					  timer_ctx);
    410		WARN_ON(ret);
    411	}
    412}
    413
    414/* Only called for a fully emulated timer */
    415static void timer_emulate(struct arch_timer_context *ctx)
    416{
    417	bool should_fire = kvm_timer_should_fire(ctx);
    418
    419	trace_kvm_timer_emulate(ctx, should_fire);
    420
    421	if (should_fire != ctx->irq.level) {
    422		kvm_timer_update_irq(ctx->vcpu, should_fire, ctx);
    423		return;
    424	}
    425
    426	/*
    427	 * If the timer can fire now, we don't need to have a soft timer
    428	 * scheduled for the future.  If the timer cannot fire at all,
    429	 * then we also don't need a soft timer.
    430	 */
    431	if (!kvm_timer_irq_can_fire(ctx)) {
    432		soft_timer_cancel(&ctx->hrtimer);
    433		return;
    434	}
    435
    436	soft_timer_start(&ctx->hrtimer, kvm_timer_compute_delta(ctx));
    437}
    438
    439static void timer_save_state(struct arch_timer_context *ctx)
    440{
    441	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
    442	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
    443	unsigned long flags;
    444
    445	if (!timer->enabled)
    446		return;
    447
    448	local_irq_save(flags);
    449
    450	if (!ctx->loaded)
    451		goto out;
    452
    453	switch (index) {
    454	case TIMER_VTIMER:
    455		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTV_CTL));
    456		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTV_CVAL));
    457
    458		/* Disable the timer */
    459		write_sysreg_el0(0, SYS_CNTV_CTL);
    460		isb();
    461
    462		break;
    463	case TIMER_PTIMER:
    464		timer_set_ctl(ctx, read_sysreg_el0(SYS_CNTP_CTL));
    465		timer_set_cval(ctx, read_sysreg_el0(SYS_CNTP_CVAL));
    466
    467		/* Disable the timer */
    468		write_sysreg_el0(0, SYS_CNTP_CTL);
    469		isb();
    470
    471		break;
    472	case NR_KVM_TIMERS:
    473		BUG();
    474	}
    475
    476	trace_kvm_timer_save_state(ctx);
    477
    478	ctx->loaded = false;
    479out:
    480	local_irq_restore(flags);
    481}
    482
    483/*
    484 * Schedule the background timer before calling kvm_vcpu_halt, so that this
    485 * thread is removed from its waitqueue and made runnable when there's a timer
    486 * interrupt to handle.
    487 */
    488static void kvm_timer_blocking(struct kvm_vcpu *vcpu)
    489{
    490	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    491	struct timer_map map;
    492
    493	get_timer_map(vcpu, &map);
    494
    495	/*
    496	 * If no timers are capable of raising interrupts (disabled or
    497	 * masked), then there's no more work for us to do.
    498	 */
    499	if (!kvm_timer_irq_can_fire(map.direct_vtimer) &&
    500	    !kvm_timer_irq_can_fire(map.direct_ptimer) &&
    501	    !kvm_timer_irq_can_fire(map.emul_ptimer) &&
    502	    !vcpu_has_wfit_active(vcpu))
    503		return;
    504
    505	/*
    506	 * At least one guest time will expire. Schedule a background timer.
    507	 * Set the earliest expiration time among the guest timers.
    508	 */
    509	soft_timer_start(&timer->bg_timer, kvm_timer_earliest_exp(vcpu));
    510}
    511
    512static void kvm_timer_unblocking(struct kvm_vcpu *vcpu)
    513{
    514	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    515
    516	soft_timer_cancel(&timer->bg_timer);
    517}
    518
    519static void timer_restore_state(struct arch_timer_context *ctx)
    520{
    521	struct arch_timer_cpu *timer = vcpu_timer(ctx->vcpu);
    522	enum kvm_arch_timers index = arch_timer_ctx_index(ctx);
    523	unsigned long flags;
    524
    525	if (!timer->enabled)
    526		return;
    527
    528	local_irq_save(flags);
    529
    530	if (ctx->loaded)
    531		goto out;
    532
    533	switch (index) {
    534	case TIMER_VTIMER:
    535		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTV_CVAL);
    536		isb();
    537		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTV_CTL);
    538		break;
    539	case TIMER_PTIMER:
    540		write_sysreg_el0(timer_get_cval(ctx), SYS_CNTP_CVAL);
    541		isb();
    542		write_sysreg_el0(timer_get_ctl(ctx), SYS_CNTP_CTL);
    543		break;
    544	case NR_KVM_TIMERS:
    545		BUG();
    546	}
    547
    548	trace_kvm_timer_restore_state(ctx);
    549
    550	ctx->loaded = true;
    551out:
    552	local_irq_restore(flags);
    553}
    554
    555static void set_cntvoff(u64 cntvoff)
    556{
    557	kvm_call_hyp(__kvm_timer_set_cntvoff, cntvoff);
    558}
    559
    560static inline void set_timer_irq_phys_active(struct arch_timer_context *ctx, bool active)
    561{
    562	int r;
    563	r = irq_set_irqchip_state(ctx->host_timer_irq, IRQCHIP_STATE_ACTIVE, active);
    564	WARN_ON(r);
    565}
    566
    567static void kvm_timer_vcpu_load_gic(struct arch_timer_context *ctx)
    568{
    569	struct kvm_vcpu *vcpu = ctx->vcpu;
    570	bool phys_active = false;
    571
    572	/*
    573	 * Update the timer output so that it is likely to match the
    574	 * state we're about to restore. If the timer expires between
    575	 * this point and the register restoration, we'll take the
    576	 * interrupt anyway.
    577	 */
    578	kvm_timer_update_irq(ctx->vcpu, kvm_timer_should_fire(ctx), ctx);
    579
    580	if (irqchip_in_kernel(vcpu->kvm))
    581		phys_active = kvm_vgic_map_is_active(vcpu, ctx->irq.irq);
    582
    583	phys_active |= ctx->irq.level;
    584
    585	set_timer_irq_phys_active(ctx, phys_active);
    586}
    587
    588static void kvm_timer_vcpu_load_nogic(struct kvm_vcpu *vcpu)
    589{
    590	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
    591
    592	/*
    593	 * Update the timer output so that it is likely to match the
    594	 * state we're about to restore. If the timer expires between
    595	 * this point and the register restoration, we'll take the
    596	 * interrupt anyway.
    597	 */
    598	kvm_timer_update_irq(vcpu, kvm_timer_should_fire(vtimer), vtimer);
    599
    600	/*
    601	 * When using a userspace irqchip with the architected timers and a
    602	 * host interrupt controller that doesn't support an active state, we
    603	 * must still prevent continuously exiting from the guest, and
    604	 * therefore mask the physical interrupt by disabling it on the host
    605	 * interrupt controller when the virtual level is high, such that the
    606	 * guest can make forward progress.  Once we detect the output level
    607	 * being de-asserted, we unmask the interrupt again so that we exit
    608	 * from the guest when the timer fires.
    609	 */
    610	if (vtimer->irq.level)
    611		disable_percpu_irq(host_vtimer_irq);
    612	else
    613		enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
    614}
    615
    616void kvm_timer_vcpu_load(struct kvm_vcpu *vcpu)
    617{
    618	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    619	struct timer_map map;
    620
    621	if (unlikely(!timer->enabled))
    622		return;
    623
    624	get_timer_map(vcpu, &map);
    625
    626	if (static_branch_likely(&has_gic_active_state)) {
    627		kvm_timer_vcpu_load_gic(map.direct_vtimer);
    628		if (map.direct_ptimer)
    629			kvm_timer_vcpu_load_gic(map.direct_ptimer);
    630	} else {
    631		kvm_timer_vcpu_load_nogic(vcpu);
    632	}
    633
    634	set_cntvoff(timer_get_offset(map.direct_vtimer));
    635
    636	kvm_timer_unblocking(vcpu);
    637
    638	timer_restore_state(map.direct_vtimer);
    639	if (map.direct_ptimer)
    640		timer_restore_state(map.direct_ptimer);
    641
    642	if (map.emul_ptimer)
    643		timer_emulate(map.emul_ptimer);
    644}
    645
    646bool kvm_timer_should_notify_user(struct kvm_vcpu *vcpu)
    647{
    648	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
    649	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
    650	struct kvm_sync_regs *sregs = &vcpu->run->s.regs;
    651	bool vlevel, plevel;
    652
    653	if (likely(irqchip_in_kernel(vcpu->kvm)))
    654		return false;
    655
    656	vlevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_VTIMER;
    657	plevel = sregs->device_irq_level & KVM_ARM_DEV_EL1_PTIMER;
    658
    659	return kvm_timer_should_fire(vtimer) != vlevel ||
    660	       kvm_timer_should_fire(ptimer) != plevel;
    661}
    662
    663void kvm_timer_vcpu_put(struct kvm_vcpu *vcpu)
    664{
    665	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    666	struct timer_map map;
    667
    668	if (unlikely(!timer->enabled))
    669		return;
    670
    671	get_timer_map(vcpu, &map);
    672
    673	timer_save_state(map.direct_vtimer);
    674	if (map.direct_ptimer)
    675		timer_save_state(map.direct_ptimer);
    676
    677	/*
    678	 * Cancel soft timer emulation, because the only case where we
    679	 * need it after a vcpu_put is in the context of a sleeping VCPU, and
    680	 * in that case we already factor in the deadline for the physical
    681	 * timer when scheduling the bg_timer.
    682	 *
    683	 * In any case, we re-schedule the hrtimer for the physical timer when
    684	 * coming back to the VCPU thread in kvm_timer_vcpu_load().
    685	 */
    686	if (map.emul_ptimer)
    687		soft_timer_cancel(&map.emul_ptimer->hrtimer);
    688
    689	if (kvm_vcpu_is_blocking(vcpu))
    690		kvm_timer_blocking(vcpu);
    691
    692	/*
    693	 * The kernel may decide to run userspace after calling vcpu_put, so
    694	 * we reset cntvoff to 0 to ensure a consistent read between user
    695	 * accesses to the virtual counter and kernel access to the physical
    696	 * counter of non-VHE case. For VHE, the virtual counter uses a fixed
    697	 * virtual offset of zero, so no need to zero CNTVOFF_EL2 register.
    698	 */
    699	set_cntvoff(0);
    700}
    701
    702/*
    703 * With a userspace irqchip we have to check if the guest de-asserted the
    704 * timer and if so, unmask the timer irq signal on the host interrupt
    705 * controller to ensure that we see future timer signals.
    706 */
    707static void unmask_vtimer_irq_user(struct kvm_vcpu *vcpu)
    708{
    709	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
    710
    711	if (!kvm_timer_should_fire(vtimer)) {
    712		kvm_timer_update_irq(vcpu, false, vtimer);
    713		if (static_branch_likely(&has_gic_active_state))
    714			set_timer_irq_phys_active(vtimer, false);
    715		else
    716			enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
    717	}
    718}
    719
    720void kvm_timer_sync_user(struct kvm_vcpu *vcpu)
    721{
    722	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    723
    724	if (unlikely(!timer->enabled))
    725		return;
    726
    727	if (unlikely(!irqchip_in_kernel(vcpu->kvm)))
    728		unmask_vtimer_irq_user(vcpu);
    729}
    730
    731int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu)
    732{
    733	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    734	struct timer_map map;
    735
    736	get_timer_map(vcpu, &map);
    737
    738	/*
    739	 * The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
    740	 * and to 0 for ARMv7.  We provide an implementation that always
    741	 * resets the timer to be disabled and unmasked and is compliant with
    742	 * the ARMv7 architecture.
    743	 */
    744	timer_set_ctl(vcpu_vtimer(vcpu), 0);
    745	timer_set_ctl(vcpu_ptimer(vcpu), 0);
    746
    747	if (timer->enabled) {
    748		kvm_timer_update_irq(vcpu, false, vcpu_vtimer(vcpu));
    749		kvm_timer_update_irq(vcpu, false, vcpu_ptimer(vcpu));
    750
    751		if (irqchip_in_kernel(vcpu->kvm)) {
    752			kvm_vgic_reset_mapped_irq(vcpu, map.direct_vtimer->irq.irq);
    753			if (map.direct_ptimer)
    754				kvm_vgic_reset_mapped_irq(vcpu, map.direct_ptimer->irq.irq);
    755		}
    756	}
    757
    758	if (map.emul_ptimer)
    759		soft_timer_cancel(&map.emul_ptimer->hrtimer);
    760
    761	return 0;
    762}
    763
    764/* Make the updates of cntvoff for all vtimer contexts atomic */
    765static void update_vtimer_cntvoff(struct kvm_vcpu *vcpu, u64 cntvoff)
    766{
    767	unsigned long i;
    768	struct kvm *kvm = vcpu->kvm;
    769	struct kvm_vcpu *tmp;
    770
    771	mutex_lock(&kvm->lock);
    772	kvm_for_each_vcpu(i, tmp, kvm)
    773		timer_set_offset(vcpu_vtimer(tmp), cntvoff);
    774
    775	/*
    776	 * When called from the vcpu create path, the CPU being created is not
    777	 * included in the loop above, so we just set it here as well.
    778	 */
    779	timer_set_offset(vcpu_vtimer(vcpu), cntvoff);
    780	mutex_unlock(&kvm->lock);
    781}
    782
    783void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
    784{
    785	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
    786	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
    787	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
    788
    789	vtimer->vcpu = vcpu;
    790	ptimer->vcpu = vcpu;
    791
    792	/* Synchronize cntvoff across all vtimers of a VM. */
    793	update_vtimer_cntvoff(vcpu, kvm_phys_timer_read());
    794	timer_set_offset(ptimer, 0);
    795
    796	hrtimer_init(&timer->bg_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
    797	timer->bg_timer.function = kvm_bg_timer_expire;
    798
    799	hrtimer_init(&vtimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
    800	hrtimer_init(&ptimer->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
    801	vtimer->hrtimer.function = kvm_hrtimer_expire;
    802	ptimer->hrtimer.function = kvm_hrtimer_expire;
    803
    804	vtimer->irq.irq = default_vtimer_irq.irq;
    805	ptimer->irq.irq = default_ptimer_irq.irq;
    806
    807	vtimer->host_timer_irq = host_vtimer_irq;
    808	ptimer->host_timer_irq = host_ptimer_irq;
    809
    810	vtimer->host_timer_irq_flags = host_vtimer_irq_flags;
    811	ptimer->host_timer_irq_flags = host_ptimer_irq_flags;
    812}
    813
    814static void kvm_timer_init_interrupt(void *info)
    815{
    816	enable_percpu_irq(host_vtimer_irq, host_vtimer_irq_flags);
    817	enable_percpu_irq(host_ptimer_irq, host_ptimer_irq_flags);
    818}
    819
    820int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
    821{
    822	struct arch_timer_context *timer;
    823
    824	switch (regid) {
    825	case KVM_REG_ARM_TIMER_CTL:
    826		timer = vcpu_vtimer(vcpu);
    827		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
    828		break;
    829	case KVM_REG_ARM_TIMER_CNT:
    830		timer = vcpu_vtimer(vcpu);
    831		update_vtimer_cntvoff(vcpu, kvm_phys_timer_read() - value);
    832		break;
    833	case KVM_REG_ARM_TIMER_CVAL:
    834		timer = vcpu_vtimer(vcpu);
    835		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
    836		break;
    837	case KVM_REG_ARM_PTIMER_CTL:
    838		timer = vcpu_ptimer(vcpu);
    839		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CTL, value);
    840		break;
    841	case KVM_REG_ARM_PTIMER_CVAL:
    842		timer = vcpu_ptimer(vcpu);
    843		kvm_arm_timer_write(vcpu, timer, TIMER_REG_CVAL, value);
    844		break;
    845
    846	default:
    847		return -1;
    848	}
    849
    850	return 0;
    851}
    852
    853static u64 read_timer_ctl(struct arch_timer_context *timer)
    854{
    855	/*
    856	 * Set ISTATUS bit if it's expired.
    857	 * Note that according to ARMv8 ARM Issue A.k, ISTATUS bit is
    858	 * UNKNOWN when ENABLE bit is 0, so we chose to set ISTATUS bit
    859	 * regardless of ENABLE bit for our implementation convenience.
    860	 */
    861	u32 ctl = timer_get_ctl(timer);
    862
    863	if (!kvm_timer_compute_delta(timer))
    864		ctl |= ARCH_TIMER_CTRL_IT_STAT;
    865
    866	return ctl;
    867}
    868
    869u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
    870{
    871	switch (regid) {
    872	case KVM_REG_ARM_TIMER_CTL:
    873		return kvm_arm_timer_read(vcpu,
    874					  vcpu_vtimer(vcpu), TIMER_REG_CTL);
    875	case KVM_REG_ARM_TIMER_CNT:
    876		return kvm_arm_timer_read(vcpu,
    877					  vcpu_vtimer(vcpu), TIMER_REG_CNT);
    878	case KVM_REG_ARM_TIMER_CVAL:
    879		return kvm_arm_timer_read(vcpu,
    880					  vcpu_vtimer(vcpu), TIMER_REG_CVAL);
    881	case KVM_REG_ARM_PTIMER_CTL:
    882		return kvm_arm_timer_read(vcpu,
    883					  vcpu_ptimer(vcpu), TIMER_REG_CTL);
    884	case KVM_REG_ARM_PTIMER_CNT:
    885		return kvm_arm_timer_read(vcpu,
    886					  vcpu_ptimer(vcpu), TIMER_REG_CNT);
    887	case KVM_REG_ARM_PTIMER_CVAL:
    888		return kvm_arm_timer_read(vcpu,
    889					  vcpu_ptimer(vcpu), TIMER_REG_CVAL);
    890	}
    891	return (u64)-1;
    892}
    893
    894static u64 kvm_arm_timer_read(struct kvm_vcpu *vcpu,
    895			      struct arch_timer_context *timer,
    896			      enum kvm_arch_timer_regs treg)
    897{
    898	u64 val;
    899
    900	switch (treg) {
    901	case TIMER_REG_TVAL:
    902		val = timer_get_cval(timer) - kvm_phys_timer_read() + timer_get_offset(timer);
    903		val = lower_32_bits(val);
    904		break;
    905
    906	case TIMER_REG_CTL:
    907		val = read_timer_ctl(timer);
    908		break;
    909
    910	case TIMER_REG_CVAL:
    911		val = timer_get_cval(timer);
    912		break;
    913
    914	case TIMER_REG_CNT:
    915		val = kvm_phys_timer_read() - timer_get_offset(timer);
    916		break;
    917
    918	default:
    919		BUG();
    920	}
    921
    922	return val;
    923}
    924
    925u64 kvm_arm_timer_read_sysreg(struct kvm_vcpu *vcpu,
    926			      enum kvm_arch_timers tmr,
    927			      enum kvm_arch_timer_regs treg)
    928{
    929	u64 val;
    930
    931	preempt_disable();
    932	kvm_timer_vcpu_put(vcpu);
    933
    934	val = kvm_arm_timer_read(vcpu, vcpu_get_timer(vcpu, tmr), treg);
    935
    936	kvm_timer_vcpu_load(vcpu);
    937	preempt_enable();
    938
    939	return val;
    940}
    941
    942static void kvm_arm_timer_write(struct kvm_vcpu *vcpu,
    943				struct arch_timer_context *timer,
    944				enum kvm_arch_timer_regs treg,
    945				u64 val)
    946{
    947	switch (treg) {
    948	case TIMER_REG_TVAL:
    949		timer_set_cval(timer, kvm_phys_timer_read() - timer_get_offset(timer) + (s32)val);
    950		break;
    951
    952	case TIMER_REG_CTL:
    953		timer_set_ctl(timer, val & ~ARCH_TIMER_CTRL_IT_STAT);
    954		break;
    955
    956	case TIMER_REG_CVAL:
    957		timer_set_cval(timer, val);
    958		break;
    959
    960	default:
    961		BUG();
    962	}
    963}
    964
    965void kvm_arm_timer_write_sysreg(struct kvm_vcpu *vcpu,
    966				enum kvm_arch_timers tmr,
    967				enum kvm_arch_timer_regs treg,
    968				u64 val)
    969{
    970	preempt_disable();
    971	kvm_timer_vcpu_put(vcpu);
    972
    973	kvm_arm_timer_write(vcpu, vcpu_get_timer(vcpu, tmr), treg, val);
    974
    975	kvm_timer_vcpu_load(vcpu);
    976	preempt_enable();
    977}
    978
    979static int kvm_timer_starting_cpu(unsigned int cpu)
    980{
    981	kvm_timer_init_interrupt(NULL);
    982	return 0;
    983}
    984
    985static int kvm_timer_dying_cpu(unsigned int cpu)
    986{
    987	disable_percpu_irq(host_vtimer_irq);
    988	return 0;
    989}
    990
    991static int timer_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
    992{
    993	if (vcpu)
    994		irqd_set_forwarded_to_vcpu(d);
    995	else
    996		irqd_clr_forwarded_to_vcpu(d);
    997
    998	return 0;
    999}
   1000
   1001static int timer_irq_set_irqchip_state(struct irq_data *d,
   1002				       enum irqchip_irq_state which, bool val)
   1003{
   1004	if (which != IRQCHIP_STATE_ACTIVE || !irqd_is_forwarded_to_vcpu(d))
   1005		return irq_chip_set_parent_state(d, which, val);
   1006
   1007	if (val)
   1008		irq_chip_mask_parent(d);
   1009	else
   1010		irq_chip_unmask_parent(d);
   1011
   1012	return 0;
   1013}
   1014
   1015static void timer_irq_eoi(struct irq_data *d)
   1016{
   1017	if (!irqd_is_forwarded_to_vcpu(d))
   1018		irq_chip_eoi_parent(d);
   1019}
   1020
   1021static void timer_irq_ack(struct irq_data *d)
   1022{
   1023	d = d->parent_data;
   1024	if (d->chip->irq_ack)
   1025		d->chip->irq_ack(d);
   1026}
   1027
   1028static struct irq_chip timer_chip = {
   1029	.name			= "KVM",
   1030	.irq_ack		= timer_irq_ack,
   1031	.irq_mask		= irq_chip_mask_parent,
   1032	.irq_unmask		= irq_chip_unmask_parent,
   1033	.irq_eoi		= timer_irq_eoi,
   1034	.irq_set_type		= irq_chip_set_type_parent,
   1035	.irq_set_vcpu_affinity	= timer_irq_set_vcpu_affinity,
   1036	.irq_set_irqchip_state	= timer_irq_set_irqchip_state,
   1037};
   1038
   1039static int timer_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
   1040				  unsigned int nr_irqs, void *arg)
   1041{
   1042	irq_hw_number_t hwirq = (uintptr_t)arg;
   1043
   1044	return irq_domain_set_hwirq_and_chip(domain, virq, hwirq,
   1045					     &timer_chip, NULL);
   1046}
   1047
   1048static void timer_irq_domain_free(struct irq_domain *domain, unsigned int virq,
   1049				  unsigned int nr_irqs)
   1050{
   1051}
   1052
   1053static const struct irq_domain_ops timer_domain_ops = {
   1054	.alloc	= timer_irq_domain_alloc,
   1055	.free	= timer_irq_domain_free,
   1056};
   1057
   1058static struct irq_ops arch_timer_irq_ops = {
   1059	.get_input_level = kvm_arch_timer_get_input_level,
   1060};
   1061
   1062static void kvm_irq_fixup_flags(unsigned int virq, u32 *flags)
   1063{
   1064	*flags = irq_get_trigger_type(virq);
   1065	if (*flags != IRQF_TRIGGER_HIGH && *flags != IRQF_TRIGGER_LOW) {
   1066		kvm_err("Invalid trigger for timer IRQ%d, assuming level low\n",
   1067			virq);
   1068		*flags = IRQF_TRIGGER_LOW;
   1069	}
   1070}
   1071
   1072static int kvm_irq_init(struct arch_timer_kvm_info *info)
   1073{
   1074	struct irq_domain *domain = NULL;
   1075
   1076	if (info->virtual_irq <= 0) {
   1077		kvm_err("kvm_arch_timer: invalid virtual timer IRQ: %d\n",
   1078			info->virtual_irq);
   1079		return -ENODEV;
   1080	}
   1081
   1082	host_vtimer_irq = info->virtual_irq;
   1083	kvm_irq_fixup_flags(host_vtimer_irq, &host_vtimer_irq_flags);
   1084
   1085	if (kvm_vgic_global_state.no_hw_deactivation) {
   1086		struct fwnode_handle *fwnode;
   1087		struct irq_data *data;
   1088
   1089		fwnode = irq_domain_alloc_named_fwnode("kvm-timer");
   1090		if (!fwnode)
   1091			return -ENOMEM;
   1092
   1093		/* Assume both vtimer and ptimer in the same parent */
   1094		data = irq_get_irq_data(host_vtimer_irq);
   1095		domain = irq_domain_create_hierarchy(data->domain, 0,
   1096						     NR_KVM_TIMERS, fwnode,
   1097						     &timer_domain_ops, NULL);
   1098		if (!domain) {
   1099			irq_domain_free_fwnode(fwnode);
   1100			return -ENOMEM;
   1101		}
   1102
   1103		arch_timer_irq_ops.flags |= VGIC_IRQ_SW_RESAMPLE;
   1104		WARN_ON(irq_domain_push_irq(domain, host_vtimer_irq,
   1105					    (void *)TIMER_VTIMER));
   1106	}
   1107
   1108	if (info->physical_irq > 0) {
   1109		host_ptimer_irq = info->physical_irq;
   1110		kvm_irq_fixup_flags(host_ptimer_irq, &host_ptimer_irq_flags);
   1111
   1112		if (domain)
   1113			WARN_ON(irq_domain_push_irq(domain, host_ptimer_irq,
   1114						    (void *)TIMER_PTIMER));
   1115	}
   1116
   1117	return 0;
   1118}
   1119
   1120int kvm_timer_hyp_init(bool has_gic)
   1121{
   1122	struct arch_timer_kvm_info *info;
   1123	int err;
   1124
   1125	info = arch_timer_get_kvm_info();
   1126	timecounter = &info->timecounter;
   1127
   1128	if (!timecounter->cc) {
   1129		kvm_err("kvm_arch_timer: uninitialized timecounter\n");
   1130		return -ENODEV;
   1131	}
   1132
   1133	err = kvm_irq_init(info);
   1134	if (err)
   1135		return err;
   1136
   1137	/* First, do the virtual EL1 timer irq */
   1138
   1139	err = request_percpu_irq(host_vtimer_irq, kvm_arch_timer_handler,
   1140				 "kvm guest vtimer", kvm_get_running_vcpus());
   1141	if (err) {
   1142		kvm_err("kvm_arch_timer: can't request vtimer interrupt %d (%d)\n",
   1143			host_vtimer_irq, err);
   1144		return err;
   1145	}
   1146
   1147	if (has_gic) {
   1148		err = irq_set_vcpu_affinity(host_vtimer_irq,
   1149					    kvm_get_running_vcpus());
   1150		if (err) {
   1151			kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
   1152			goto out_free_irq;
   1153		}
   1154
   1155		static_branch_enable(&has_gic_active_state);
   1156	}
   1157
   1158	kvm_debug("virtual timer IRQ%d\n", host_vtimer_irq);
   1159
   1160	/* Now let's do the physical EL1 timer irq */
   1161
   1162	if (info->physical_irq > 0) {
   1163		err = request_percpu_irq(host_ptimer_irq, kvm_arch_timer_handler,
   1164					 "kvm guest ptimer", kvm_get_running_vcpus());
   1165		if (err) {
   1166			kvm_err("kvm_arch_timer: can't request ptimer interrupt %d (%d)\n",
   1167				host_ptimer_irq, err);
   1168			return err;
   1169		}
   1170
   1171		if (has_gic) {
   1172			err = irq_set_vcpu_affinity(host_ptimer_irq,
   1173						    kvm_get_running_vcpus());
   1174			if (err) {
   1175				kvm_err("kvm_arch_timer: error setting vcpu affinity\n");
   1176				goto out_free_irq;
   1177			}
   1178		}
   1179
   1180		kvm_debug("physical timer IRQ%d\n", host_ptimer_irq);
   1181	} else if (has_vhe()) {
   1182		kvm_err("kvm_arch_timer: invalid physical timer IRQ: %d\n",
   1183			info->physical_irq);
   1184		err = -ENODEV;
   1185		goto out_free_irq;
   1186	}
   1187
   1188	cpuhp_setup_state(CPUHP_AP_KVM_ARM_TIMER_STARTING,
   1189			  "kvm/arm/timer:starting", kvm_timer_starting_cpu,
   1190			  kvm_timer_dying_cpu);
   1191	return 0;
   1192out_free_irq:
   1193	free_percpu_irq(host_vtimer_irq, kvm_get_running_vcpus());
   1194	return err;
   1195}
   1196
   1197void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
   1198{
   1199	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
   1200
   1201	soft_timer_cancel(&timer->bg_timer);
   1202}
   1203
   1204static bool timer_irqs_are_valid(struct kvm_vcpu *vcpu)
   1205{
   1206	int vtimer_irq, ptimer_irq, ret;
   1207	unsigned long i;
   1208
   1209	vtimer_irq = vcpu_vtimer(vcpu)->irq.irq;
   1210	ret = kvm_vgic_set_owner(vcpu, vtimer_irq, vcpu_vtimer(vcpu));
   1211	if (ret)
   1212		return false;
   1213
   1214	ptimer_irq = vcpu_ptimer(vcpu)->irq.irq;
   1215	ret = kvm_vgic_set_owner(vcpu, ptimer_irq, vcpu_ptimer(vcpu));
   1216	if (ret)
   1217		return false;
   1218
   1219	kvm_for_each_vcpu(i, vcpu, vcpu->kvm) {
   1220		if (vcpu_vtimer(vcpu)->irq.irq != vtimer_irq ||
   1221		    vcpu_ptimer(vcpu)->irq.irq != ptimer_irq)
   1222			return false;
   1223	}
   1224
   1225	return true;
   1226}
   1227
   1228bool kvm_arch_timer_get_input_level(int vintid)
   1229{
   1230	struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
   1231	struct arch_timer_context *timer;
   1232
   1233	if (WARN(!vcpu, "No vcpu context!\n"))
   1234		return false;
   1235
   1236	if (vintid == vcpu_vtimer(vcpu)->irq.irq)
   1237		timer = vcpu_vtimer(vcpu);
   1238	else if (vintid == vcpu_ptimer(vcpu)->irq.irq)
   1239		timer = vcpu_ptimer(vcpu);
   1240	else
   1241		BUG();
   1242
   1243	return kvm_timer_should_fire(timer);
   1244}
   1245
   1246int kvm_timer_enable(struct kvm_vcpu *vcpu)
   1247{
   1248	struct arch_timer_cpu *timer = vcpu_timer(vcpu);
   1249	struct timer_map map;
   1250	int ret;
   1251
   1252	if (timer->enabled)
   1253		return 0;
   1254
   1255	/* Without a VGIC we do not map virtual IRQs to physical IRQs */
   1256	if (!irqchip_in_kernel(vcpu->kvm))
   1257		goto no_vgic;
   1258
   1259	/*
   1260	 * At this stage, we have the guarantee that the vgic is both
   1261	 * available and initialized.
   1262	 */
   1263	if (!timer_irqs_are_valid(vcpu)) {
   1264		kvm_debug("incorrectly configured timer irqs\n");
   1265		return -EINVAL;
   1266	}
   1267
   1268	get_timer_map(vcpu, &map);
   1269
   1270	ret = kvm_vgic_map_phys_irq(vcpu,
   1271				    map.direct_vtimer->host_timer_irq,
   1272				    map.direct_vtimer->irq.irq,
   1273				    &arch_timer_irq_ops);
   1274	if (ret)
   1275		return ret;
   1276
   1277	if (map.direct_ptimer) {
   1278		ret = kvm_vgic_map_phys_irq(vcpu,
   1279					    map.direct_ptimer->host_timer_irq,
   1280					    map.direct_ptimer->irq.irq,
   1281					    &arch_timer_irq_ops);
   1282	}
   1283
   1284	if (ret)
   1285		return ret;
   1286
   1287no_vgic:
   1288	timer->enabled = 1;
   1289	return 0;
   1290}
   1291
   1292/*
   1293 * On VHE system, we only need to configure the EL2 timer trap register once,
   1294 * not for every world switch.
   1295 * The host kernel runs at EL2 with HCR_EL2.TGE == 1,
   1296 * and this makes those bits have no effect for the host kernel execution.
   1297 */
   1298void kvm_timer_init_vhe(void)
   1299{
   1300	/* When HCR_EL2.E2H ==1, EL1PCEN and EL1PCTEN are shifted by 10 */
   1301	u32 cnthctl_shift = 10;
   1302	u64 val;
   1303
   1304	/*
   1305	 * VHE systems allow the guest direct access to the EL1 physical
   1306	 * timer/counter.
   1307	 */
   1308	val = read_sysreg(cnthctl_el2);
   1309	val |= (CNTHCTL_EL1PCEN << cnthctl_shift);
   1310	val |= (CNTHCTL_EL1PCTEN << cnthctl_shift);
   1311	write_sysreg(val, cnthctl_el2);
   1312}
   1313
   1314static void set_timer_irqs(struct kvm *kvm, int vtimer_irq, int ptimer_irq)
   1315{
   1316	struct kvm_vcpu *vcpu;
   1317	unsigned long i;
   1318
   1319	kvm_for_each_vcpu(i, vcpu, kvm) {
   1320		vcpu_vtimer(vcpu)->irq.irq = vtimer_irq;
   1321		vcpu_ptimer(vcpu)->irq.irq = ptimer_irq;
   1322	}
   1323}
   1324
   1325int kvm_arm_timer_set_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
   1326{
   1327	int __user *uaddr = (int __user *)(long)attr->addr;
   1328	struct arch_timer_context *vtimer = vcpu_vtimer(vcpu);
   1329	struct arch_timer_context *ptimer = vcpu_ptimer(vcpu);
   1330	int irq;
   1331
   1332	if (!irqchip_in_kernel(vcpu->kvm))
   1333		return -EINVAL;
   1334
   1335	if (get_user(irq, uaddr))
   1336		return -EFAULT;
   1337
   1338	if (!(irq_is_ppi(irq)))
   1339		return -EINVAL;
   1340
   1341	if (vcpu->arch.timer_cpu.enabled)
   1342		return -EBUSY;
   1343
   1344	switch (attr->attr) {
   1345	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
   1346		set_timer_irqs(vcpu->kvm, irq, ptimer->irq.irq);
   1347		break;
   1348	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
   1349		set_timer_irqs(vcpu->kvm, vtimer->irq.irq, irq);
   1350		break;
   1351	default:
   1352		return -ENXIO;
   1353	}
   1354
   1355	return 0;
   1356}
   1357
   1358int kvm_arm_timer_get_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
   1359{
   1360	int __user *uaddr = (int __user *)(long)attr->addr;
   1361	struct arch_timer_context *timer;
   1362	int irq;
   1363
   1364	switch (attr->attr) {
   1365	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
   1366		timer = vcpu_vtimer(vcpu);
   1367		break;
   1368	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
   1369		timer = vcpu_ptimer(vcpu);
   1370		break;
   1371	default:
   1372		return -ENXIO;
   1373	}
   1374
   1375	irq = timer->irq.irq;
   1376	return put_user(irq, uaddr);
   1377}
   1378
   1379int kvm_arm_timer_has_attr(struct kvm_vcpu *vcpu, struct kvm_device_attr *attr)
   1380{
   1381	switch (attr->attr) {
   1382	case KVM_ARM_VCPU_TIMER_IRQ_VTIMER:
   1383	case KVM_ARM_VCPU_TIMER_IRQ_PTIMER:
   1384		return 0;
   1385	}
   1386
   1387	return -ENXIO;
   1388}